Cardiac Physiology

Total Page:16

File Type:pdf, Size:1020Kb

Cardiac Physiology Cardiac Physiology Gia Marzano, AC PNP Pediatric Cardiac Surgery Rush Center for Congenital Heart Disease Rush University Medical Center Objectives Part 1 • Fetal Circulation • Transition to Postnatal Circulation • Normal Cardiac Anatomy • Ductal Dependence and use of PGE1 Objectives Part 2 • Basic principles of cardiac physiology • Basic categories of congenital heart disease based on pathophysiology • Application of physiology to your bedside management 1 Fetal Circulation Few Concepts • Fetal heart starts developing during the 3rd week of life • By the 3rd month of development, all major blood vessels are present and functioning. • Pulmonary Blood Flow is Low • Gas Exchange (Oxygen) occurs in placenta More Concepts • Pulmonary Resistance is High – Lungs are still underdeveloped – Small pulmonary arteries have a thicker smooth muscle layer than similar arteries in adults. Fetal Circulation Overview • Umbilical Circulation: – Pair of umbilical arteries carry deoxygenated blood & wastes to placenta. – Umbilical vein carries oxygenated blood and nutrients from the placenta. • Placenta facilitates gas and nutrient exchange between maternal and fetal blood. 2 Fetal Circulation Overview • Oxygenated blood from placenta is transported to the fetus through the Umbilical Vein Fetal Circulation Overview • Most of the oxygenated blood bypasses the liver through the Ductus Venosus and mixes with De-Ox Blood from IVC Fetal Circulation Overview • Blood travels from the IVC and enters the RA 3 Fetal Circulation Overview • 40 % of oxygenated blood from the IVC bypasses the RV and is shunted to the LA via the Foramen Ovale • The rest mixes with De-ox blood from the SVC and enters the RV Fetal Circulation Overview • Blood then travels to the LV and is distributed through the aorta mainly to the coronaries and upper body (carotid and subclavian arteries) • Only 1/3 of this volume goes to the lower body Fetal Circulation Overview • Most blood from the IVC (60%) mixes with SVC blood and enters the RV from the RA • Because the lungs are non-functional, most (90%) will be shunted away from the pulmonary arteries through the Ductus Arteriosus to the Descending Aorta and Placenta for oxygenation 4 Fetal Circulation Overview • Blood circulates to the body and returns to the placenta via the umbilical arteries Fetal Circulation Overview • Placenta re- oxygenates blood returning from the umbilical arteries • New fetal cardiac cycle… Fetal Circulation Overview • Parallel circulation with shunts (PFO and PDA) allows various lesions to provide adequate transport of blood to placenta for oxygenation and deliver it to the tissues • RV performs ~ 2/3 cardiac work RV larger and thicker at birth 5 Transitional and Post-Natal Circulation • What happens at birth ?? • The change from fetal to postnatal circulation happens very quickly. • 2 major events: – Changes initiated by baby’s first breath. – Elimination of the placenta Transitional Circulation • Clamping of the umbilical cord: – Eliminates the low resistance placental circulation peripheral vascular resistance increases – decreases blood volume returning to the heart from IVC Transitional Circulation • With initiation of pulmonary ventilation: – Increased alveolar O2 pressure vasodilates the pulmonary arteries – Pulmonary vascular resistance decreases significantly 6 Transitional Circulation Increase Drop in in systemic + pulmonary Vascular Vascular resistance resistance Pulm Blood flow increases 8-10 X Transitional Circulation • Increased pulmonary blood flow increased pulmonary venous return into LA LAP >RAP the greater LAP (and lower IVC flow) closes the valve of the foramen ovale, preventing right-to-left shunting. Transitional Circulation • PDA: changes from R2L conduit of blood to the descending aorta to a L2R conduit of blood to the lungs • Ductus arteriosus constricts and closes functionally within several hours after birth, largely in response to the increase in oxygen tension. 7 Transitional Circulation • PFO closure • Ductus arteriosus closure • These events result in the effective separation of the systemic and pulmonary circulations after birth. Ductal Dependence The Ductus Arteriosus • In fetus: – large channel that allows blood to bypass the lung circulation to the Dao and placenta for oxygenation – as big as the Dao ! (10mm) – allows equalization of Ao and pulm arterial P The Ductus Arteriosus Role of O2 • Thick muscular layer • Towards late gestation, the muscle layer thickens and the lumen becomes smaller • After birth, increased arterial O2 causes more constriction of the ductus • Constriction decreases PO2 in the muscle severe hypoxia cell destruction and fibrosis • Functional closure within 10-15 hrs after birth • Complete closure within 5-7 days, can be up to 21 days 8 Ductus Arteriosus Role of Prostaglandins • Produced by the wall of the ductus and placenta • 2 types: PGI2 and PGE2 • Relax the ductus arteriosus smooth muscle • Metabolized in the lungs • After birth, ↓↓ PG ductal closure Ductus Arteriosus in Congenital Heart Disease • In many CHD cases (mainly cyanotic), ductus does not close normally after birth: – TA/PA/TGA: arterial O2 remains low after birth lower stimulus for constriction – Left-sided lesisons (Ao atreasia, coarctation): arterial O2 increases after birth but the high PAP/flow keeps ductus patent Ductus Arteriosus in Congenital Heart Disease Ductal Dependency • Normally, ductus carries ~ 60 % of combined C.O from the PA to the DAo • If LV outflow tract is obstructed (e.g. aortic valve atresia, coarctation, interruption): – larger portion of combined C.O crosses the ductus (~90%) larger Ductus 9 Ductus Arteriosus in Lt sided lesions Ductal Dependency – After birth: need the ductus to provide most of systemic blood flow (from PA to Ao) Ductus Arteriosus in Congenital Heart Disease • If RV outflow is narrow (e.g. pulmonary atresia, tricuspid atresia) – minimal blood from RV to ductus small ductus Ductus Arteriosus in Rt sided lesions Ductal Dependency • After Birth: Need the ductus to maintain pulmonary blood flow 10 Prostaglandin Therapy • Indomethacin: inhibits PG production • PGE1: – relaxes the ductus arteriosus smooth muscle cells. – Effective within the first 7-10 days after birth – Dose: 0.05-0.1 mcg/kg/min – IV/PO Prostaglandin Therapy Side Effects • Apnea • Fever • Flushing • Hypotension • Thrombocytopenia • Seizure • Pyloric gastric outlet obstruction Questions? 11 Part 2 • Basic principles of cardiac physiology including Flow and pressure relationships Oxygen delivery Determinants of blood pressure and cardiac output Let’s start with a case… • You are admitting a 4 day old female who had no prenatal care and presented to the ED with poor feeding, respiratory distress, lethargy and poor urine output. PGE infusion was started in the ED. • On exam, she is floppy with grunting respirations and her skin appears gray. Let’s start with a case… • VS:T 97 P 190 R 70 BP 40/P SpO2 92% • PE: Chest: coarse BS with retractions Heart: tachycardic, no murmur Abd: soft, liver 4cm below RCM Ext: gray, cool, cap refill 5 sec, poor distal pulses 12 Let’s start with a case… • Labs: WBC 8.2 Hg 11 Hct 33 Plt 189 Lytes:Na132/K5/Cl103/CO8/BUN13/Cr0.9 ABG: 6.99/32/54/8/-16/85% CXR: cardiomegaly, increased PVM ECHO: critical CoA Questions… • A nursing student asks “why is that baby gray?” How will you answer? • Then she asks why the baby is so hypotensive. You explain… • The MD decides to transfuse prbc and asks you to get consent from the parents. What will you tell them is the reason for the transfusion? Flow and Pressure Relationship (all you really need to know to understand any concept in cardiac critical care….seriously!) 13 Ohm’s Law Pressure change (dP) Flow (Q) = __________________ Resistance (R) Increased P Increased Q Increased R Decreased Q Cardiac Physiology • What is the purpose of the heart? O2 Cardiac Physiology Delivery of oxygen (DO2) is a direct function of the cardiac output (CO) and the arterial oxygen content (CaO2) DO2 = CO x CaO2 14 Cardiac Physiology Oxygen Delivery DO2 = CO x CaO2 Cardiac Output (CO) Arterial Oxygen Content (CaO2 art Rate (HR) x Stroke Volume (Hgb(SV) x 1.39 x SaO2) + (0.003 x PaO roke Volume is directly related to: Preload Afterload Contractility Cardiac Physiology • What are we trying to achieve? Maximize O2 delivery Provide adequate end organ perfusion Maintain BP Determinants of blood pressure 15 Ohm’s Law BP = Flow(Q) x Resistance(R) What is Blood Pressure? BP CO SVR (Afterload) Heart rate Stroke Volume Intravascular Volume Contractility (Preload) Maintaining Blood Pressure • Derrangement in: – Volume status – Cardiac function BP – Vascular tone – Heart rate CO SVR HR SV Preload Contractility 16 Preload • Derrangement in: – Volume status – Cardiac function BP – Vascular tone – Heart rate CO SVR HR SV Preload Contractility Determinants of Cardiac Output • Preload -“Resting fiber length before contraction” -End diastolic ventricular volume -If preload is increased, SV and capability for pressure generation are increased. • Frank-Starling Mechanism -Compliance dependent CVP • CVP: Central venous pressure – Transduced via RA lines or CVL – Reflects the intravascular volume status of the patient and the filling pressure of the ventricle – Relationship between CVP and BP is important 17 Afterload (SVR) • Derrangement in: – Volume status – Cardiac function BP – Vascular tone – Heart rate CO SVR HR SV Preload Contractility Afterload • Any factor that resists the ejection of blood from the heart (SVR or obstruction) • With increasing
Recommended publications
  • CCM2 and CCM3 Proteins Contribute to Vasculogenesis and Angiogenesis in Human Placenta
    Histol Histopathol (2009) 24: 1287-1294 Histology and http://www.hh.um.es Histopathology Cellular and Molecular Biology CCM2 and CCM3 proteins contribute to vasculogenesis and angiogenesis in human placenta Gamze Tanriover1, Yasemin Seval1, Leyla Sati1, Murat Gunel2 and Necdet Demir1 1Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey and 2 Department of Neurosurgery, Yale University, School of Medicine, New Haven, CT, USA Summary. Placenta as an ideal model to study Introduction angiogenic mechanisms have been established in previous studies. There are two processes, The placenta is a multifaceted organ that plays a vasculogenesis and angiogenesis, involved in blood critical role in maintaining and protecting the developing vessel formation during placental development. fetus. Normal development and function of the placenta Therefore, blood vessel formation is a crucial issue that requires extensive vasculogenesis and subsequent might cause vascular malformations. One of the vascular angiogenesis, in both maternal and fetal tissues. malformations is cerebral cavernous malformation Vasculogenesis is the formation of the primitive vascular (CCM) in the central nervous system, consisting of network de novo from progenitor cells, and angiogenesis endothelium-lined vascular channels without intervening is identified as the extension of blood vessels from normal brain parenchyma. Three CCM loci have been preexisting vascular structures (Demir et al., 1989, 2006; mapped as Ccm1, Ccm2, Ccm3 genes in CCM. In order Geva et al., 2002; Charnock-Jones et al., 2004). Many to investigate whether CCM proteins participate in blood factors, such as vascular endothelial growth factor vessel formation, we report here the expression patterns (VEGF), angiopoietins (Angpt-1 and -2) and their of CCM2 and CCM3 in developing and term human receptors are involved in the molecular regulation of placenta by means of immunohistochemistry and these diverse developmental steps.
    [Show full text]
  • Fetal Brain Vascularity Visualized by Conventional 2D and 3D Power
    DSJUOG Fetal Brain Vascularity Visualized by Conventional 2D and 3D Power Doppler Technology REVIEW ARTICLE Fetal Brain Vascularity Visualized by Conventional 2D and 3D Power Doppler Technology 1Ritsuko K Pooh, 2Asim Kurjak 1CRIFM Clinical Research Institute of Fetal Medicine PMC, Osaka, Japan 2Department of Obstetrics and Gynecology, University of Zagreb, School of Medicine, Zagreb, Croatia Correspondence: Ritsuko K Pooh, CRIFM Clinical Research Institute of Fetal Medicine PMC 7-3-7, Uehommachi, Tennoji Osaka #543-0001, Japan, Phone: +81-6-6775-8111, Fax: +81-6-6775-8122, e-mail: [email protected] Abstract Significant advances have been made in accurate and reliable visualization of the cerebral circulation in normal and abnormal pregnancies. They provided the non-invasive studies of fetal cerebral angiogenesis and further development that filled some of the gaps made by neuroanatomical studies alone. The first breakthrough in the assessment of fetal circulation was development of Doppler system with purpose to obtain velocity waveforms. Continuing technical advances in Doppler ultrasound equipment, especially highly sensitive color flow imagining techniques have made it possible to study smaller anatomical parts of fetal circulation system including cerebral vascularization. Before examination of brain vascularity, anatomical vascular structure and development on the different appearance at each gestational age should be remembered as the basic knowledge. Since the development of the embryo is rapid and significant changes occur during even one week it is important to specify the stage of the embryo or fetus both by age (postmenstrual weeks and days) and by size (crownrump length (CRL) and biparietal diameter (BPD). Introduction of three-dimensional (3D) sonography and 3D power Doppler techniques have enabled visualization of intracranial vessels.
    [Show full text]
  • Cardiac Physiologyc As a Country
    Type to enter text CardiacCardiovascular PhysiologyC as a Physiology Country Doc EpisodeEpisode 2:2: The EKG Electrocardiography I Patrick Eggena, M.D. Novateur Medmedia Type EPISODEto enter text 2 Type to enter text THE EKG by Patrick Eggena, M.D. i Copyright This Episode is derived from: Course in Cardiovascular Physiology by Patrick Eggena, M.D. © Copyright Novateur Medmedia, LLC. April 13, 2012 The United States Copyright Registration Number: PAu3-662-048 Ordering Information via iBooks: ISBN 978-0-9905771-1-9 Cardiac Physiology as a Country Doc, Episode 2: The EKG. Contact Information: Novateur Medmedia, LLC 39 Terry Hill Road, Carmel, NY 10512 email: [email protected] Credits: Oil Paintings by Bonnie Eggena, PsD. Music by Alan Goodman from his CD Under the Bed, Cancoll Music, copyright 2005 (with permission). Illustrations, movies, text, and lectures by Patrick Eggena, M.D. Note: Knowledge in the basic and clinical sciences is constantly changing. The reader is advised to carefully consult the instruc- tions and informational material included in the package inserts of each drug or therapeutic agent before administration. The Country Doctor Series illustrates Physiological Principles and is not intended as a guide to Medical Therapeutics. Care has been taken to present correct information in this book, however, the author and publisher are not responsible for errors or omissions or for any consequence from application of the information in this work and make no warranty, expressed or implied, with re- spect to the contents of this publication or that its operation will be uninterrupted and error free on any particular recording de- vice.
    [Show full text]
  • Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease
    Journal of Cardiovascular Development and Disease Review Fetal Blood Flow and Genetic Mutations in Conotruncal Congenital Heart Disease Laura A. Dyer 1 and Sandra Rugonyi 2,* 1 Department of Biology, University of Portland, Portland, OR 97203, USA; [email protected] 2 Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA * Correspondence: [email protected] Abstract: In congenital heart disease, the presence of structural defects affects blood flow in the heart and circulation. However, because the fetal circulation bypasses the lungs, fetuses with cyanotic heart defects can survive in utero but need prompt intervention to survive after birth. Tetralogy of Fallot and persistent truncus arteriosus are two of the most significant conotruncal heart defects. In both defects, blood access to the lungs is restricted or non-existent, and babies with these critical conditions need intervention right after birth. While there are known genetic mutations that lead to these critical heart defects, early perturbations in blood flow can independently lead to critical heart defects. In this paper, we start by comparing the fetal circulation with the neonatal and adult circulation, and reviewing how altered fetal blood flow can be used as a diagnostic tool to plan interventions. We then look at known factors that lead to tetralogy of Fallot and persistent truncus arteriosus: namely early perturbations in blood flow and mutations within VEGF-related pathways. The interplay between physical and genetic factors means that any one alteration can cause significant disruptions during development and underscore our need to better understand the effects of both blood flow and flow-responsive genes.
    [Show full text]
  • Patent Ductus Arteriosus About This Factsheet the Normal Heart
    Understanding your child’s heart Patent ductus arteriosus About this factsheet The normal heart This factsheet is for parents of babies and children who The heart is a muscular pump which pumps blood through the have patent ductus arteriosus (PDA), which is also known as body and lungs. There are four chambers in the heart. The two persistent arterial duct. upper ones are called the right atrium and left atrium. These are separated by a wall called the atrial septum. The two lower It explains: chambers are called the right and left ventricles, and are separated • what patent ductus arteriosus is and how it is diagnosed by a wall called the ventricular septum. • how patent ductus arteriosus is treated • the benefits and risks of treatments. On each side of the heart, blood passes from the atrium, through a heart valve – the tricuspid valve on the right, and the mitral valve This factsheet does not replace the advice that doctors or on the left – into the ventricle. The ventricles are the main pumping nurses may give you, but it should help you to understand chambers of the heart. Each ventricle pumps blood out into an artery. what they tell you. The right ventricle pumps blood – blue in the illustration – into the pulmonary artery (the blood vessel that takes blood to the lungs). The left ventricle pumps blood – red in the illustration – into the aorta (the blood vessel that takes blood to the rest of the body). Blood flows from the right side of the heart, through the pulmonary valve into the pulmonary artery, and then to the lungs where it picks up oxygen.
    [Show full text]
  • Development of HEART 4-VEINS
    Development of brachiocephalic veins 1. Right brachiocephalic vein is formed by cranial part of right anterior cardinal vein and 2. Left brachiocephalic is formed by cranial part of left anterior cardinal vein and the interant.cardinal anastomosis. Development of superior vena cava 1. The part up to the opening of vena azygos develops from caudal part of right ant.cardinal vein and 2. The part below the opening (intrapericardial part) is formed by the right common cardinal vein. Development of azygos and hemiazygos veins A. 1. Vena azygos develops from right azygos line vein and 2. The arch of vena azygos is formed by the cranial end of right postcardinal vein. B. Hemiazygos veins are formed by the left azygos line vein. Development of Inferior vena cava Inferior vena cava is formed, from below upwards by: 1. Begins by the union of the two common iliac veins (postcardinal veins), 2. Right supracardinal, 3. Right supra-subcardinal anastomosis, 4. Right subcardinal, 5. New formation (hepatic segment) and 6. Hepatocardiac channel (terminal part of right vitelline vein). Congenital anomalies • Double inferior vena cava • Absence • Left SVC • Double SVC DEVELOPMENT OF PORTAL VEIN 1. The portal vein is formed behind the neck of pancreas by the union of superior mesentric and splenic vein to the left vitelline vein. 2. The part of the portal vein which is behind the Ist part of duodenum is formed by middle dorsal transverse anastomosis. 3. Part of portal vein which is in the free margin of lesser omentum is formed by cranial or distal part of right vitelline vein.
    [Show full text]
  • The Placenta
    The placenta Learning module Developed by Carolyn Hammer Edited by Fabien Giroux Diagrams By Dr Julien Yockell Lelievre where indicated The placenta – Learning module Table of content 1) Introduction……………………………………………………………………….3 2) Anatomy and Physiology………………………………………………………..6 3) Roles and Functions……………………………………………………………17 4) Development and formation…………………………………..…………….…27 5) What happens after birth……………………………………………….……...34 6) What happens when things go wrong.……………………………………….36 7) Interesting facts about pregnancy………………….…………………………46 2 The placenta – Learning module Introduction 3 The placenta – Learning module What is the placenta? •The placenta is a “vascular (supplied with blood vessels) organ in most mammals that unites the fetus to the uterus of the mother. It mediates the metabolic exchanges of the developing individual through an intimate association of embryonic tissues and of certain uterine tissues, serving the functions of nutrition, respiration, and excretion.” (Online Britannica encyclopaedia) •As the fetus is in full development, it requires a certain amount of gases and nutrients to help support its growth. Because the fetus is unable to do so on its own, the placenta provides these gases and nutrients throughout pregnancy. http://health.allrefer.com/health/plac enta-abruptio-placenta.html 4 The placenta – Learning module What are the main roles of the placenta? •The placenta provides the connection between fetus and mother in order to help carry out many different functions that the growing baby is incapable to do so alone. During pregnancy, the placenta has 6 main roles to maintain good health and a good environment for the growing child: •Respiration •Nutrition •Excretion •Protection •Endocrine •Immunity 5 The placenta – Learning module Anatomy and physiology 6 The placenta – Learning module Structure •A placenta is an organ of round or oval shape that is relatively flat.
    [Show full text]
  • The Structural Heterogeneity of Chorial Villi Phenotype Determined by Angiogenesis
    Rom J Leg Med [19] 197-210 [2011] DOI: 10.4323/rjlm.2011.197 © 2011 Romanian Society of Legal Medicine The structural heterogeneity of chorial villi phenotype determined by angiogenesis. Implications in legal pathology Gheorghe S. Dragoi*, Petru Razvan Melinte, Daniel Zimta, Mohab El Din Mohamed _________________________________________________________________________________________ Abstract: Micro anatomic phenotype of chorial villi can be achieved only by means of a rigurous evaluation of its structural elements: trophoblast, vascular and mesenchyme. The authors proposed themselves to study the reciprocal relations between syncytiotrophoblast, fetal sinusoid capillaries and argentic collagen fiber fascicles inside chorial villi depending on angionesis process. The research was carried out on human biologic material using placenta fragments during 28-37 weeks of gestation. The authors consider that the collagen IV stereo distribution inside the vascular pedicle of the terminal villi, contributes to the stability, biodynamic and biokinematics of villi phenotype that is determined by branching or non branching angiogenesis. The personal results have a great value for stating the variability limits of terminal villi phenotype in ortology as well as in general or forensic pathology. Key Words: terminal villi, angiogenesis, collagen IV, villi phenotype he chorial villi phenotype is determined either by vasculogenesis either by angiogenesis. It Tis considered that until the end of gestation, the blood capillaries network reaches 550 km in length and 15 m2 in surface (Burton and Jauniaux, 1995) [7]. Angiogenesis plays an important role in formation and remodeling of blood vessels inside human placenta terminal villi. In the second half of gestation there is a growth acceleration and an increase in number for mature intermediate and terminal villi and for sinusoid blood capillaries (Mayhew, 2002) [22].
    [Show full text]
  • Insights from Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the Cardiac End-Systolic Force-Length Relationship
    fphys-11-00587 May 28, 2020 Time: 19:46 # 1 ORIGINAL RESEARCH published: 29 May 2020 doi: 10.3389/fphys.2020.00587 Insights From Computational Modeling Into the Contribution of Mechano-Calcium Feedback on the Cardiac End-Systolic Force-Length Relationship Megan E. Guidry1, David P. Nickerson1, Edmund J. Crampin2,3, Martyn P. Nash1,4, Denis S. Loiselle1,5 and Kenneth Tran1* 1 Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand, 2 Systems Biology Laboratory, School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia, 3 ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia, 4 Department of Engineering Science, The University of Auckland, Auckland, Edited by: New Zealand, 5 Department of Physiology, The University of Auckland, Auckland, New Zealand Leonid Katsnelson, Institute of Immunology and Physiology (RAS), Russia In experimental studies on cardiac tissue, the end-systolic force-length relation (ESFLR) Reviewed by: has been shown to depend on the mode of contraction: isometric or isotonic. The Andrey K. Tsaturyan, Lomonosov Moscow State University, isometric ESFLR is derived from isometric contractions spanning a range of muscle Russia lengths while the isotonic ESFLR is derived from shortening contractions across a Aurore Lyon, range of afterloads. The ESFLR of isotonic contractions consistently lies below its Maastricht University, Netherlands isometric counterpart. Despite the passing of over a hundred years since the first insight *Correspondence: Kenneth Tran by Otto Frank, the mechanism(s) underlying this protocol-dependent difference in the [email protected] ESFLR remain incompletely explained.
    [Show full text]
  • Development of Right Ventricle
    DEVELOPMENT OF THE HEART II. David Lendvai M.D., Ph.D. Mark Kozsurek, M.D., Ph.D. • Septation of the common atrioventricular (AV) orifice. • Formation of the interatrial septum. • Formation of the muscular interventricular septum. • Appearance of the membranous interventricular septum and the spiral aorticopulmonary septum. right left septum primum septum primum septum primum septum primum septum primum septum primum foramen primum foramen primum septum primum septum primum foramen primum foramen primum septum primum septum primum foramen secundum foramen secundum foramen primum foramen primum septum primum foramen secundum septum primum foramen secundum foramen primum foramen primum septum primum septum primum foramen secundum foramen secundum septum secundum septum secundum foramen secundum foramen ovale foramen ovale septum primum septum primum septum secundum septum secundum foramen secundum foramen ovale foramen ovale septum primum septum primum septum secundum septum secundum foramen secundum septum primum foramen ovale foramen ovale septum primum SUMMARY • The septation of the common atrium starts with the appearance of the crescent-shaped septum primum. The opening of this septum, the foramen primum, becomes progressively smaller. • Before the foramen primum completly closes, postero-superiorly several small openings appear on the septum primum. These perforations coalesce later and form the foramen secundum. • On the right side of the septum primum a new septum, the septum secundum, starts to grow. The orifice of the septum secundum is the foramen ovale. • Finally two crescent-like, incomplete, partially overlapping septa exist with one hole on each. Septum secundum is more rigid and the septum primum on its left side acts as a valve letting the blood flow exclusively from the right to the left.
    [Show full text]
  • Fetal Circulation
    The Fetal Circulation Dr. S. Mathieu, Specialist Registrar in Anaesthesia Dr. D. J. Dalgleish, Consultant Anaesthetist Royal Bournemouth and Christchurch Hospitals Trust, UK Questions 1. In the fetal circulation: a) There are two umbilical arteries and one umbilical vein? b) Over 90% of blood passes the liver via the ductus venosus c) The foramen ovale divides the left and right ventricle d) The umbilical artery carries oxygenated blood from the placenta to the fetus e) The foramen ovale allows oxygenated blood to bypass the pulmonary circulation 2. In the fetal circulation: a) The oxygen dissociation curve of fetal haemoglobin is shifted to the left compared with adult haemoglobin ensuring oxygen delivery to the fetus despite low oxygen partial pressures b) It is the presence of the ductus arteriosus and large pulmonary vascular resistance which ensures most of the right ventricular output passes into the aorta c) The patency of the ductus arteriosus is maintained by high oxygen tensions d) The patency of the ductus arteriosus is maintained by the vasodilating effects of prostaglandin G2 e) 2,3-DPG levels are higher in fetal haemoglobin compared with adult haemaglobin 3. Changes at birth include: a) a fall in pulmonary vascular resistance b) a rise in systemic vascular resistance with clamping of the cord c) an increase in hypoxic pulmonary vasoconstriction d) a rise in left atrial pressure e) closure of the ductus arteriosus within 24 hours 4. The following congenital heart lesions are cyanotic: a) Ventricular septal defect b) Atrial septal defect c) Patent ductus arteriosus d) Tetralogy of Fallot e) Transposition of the great arteries MCQ answers at end Key points • The fetal circulation supplies the fetal tissues with oxygen and nutrients from the placenta.
    [Show full text]
  • The Pattern and Mechanisms of Response to Oxygen by the Ductus Arteriosus and Umbilical Artery
    Pediat. Res. 6: 693-700 (1972) Acetylcholine neonate atropine prematurity bradykinin sympathetic nervous system ductus arteriosus The Pattern and Mechanisms of Response to Oxygen by the Ductus Arteriosus and Umbilical Artery INGRID OBERHANSLI-WEISS, MICHAEL A. HEYMANN1391, ABRAHAM M. RUDOLPH, AND KENNETH L. MELMON Cardiovascular Research Institute and Departments of Pediatrics, Physiology and Pharmacology, University of California San Francisco, San Francisco, California, USA Extract Response of the ductus arteriosus and umbilical artery to changes in oxygen tension, to acetylcholine, and to sympathetic and parasympathetic blocking agents was studied in vitro in isolated rings obtained from 22 fetal lambs of 98- to 147-day gestation. After stabilization of tension at a baseline level (0.3-0.7 g) in a PO2 environment of 35-45 mm Hg, both increase of the PO2 to 550 mm Hg and decrease of the PO2 to 8 mm Hg of the bathing solution produced constriction. The mean maximal tension developed by the ductus arteriosus.was 3.91 g at high PO2 and 3.87 g at low POr The increase in maximal tension developed with advancing gestation was also similar at both high and low POj. At P02 levels of 8-550 mm Hg, acetylcholine produced a further increase in tension, whereas bradykinin only produced an increase in tension at high PO2- Alpha and beta sympathetic blockade had no effect on the constrictor response to oxygen. Atropine relaxed the ductus arteriosus and umbilical artery at both high and low Po2 levels; the degree of relaxation was related to drug concentration. Acetylcholin- esterase also relaxed the ductus arteriosus constricted by oxygen.
    [Show full text]