Effects of Parasitism on the Reproduction of Common Snook

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Parasitism on the Reproduction of Common Snook EFFECTS OF PARASITISM ON THE REPRODUCTION OF COMMON SNOOK by Joy M. Young A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2015 Copyright 2014 by Joy M. Young ii ACKNOWLEDGEMENTS I would like to express my deepest appreciation to my major advisor Dr. Colin Hughes; he continually and enthusiastically conveyed a spirit of excitement and genuine curiosity for research and the pursuit of knowledge. I could not have imagined a better, more supportive advisor and mentor for my Ph.D. study. I would like to thank my committee members Dr. John Baldwin, Dr. Joseph Caruso, Dr. Stephen Kajiura, Dr. Erik Noonburg, and Ronald Taylor; whose work demonstrated the best in their respected fields and for providing guidance and insight in how to integrate their scientific disciplines. This research would not have been possible without an immense amount of administrative, financial, and technical support. The administrative staff at Florida Atlantic University Department of Biological Sciences and Graduate College, especially Michelle Cavallo, has been an invaluable resource and support system for the past five years. Several funding sources provided financial support of this work including Florida Atlantic University Department of Biological Sciences, the Fish and Wildlife Research Institute (FWRI), the American Fisheries Society, International Women’s Fishing Association, and the Manasquan River Marlin and Tuna Club. I would also like to thank Cynthia Faulk at the University of Texas at Austin for her assistance with the egg fatty acid portion of this project. I am grateful to Dr. Robin Overstreet and Jean Jovonovich Alvillar from the Gulf Coast Research Laboratory and Micah Bakenhaster from the Fish Health Section of FWRI for their guidance and assistance with parasite identification. iv My deepest gratitude to FWRI and my colleagues that became my family; they saw the potential of my project and played a critical role in accomplishing field collections. Thank you Jim; as a supervisor your tolerance of my responsibilities outside the office and helping ground scientific theory in reality was instrumental to my project. As a friend, your lightheartedness and contagious laughter helped me remember that this is ‘just science’ and to keep life priorities, not just academic ones. Thank you Beau and Anderson for bringing fish to the boat, being so willing to help in any aspect of the project, and keeping my feet on the ground. I am overwhelmed by your generosity of spirit, time and interest. Parasites! Parasites! Parasites! I will forever be grateful to my family members and friends who have been constant sources of inspiration during the preparation, execution, and completion of this project. Bonnie, you inspire me to take on the world with class and grace. As my oldest friend, your unconditional love tempered with keeping me truthful to myself has made me a stronger woman, and person. For us, this is just one more memory in a lifetime to come. A special thank you to you (and Sean) for bringing Bella into my life. I marvel at her fierce strength and creative soul and I am excited to watch her move mountains. Eternal thanks to April, Jen, Katie, Kim, and Lindsay; to find one true friend is fortunate, to find a group of strong, intelligent, compassionate, and funny women to call my friends is a very rare and special treasure. Our friendships are much beyond good times; you all are my safety net, my motivation, my therapists, and most importantly, my dearest friends. Special thanks to Kim and Lindsay for staying late to cut stomachs, sharing my enthusiasm for finding parasites, and impromptu editing. You are the best! v I am a proud product of my parents; nothing that I have or will accomplish is possible without you. I am incredibly lucky to have parents that always championed my dreams and supported my decisions, even if you didn’t agree with some of them. Thank you for teaching me the commitment, perseverance, and attention to detail that has served me well in the sciences. Thank you for giving me the self-confidence to pick myself up after I fail and the wisdom to not take myself too seriously. Thank you Grey, Leam, and Sophie; as the next generation you motivate me to become a better person. Grey, observing and being a part of your budding interest in science reminds me of why I love what I do, and why I chose this path. Thank you all for being a part of my journey. vi ABSTRACT Author: Joy M. Young Title: Effects of Parasitism on the Reproduction of Common Snook Institution: Florida Atlantic University Dissertation Advisor: Dr. Colin Hughes Degree: Doctor of Philosophy Year: 2014 The effect of parasitism on the individual, and on a population, is one of the least understood and poorly studied areas of fish ecology. Parasites compete for maternal energetic reserves required for the production of viable eggs and offspring; thus parasites can directly influence population dynamics by lowering the number of offspring that survive to produce. The goal of this work was to explore the effect of parasitism on the reproductive potential of fish. Traditional measures of somatic energy reserves and body condition were examined along with newer measures of fatty acids present in eggs to approximate reproductive potential. Eighty female common snook, Centropomus undecimalis, were collected during spawning season (mid April to mid October) from four spawning aggregations along the southeastern coast of Florida and examined for a suite of biological, reproductive, and parasite infection measures. General linear models were used to model somatic indices, body condition, fatty acid composition and the ratios of fatty acids in eggs as a function of parasite infection parameters, host age, capture location, capture month and year. All fish were included in the somatic indices and body vii condition analysis while a subset of 40 fish were used in the analysis on fatty acid composition and the ratios of fatty acids in eggs. Ninety five percent of the study population was infected with 8 genera of live parasites from 4 phyla including Acanthocephala, Arthropoda, Platyhelminthes, and Nematoda. Dead parasites were present in 55% of the population. Parasites had significant positive and negative effects on host body condition, liver size, percentage and weight of palmitic acid and eicosapentaenoic acid (EPA), and the ratios of n-3 to n-6 polyunsaturated fatty acids, docosahexaenoic acid (DHA) to EPA, and arachidonic acid (ARA) to EPA. Parasitism may lead to an increase in liver size and certain fatty acids due to increased feeding and a concomitant exposure to infection with parasites. Body condition and liver size decreased as the number of dead parasites increased, suggesting that the successful initiation of immune defenses is a costly process. Larval nematodes had the most prevalent effect on host reproductive potential, decreasing the weight and percent composition of EPA and therefore increasing the ratios of DHA to EPA and ARA to EPA. Eicosapentaenoic acid is crucial for larval development and modulation of the immune response; thus depletion in EPA suggests a negative effect on the survival of larvae. Overall, fish showed evidence of depleted energetic reserves and specific fatty acids as a response to infection with levels of parasitism found in the wild, which may decrease reproductive success. Future studies designed to further our understanding of parasitism on reproductive potential in fishes should pair captive testing with wild populations of fish and possibly focus on the mechanisms for energy depletion by parasites. viii DEDICATION “What lies before us and lies behind us are tiny matters compared to what lies within us.” -Henry Stanley Haskins Dedicated to my parents for nurturing and magnifying what is within me. I would not have been able to reach this day without you. EFFECTS OF PARASITISM ON THE REPRODUCTION OF COMMON SNOOK LIST OF TABLES ............................................................................................................. xi LIST OF FIGURES ......................................................................................................... xiii CHAPTER 1 : THE INFLUENCE OF PARASITISM ON BODY CONDITION OF SPAWNING COMMON SNOOK ON THE SOUTHEAST COAST OF FLORIDA ....... 1 ABSTRACT .................................................................................................................. 1 INTRODUCTION ........................................................................................................ 2 METHODS ................................................................................................................... 5 Parasite community description ............................................................................. 7 Data analysis .......................................................................................................... 7 RESULTS ..................................................................................................................... 8 Parasite community description ............................................................................. 9 Model selection ..................................................................................................... 11 DISCUSSION ............................................................................................................. 13 CHAPTER 2 : ALTERED
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Characterization of Vertically and Cross-Species Transmitted Viruses in the Cestode Parasite 2 Schistocephalus Solidus
    bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Characterization of vertically and cross-species transmitted viruses in the cestode parasite 2 Schistocephalus solidus 3 Megan A Hahna, Karyna Rosariob, Pierrick Lucasc, Nolwenn M Dheilly a# 4 5 a School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook NY, USA 6 b College of Marine Science, University of South Florida, Saint Petersburg, FL, USA 7 c ANSES, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du 8 Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, 9 Ploufragan, France 10 11 # Address correspondence to Nolwenn M Dheilly: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/803247; this version posted October 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 13 Abstract 14 Parasitic flatworms (Neodermata) represent a public health and economic burden due to associated 15 debilitating diseases and limited therapeutic treatments available. Despite their importance, there 16 is scarce information regarding flatworm-associated microbes. We report the discovery of six RNA 17 viruses in the cestode Schistocephalus solidus.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 49(2) 1982
    I , , _ / ,' "T '- "/-_ J, . _. Volume 49 Jrily 1982;} Nufnber,2 \~-.\ .•'.' ''•-,- -• ;- - S "• . v-T /7, ' V. >= v.-"' " - . f "-< "'• '-.' '" J; PROCEEDINGS -. .-.•, • "*-. -. The Helmifltliological Society Washington :- ' ; "- ' A^siBmiohnua/ /ourna/ of research devofedVfp ^He/miiithoibgy and , a// branches of Parasi'fology in part by the ; r r;Brqytpn H.yRansom Memorial /Trust Fond TA'&'- -s^^>~J ••..''/'""', ':vSj ''--//;i -^v Subscription ^$18X)0 a Volume; Foreign, $19.00 AMIN, ,OwARr M. Adult Trematodes (Digenea) from Lake'Fishes ;6f Southeastern;Wisconsin, A with a Key to;Species ofvthe Genus Crleptdottomu/rt firwm, 1900 in-North America '_'.C-_~i-, 196- '•}AMIN, OMAR M. Two larval Trematodes'^Strigeoide^y^f fishes iri/Southeastern Wiscpnsin .:._ 207 AIMIN, OMARM. Description of Larval Acanthoctphajus parksidei Amin, 1975 (Acanthocephala: I A Echinorhynchidae) from Its iSopod Intermediate Host—i'.i.—_i.;—;-__-..-_-__-.—J....... 235 AMIN, PAIARM."and DONAL G.'My/ER. 'Paracreptbtrematina\timi gen.;et sp. inov. (Digenea: -. v Allocreadiidae) frohi-the Mudminnow, Umbra limi '.:'-._.2i_i-..__.^^.^i.., _— -____i_xS185 BAKER, M.i R. ,'On Two'Nevy Nie;matode Parasites (TnchOstrongyloidea: Molineidae) from f— , Amphibians;and Reptiles (...^d.-. -—._..-l.H— --^_./——.—.—.j- ^::l.._.___i__ 252 CAMPBELL, RONALD A:, STEVEN J- CORREIA, AND ;RIGHA»PTL. HAEPRJGH., A ,New Mbnor : • \ ^genean/and Cestode from'jthe Deep-Sea Fish, Macrourus berglax Lacepede, ;1802,' from jHe Flemish 'Cap off Newfoundland -u—— :.^..——u—^—-—^—y——i——~--———::-—:^ 169 vCAMPBELL, .RoNALp A. AND JOHN V.-^GARTNER, JR. "'Pistarta eutypharyifgis gen.\et sp. 'n.' , (', (Ceystoda: Pseudophyllidea)_from/;the Bathypelagic Gulper .Eel, ~Eurypharynx-pelecanoides ^.Vaillant, 1882, withiComments on Host arid Parasite Ecology -.:^-_r-::--—i—---_—L——I.
    [Show full text]
  • Parasites from the Red Lionfish, Pterois Volitans from the Gulf of Mexico
    Gulf and Caribbean Research Volume 27 Issue 1 2016 Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico Alexander Q. Fogg Florida Fish and Wildlife Conservation Commission, [email protected] Carlos F. Ruiz Auburn University, [email protected] Stephen S. Curran The University of Southern Mississippi, [email protected] Stephen A. Bullard Auburn University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Biodiversity Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Fogg, A. Q., C. F. Ruiz, S. S. Curran and S. A. Bullard. 2016. Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico. Gulf and Caribbean Research 27 (1): SC1-SC5. Retrieved from https://aquila.usm.edu/gcr/vol27/iss1/7 DOI: https://doi.org/10.18785/gcr.2701.07 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Parasites of the Common Carp Cyprinus Carpio L., 1758 (Teleostei: Cyprinidae) from Water Bodies of Turkey: Updated Checklist and Review for the 1964–2014 Period
    Turkish Journal of Zoology Turk J Zool (2015) 39: 545-554 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1401-42 Parasites of the common carp Cyprinus carpio L., 1758 (Teleostei: Cyprinidae) from water bodies of Turkey: updated checklist and review for the 1964–2014 period 1, 1 2 Lorenzo VILIZZI *, Ali Serhan TARKAN , Fitnat Güler EKMEKÇİ 1 Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Muğla, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey Received: 18.01.2014 Accepted/Published Online: 14.11.2014 Printed: 30.07.2015 Abstract: A synopsis is provided of the parasites of common carp Cyprinus carpio L. from water bodies of Turkey based on literature data from 1964 to 2014. In total, 45 studies were included in the review and these provided data from 41 water bodies, comprising 12 man-made reservoirs, 21 natural lakes, and 8 water courses. Forty-one different taxa (including molluscan Glochidium sp.) in total were recorded. Of these taxa, 2 had not been previously reviewed for Turkey, and 4 were excluded from the list because of dubious identification. The Turkish parasite fauna of common carp living under natural conditions was dominated by ciliates (Ciliophora) among the protozoans and by flatworms (Platyhelminthes) among the metazoans, and this was both in terms of occurrence on fish and across water bodies. The absence of 7 taxa from both the European and North American checklists can be explained by the location of Turkey at the frontier between Asia and Europe. Additionally, the parasite fauna of the common carp in Turkey was consistently different from that of the far eastern species’ specimens.
    [Show full text]
  • Assessment of the Potential Effects of Diseases Present in Salmonid
    July 2011 technical report 1A Assessment of the potential effects of diseases present in salmonid enhancement facilities The Cohen Commission of Inquiry on Fraser River sockeye salmon into the Decline of Sockeye Salmon in the Fraser River Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon Craig Stephen, Tyler Stitt, Jennifer Dawson-Coates and Anne McCarthy Centre for Coastal Health 900 5th Street, Nanaimo, BC V6B 4N7 www.centreforcoastalhealth.ca Technical Report 1A July 2011 Recommended citation for this report: Stephen, C., T. Stitt, J. Dawson-Coates and A. McCarthy. 2011. Assessment of the potential effects of diseases present in salmonid enhancement facilities on Fraser River sockeye salmon. Cohen Commission Tech. Rept. 1A: 180p. Vancouver, B.C. www.cohencommission.ca Preface Fraser River sockeye salmon are vitally important for Canadians. Aboriginal and non-Aboriginal communities depend on sockeye for their food, social, and ceremonial purposes; recreational pursuits; and livelihood needs. They are key components of freshwater and marine aquatic ecosystems. Events over the past century have shown that the Fraser sockeye resource is fragile and vulnerable to human impacts such as rock slides, industrial activities, climatic change, fisheries policies and fishing. Fraser sockeye are also subject to natural environmental variations and population cycles that strongly influence survival and production. In 2009, the decline of sockeye salmon stocks in the Fraser River in British Columbia led to the closure of the fishery for the third consecutive year, despite favourable pre-season estimates of the number of sockeye salmon expected to return to the river.
    [Show full text]
  • The Open Access Israeli Journal of Aquaculture – Bamidgeh
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of Hawaii at Manoa Library Sheenan Harpaz Agricultural Research Organization and Beit Dagan, Israel University of Hawaii Aquaculture Zvi Yaron Dept. of Zoology Program in association with Tel Aviv University AquacultureHub Tel Aviv, Israel http://www.aquaculturehub.org Angelo Colorni National Center for Mariculture, IOLR Eilat, Israel Rina Chakrabarti Aqua Research Lab Dept. of Zoology University of Delhi Ingrid Lupatsch Swansea University Singleton Park, Swansea, UK Jaap van Rijn The Hebrew University Faculty of Agriculture Israel Spencer Malecha Dept. of Human Nutrition, Food and Animal Sciences University of Hawaii Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Emilio Tibaldi Udine University Udine, Italy ISSN 0792 - 156X Israeli Journal of Aquaculture - BAMIGDEH. Copy Editor Ellen Rosenberg PUBLISHER: Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL Phone: + 972 52 3965809 http://siamb.org.il The Israeli Journal of Aquaculture – Bamidgeh 61(2), 2009, 93-102.
    [Show full text]
  • The Effect of Dietary Fish Oil Replacement with Soybean Oil on Growth and Health of Dusky Kob, Argyrosomus Japonicus (Pisces: Sciaenidae)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by South East Academic Libraries System (SEALS) THE EFFECT OF DIETARY FISH OIL REPLACEMENT WITH SOYBEAN OIL ON GROWTH AND HEALTH OF DUSKY KOB, ARGYROSOMUS JAPONICUS (PISCES: SCIAENIDAE) Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of Rhodes University By Nani Adami Rossetti December 2011 “With Earth’s burgeoning population to feed we must turn to the sea with new understanding and new technology. We need to farm it as we farm the land" Jacques Cousteau, 1973 ii ABSTRACT Lipids are essential components for fish because they contain fatty acids that are vital for regular growth and health. Fish oil is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential fatty acids for carnivorous fish, and therefore this product has traditionally being used as the main source of lipids in fish feeds. However, with declining fisheries resources worldwide and the rapid expansion of the aquaculture industry pressuring this finite resource, such ingredients are becoming less available and more expensive. It is therefore necessary to explore the utilization of ingredients that are sustainable and competitive alternatives to fish oil in marine finfish feeds. This work investigated the effects of the substitution of fish oil with soybean oil on the growth performance, feed efficiency, fatty acid composition of the liver tissue and some health parameters in juvenile dusky kob, Argyrosomus japonicus; an increasingly popular sciaenid marine aquaculture species in South Africa. Six diets (18 % total lipid and 46 % protein) with increasing percentage substitution of fish oil with soybean oil (1, 14, 28, 42, 56 and 70 %) were fed to juvenile kob.
    [Show full text]
  • Roles of Three Putative Salmon Louse (Lepeophtheirus Salmonis)
    Dalvin et al. Parasites Vectors (2021) 14:206 https://doi.org/10.1186/s13071-021-04690-w Parasites & Vectors RESEARCH Open Access Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E2 synthases in physiology and host–parasite interactions Sussie Dalvin1, Christiane Eichner2, Michael Dondrup3 and Aina‑Cathrine Øvergård2* Abstract Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fsh. Atlantic salmon (Salmo salar) exhibit only a limited and inefective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host–parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES‑like genes. Methods: Lepeophtheirus salmonis microsomal glutathione S‑transferase 1 like (LsMGST1L) and LsPGES3L were inves‑ tigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identifed LsPGES2 gene was analyzed in double stranded (ds) RNA‑ mediated knockdown (KD) salmon louse. Results: Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA‑mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output.
    [Show full text]