Effects of Parasitism on the Reproduction of Common Snook
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4. -
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
Esox Lucius) Ecological Risk Screening Summary
Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri). -
Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus. -
Proceedings of the Helminthological Society of Washington 49(2) 1982
I , , _ / ,' "T '- "/-_ J, . _. Volume 49 Jrily 1982;} Nufnber,2 \~-.\ .•'.' ''•-,- -• ;- - S "• . v-T /7, ' V. >= v.-"' " - . f "-< "'• '-.' '" J; PROCEEDINGS -. .-.•, • "*-. -. The Helmifltliological Society Washington :- ' ; "- ' A^siBmiohnua/ /ourna/ of research devofedVfp ^He/miiithoibgy and , a// branches of Parasi'fology in part by the ; r r;Brqytpn H.yRansom Memorial /Trust Fond TA'&'- -s^^>~J ••..''/'""', ':vSj ''--//;i -^v Subscription ^$18X)0 a Volume; Foreign, $19.00 AMIN, ,OwARr M. Adult Trematodes (Digenea) from Lake'Fishes ;6f Southeastern;Wisconsin, A with a Key to;Species ofvthe Genus Crleptdottomu/rt firwm, 1900 in-North America '_'.C-_~i-, 196- '•}AMIN, OMAR M. Two larval Trematodes'^Strigeoide^y^f fishes iri/Southeastern Wiscpnsin .:._ 207 AIMIN, OMARM. Description of Larval Acanthoctphajus parksidei Amin, 1975 (Acanthocephala: I A Echinorhynchidae) from Its iSopod Intermediate Host—i'.i.—_i.;—;-__-..-_-__-.—J....... 235 AMIN, PAIARM."and DONAL G.'My/ER. 'Paracreptbtrematina\timi gen.;et sp. inov. (Digenea: -. v Allocreadiidae) frohi-the Mudminnow, Umbra limi '.:'-._.2i_i-..__.^^.^i.., _— -____i_xS185 BAKER, M.i R. ,'On Two'Nevy Nie;matode Parasites (TnchOstrongyloidea: Molineidae) from f— , Amphibians;and Reptiles (...^d.-. -—._..-l.H— --^_./——.—.—.j- ^::l.._.___i__ 252 CAMPBELL, RONALD A:, STEVEN J- CORREIA, AND ;RIGHA»PTL. HAEPRJGH., A ,New Mbnor : • \ ^genean/and Cestode from'jthe Deep-Sea Fish, Macrourus berglax Lacepede, ;1802,' from jHe Flemish 'Cap off Newfoundland -u—— :.^..——u—^—-—^—y——i——~--———::-—:^ 169 vCAMPBELL, .RoNALp A. AND JOHN V.-^GARTNER, JR. "'Pistarta eutypharyifgis gen.\et sp. 'n.' , (', (Ceystoda: Pseudophyllidea)_from/;the Bathypelagic Gulper .Eel, ~Eurypharynx-pelecanoides ^.Vaillant, 1882, withiComments on Host arid Parasite Ecology -.:^-_r-::--—i—---_—L——I. -
Parasites from the Red Lionfish, Pterois Volitans from the Gulf of Mexico
Gulf and Caribbean Research Volume 27 Issue 1 2016 Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico Alexander Q. Fogg Florida Fish and Wildlife Conservation Commission, [email protected] Carlos F. Ruiz Auburn University, [email protected] Stephen S. Curran The University of Southern Mississippi, [email protected] Stephen A. Bullard Auburn University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Biodiversity Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Fogg, A. Q., C. F. Ruiz, S. S. Curran and S. A. Bullard. 2016. Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico. Gulf and Caribbean Research 27 (1): SC1-SC5. Retrieved from https://aquila.usm.edu/gcr/vol27/iss1/7 DOI: https://doi.org/10.18785/gcr.2701.07 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W. -
Nabs 2004 Final
CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E. -
Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens. -
Assessment of the Potential Effects of Diseases Present in Salmonid
July 2011 technical report 1A Assessment of the potential effects of diseases present in salmonid enhancement facilities The Cohen Commission of Inquiry on Fraser River sockeye salmon into the Decline of Sockeye Salmon in the Fraser River Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Centre for Coastal Health 900 5th Street, Nanaimo, BC V6B 4N7 www.centreforcoastalhealth.ca Technical Report 1A July 2011 Recommended citation for this report: Stephen, C., T. Stitt, J. Dawson-Coates and A. McCarthy. 2011. Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon. Cohen Commission Tech. Rept. 1A: 180p. Vancouver, B.C. www.cohencommission.ca Preface Fraser River sockeye salmon are vitally important for Canadians. Aboriginal and non-Aboriginal communities depend on sockeye for their food, social, and ceremonial purposes; recreational pursuits; and livelihood needs. They are key components of freshwater and marine aquatic ecosystems. Events over the past century have shown that the Fraser sockeye resource is fragile and vulnerable to human impacts such as rock slides, industrial activities, climatic change, fisheries policies and fishing. Fraser sockeye are also subject to natural environmental variations and population cycles that strongly influence survival and production. In 2009, the decline of sockeye salmon stocks in the Fraser River in British Columbia led to the closure of the fishery for the third consecutive year, despite favourable pre-season estimates of the number of sockeye salmon expected to return to the river. -
The Open Access Israeli Journal of Aquaculture – Bamidgeh
The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of Hawaii at Manoa Library Sheenan Harpaz Agricultural Research Organization and Beit Dagan, Israel University of Hawaii Aquaculture Zvi Yaron Dept. of Zoology Program in association with Tel Aviv University AquacultureHub Tel Aviv, Israel http://www.aquaculturehub.org Angelo Colorni National Center for Mariculture, IOLR Eilat, Israel Rina Chakrabarti Aqua Research Lab Dept. of Zoology University of Delhi Ingrid Lupatsch Swansea University Singleton Park, Swansea, UK Jaap van Rijn The Hebrew University Faculty of Agriculture Israel Spencer Malecha Dept. of Human Nutrition, Food and Animal Sciences University of Hawaii Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Emilio Tibaldi Udine University Udine, Italy ISSN 0792 - 156X Israeli Journal of Aquaculture - BAMIGDEH. Copy Editor Ellen Rosenberg PUBLISHER: Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL Phone: + 972 52 3965809 http://siamb.org.il The Israeli Journal of Aquaculture – Bamidgeh 61(2), 2009, 93-102. -
The Effect of Dietary Fish Oil Replacement with Soybean Oil on Growth and Health of Dusky Kob, Argyrosomus Japonicus (Pisces: Sciaenidae)
CORE Metadata, citation and similar papers at core.ac.uk Provided by South East Academic Libraries System (SEALS) THE EFFECT OF DIETARY FISH OIL REPLACEMENT WITH SOYBEAN OIL ON GROWTH AND HEALTH OF DUSKY KOB, ARGYROSOMUS JAPONICUS (PISCES: SCIAENIDAE) Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of Rhodes University By Nani Adami Rossetti December 2011 “With Earth’s burgeoning population to feed we must turn to the sea with new understanding and new technology. We need to farm it as we farm the land" Jacques Cousteau, 1973 ii ABSTRACT Lipids are essential components for fish because they contain fatty acids that are vital for regular growth and health. Fish oil is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential fatty acids for carnivorous fish, and therefore this product has traditionally being used as the main source of lipids in fish feeds. However, with declining fisheries resources worldwide and the rapid expansion of the aquaculture industry pressuring this finite resource, such ingredients are becoming less available and more expensive. It is therefore necessary to explore the utilization of ingredients that are sustainable and competitive alternatives to fish oil in marine finfish feeds. This work investigated the effects of the substitution of fish oil with soybean oil on the growth performance, feed efficiency, fatty acid composition of the liver tissue and some health parameters in juvenile dusky kob, Argyrosomus japonicus; an increasingly popular sciaenid marine aquaculture species in South Africa. Six diets (18 % total lipid and 46 % protein) with increasing percentage substitution of fish oil with soybean oil (1, 14, 28, 42, 56 and 70 %) were fed to juvenile kob. -
Roles of Three Putative Salmon Louse (Lepeophtheirus Salmonis)
Dalvin et al. Parasites Vectors (2021) 14:206 https://doi.org/10.1186/s13071-021-04690-w Parasites & Vectors RESEARCH Open Access Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E2 synthases in physiology and host–parasite interactions Sussie Dalvin1, Christiane Eichner2, Michael Dondrup3 and Aina‑Cathrine Øvergård2* Abstract Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fsh. Atlantic salmon (Salmo salar) exhibit only a limited and inefective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host–parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES‑like genes. Methods: Lepeophtheirus salmonis microsomal glutathione S‑transferase 1 like (LsMGST1L) and LsPGES3L were inves‑ tigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identifed LsPGES2 gene was analyzed in double stranded (ds) RNA‑ mediated knockdown (KD) salmon louse. Results: Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA‑mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output.