Date Palm Phoenix Dactylifera L

Total Page:16

File Type:pdf, Size:1020Kb

Date Palm Phoenix Dactylifera L Date Palm Phoenix dactylifera L. Arecaceae Species description The date palm is a monocot plant cultivated in dry tropical regions worldwide for its edible sweet fruit. Date palms have erect, columnar trunks and spreading crowns of light to dark grey-green pinnate leaves. Date palms may have one to several suckering offshoots at the base. In cultivation, offshoots are removed for propagation. If not removed, the offshoots will grow into dense, multiple-trunked palms. On date palms, the basal leaflets are modified into spines, and the leaflets tend to hang down from mid-rib, which ends in a terminal leaflet. Date palms are dioecious; the males do not bear fruit, but must be present for pollination. Date fruits are oblong, elliptical, with flesh sweet to astringent, and they vary in size, shape and color depending on cultivar. Date palms can grow 40-90 feet tall and live for 150 years. The palms can withstand brief periods down to 20 degrees Fahrenheit. Date palms will flower at temperatures above 65 degrees Fahrenheit, and will produce fruit at temperatures above 75 degrees Fahrenheit. Date palms need a long, hot season to mature fruit. They do not have a dormant season chill requirement. Natural and cultural history Date palms grow in hot, arid regions throughout the world. Date palms are adapted to oasis systems in arid regions with low rainfall. Dates have been cultivated since ancient times from Mesopotamia and Babylonia to prehistoric Egypt. Date palms may have originated more than 6,000 years ago in ancient Mesopotamia in southern Iraq or in western India, though its origins are obscured in history. Date palms may be descended from one or several species within the Phoenix genus. Date palms spread along trade routes by camel caravans in the 6th century onward, as camels carried offshoots between oases. Dates were an important, easily stored and transported food source, and the trunks were used a building material and the fronds for roofing, matts and baskets. Date palm dispersal followed the expansion of Islam, reaching southern Spain. Spanish introduced date palms into Mexico. Date palms provided the food- source to support large populations in arid regions. Planting considerations and propagation techniques Date palms grow on a wide variety of soil types from sand to clay. They are very tolerant of saline conditions, but highly saline environments may reduce yield and fruit quality. Date palms may need high amounts of irrigation in soils with poor water-holding capacity, and may grow poorly in Hardpans and perched aquifers that constrict root-growth. The palms are frequently planted as an over-story species in mixed cropping systems. Date palms are larger than may be expected (12 feet in diameter or more when young), and very spiny, so care should be taken in their placement, especially in public spaces. Date palms are typically reproduced via vegetative offshoots. Young date palms can produce between 10-30 offshoots that can be cut from the parent plant once the offshoots when they are three to five years old. Seedlings do not grow true to their parent. Water needs Date palms require a large volume of water to grow properly and produce high quality fruit. They can withstand long periods of drought in hot conditions, but become stunted and unproductive under prolonged drought. A mature date palm may use between 25,000-80,000 gallons of water per year, depending on soil-water holding capacity and upon the evapotranspiration potential. Flood irrigation is the oldest method of irrigation and is still widely practiced. Date palm orchards are typically watered every one to two weeks during the summer and every three to four weeks during the winter. Care Date palms are dioecious with separate male and female plants. They are primarily wind pollinated, but can be insect pollinated as well. Date palms are typically pollinated by hand to improve yield. One male plant can pollinate up to 50 female plants. Pruning involves trimming dead and dying leaves from the trunk. Basal spines are also cut from the leaves to make pollination and harvest easier. Date palms are primarily affected by fungal pathogens. Methods of pest and disease control include good hygiene practices, planting disease-free offshoots, fruit thinning to reduce moisture, bagging fruit, and changing irrigation practices. Rodents can be a problem in a date orchard. They may eat the fruit on the trees, and burrowing rodents can damage tree roots. Weeds in the orchard can be alternate hosts to pathogens. Harvesting and processing Dates can be eaten fresh or dried. Fresh dates can be consumed from the Khalal stage (crunchy) to the Tamar stage (soft and sugary). Dates are often only eaten in the Khalal stage in cooler regions where the fruit do not have time to properly mature. Mature dates can be eaten soft, semi-dry, or dry. They can be pressed into large cakes for storage. Fresh dates can be made into date honey or date sugar. Sap from the date palm can be fermented into beer or wine; flour can be made from the tree’s pith; oil can be pressed from the seeds; and the palm heart can be eaten in salads. 2 References and resources Aschmann, H., 1957. The introduction of date palms into Baja California. Economic Botany 11 (2), 174-177. de Grenade, R. 2013. Date palm as keystone species in Baja California peninsula, Mexico oases. Journal of Arid Environments 94: 59-67. Hodel, D. R. and D. V. Johnson. 2007. Dates: Imported and American Varieties of Dates in the United States. University of California Agriculture and Natural Resources Publication 3498, Oakland, CA. Meerow, A.W. 2008. Phoenix dactylifera, date palm, pp. 138-151. Eds. Janick, J. and R.E. Paull. The Encyclopedia of Fruit and Nuts. CABI Publishing, Cambridge, MA. Popenoe, P., 1973. The Date Palm. Field Research Projects, Miami, FL. Rivera, D., D. Johnson, J. Delgadillo, M. H. Carrillo, C. Obón, R. Krueger, F. Alcarez, S. Ríos, and E. Carreño. 2012. Historical evidence of the Spanish introduction of date palm (Phoenix dactylifera L., Arecaceae) into the Americas. Genetic Resources and Crop Evolution. http://dx.doi.org/10.1007/s10722-012-9932-5. 3 .
Recommended publications
  • Tamarind 1990 - 2004
    Tamarind 1990 - 2004 Author A. K. A. Dandjouma, C. Tchiegang, C. Kapseu and R. Ndjouenkeu Title Ricinodendron heudelotii (Bail.) Pierre ex Pax seeds treatments influence on the q Year 2004 Source title Rivista Italiana delle Sostanze Grasse Reference 81(5): 299-303 Abstract The effects of heating Ricinodendron heudelotii seeds on the quality of the oil extracted was studied. The seeds were preheated by dry and wet methods at three temperatures (50, 70 and 90 degrees C) for 10, 20, 30 and 60 minutes. The oil was extracted using the Soxhlet method with hexane. The results showed a significant change in oil acid value when heated at 90 degrees C for 60 minutes, with values of 2.76+or-0.18 for the dry method and 2.90+or-0.14 for the wet method. Heating at the same conditions yielded peroxide values of 10.70+or-0.03 for the dry method and 11.95+or-0.08 for the wet method. Author A. L. Khandare, U. Kumar P, R. G. Shanker, K. Venkaiah and N. Lakshmaiah Title Additional beneficial effect of tamarind ingestion over defluoridated water supply Year 2004 Source title Nutrition Reference 20(5): 433-436 Abstract Objective: We evaluated the effect of tamarind (Tamarindus indicus) on ingestion and whether it provides additional beneficial effects on mobilization of fluoride from the bone after children are provided defluoridated water. Methods: A randomized, diet control study was conducted in 30 subjects from a fluoride endemic area after significantly decreasing urinary fluoride excretion by supplying defluoridated water for 2 wk.
    [Show full text]
  • TAXON:Phoenix Sylvestris SCORE:5.0 RATING:Evaluate
    TAXON: Phoenix sylvestris SCORE: 5.0 RATING: Evaluate Taxon: Phoenix sylvestris Family: Arecaceae Common Name(s): date sugar palm Synonym(s): Elate sylvestris L. (basionym) Indian date silver date palm wild date palm Assessor: No Assessor Status: Assessor Approved End Date: 29 Jul 2014 WRA Score: 5.0 Designation: EVALUATE Rating: Evaluate Keywords: Naturalized, Tropical Palm, Spiny, Dioecious, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs
    [Show full text]
  • A Brief History of the Origin of Domesticated Date Palms
    A brief history of the origin of domesticated date palms Gros-Balthazard, Muriel 1 & Flowers, Jonathan M.1 1 Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates Abstract The study of the origins of crops is of interest from both a fundamental evolutionary understanding viewpoint, and from an applied agricultural technology perspective. The date palm (Phoenix dactylifera L.) is the iconic fruit crop of hot and arid regions of North Africa and the Middle East, producing sugar-rich fruits, known as dates. There are many different cultivars each with distinctive fruit traits, and there are many wild Phoenix species too, which in total form a complex of related species. The understanding of plant domestication involves multiple disciplines, including phylogeography, population genetics and archaeology. In the past decade, they have prompted new discoveries on the evolutionary history of date palm, but a complete understanding of its origins remains to be elucidated, along with the genetic architecture of its domestication syndrome. In this chapter, we review the current state of the art regarding the origins of the domesticated date palm. We first discuss whether date palms are domesticated, and highlight how they diverge from their wild Phoenix relatives. We then outline patterns in the population genetic and archaeobotanical data, and review different models for the origins of domesticated date palms by highlighting sources of evidence that are either consistent or inconsistent with each model. We then review the process of date palm domestication, and emphasize the human activities that have prompted its domestication. We particularly focus on the evolution of fruit traits.
    [Show full text]
  • UM AL-IRAQ (THE DATE PALM TREE) the Life and Work of Dr
    UM AL-IRAQ (THE DATE PALM TREE) The Life and Work of Dr. Rashad Zaydan of Iraq By Nikki Lyn Pugh, Peace Writer Edited by Kaitlin Barker Davis 2011 Women PeaceMakers Program Made possible by the Fred J. Hansen Foundation *This material is copyrighted by the Joan B. Kroc Institute for Peace & Justice. For permission to cite, contact [email protected], with “Women PeaceMakers – Narrative Permissions” in the subject line. UM AL-IRAQ (THE DATE PALM TREE) ZAYDAN – IRAQ TABLE OF CONTENTS I. A Note to the Reader …………………………………………………………. 4 II. About the Women PeaceMakers Program …………………………………… 4 III. Biography of a Woman PeaceMaker — Dr. Rashad Zaydan ….……………… 5 IV. Conflict History — Iraq………………………………………………………… 7 V. Map — Iraq ……………………………………………………………………. 14 VI. Integrated Timeline — Political Developments and Personal History ………… 15 VII. Dedication …………………………………………………………………….. 22 VIII. Narrative Stories of the Life and Work of Dr. Rashad Zaydan 23 ُ UM AL-IRAQ 24 ُّ ُّ ُّ أمُّ ُّالعُّــ راق ُُُُُّّّّّ ُُُُُُُُُّّّّّّّّّ ّأولُّث ُّمَرَةُُُُُّّّّّ FIRST FRUIT 25 ُُُُّّّّالنُّ ـــشــأْة I. GROWING UP a. The Dawn’s Prayer …………………………………………………………. 26 b. Memories of Al Mansur ……………………………………………..……… II. MEHARAB AL NOOR/TEMPLES OF LIGHT 29 م ُحــرابُّالنّـــــور c. Beauty in Diversity …………………………………………………………. 31 d. The Day of Ashura ………………………………………………………… 32 e. Summer School ……………………………………………………………. 34 f. The First Spark …………………………………………………………….. 35 g. A Place for Prayer …………………………………………………………. 37 h. Postscript: The Most Advanced Degree ……………………………………. 39 ُُُُّّّّالحـــــربُّ والعقوباتُّ)الحصار(ُُُُّّّّ III. WAR AND SANCTIONS 42 َ ُ ُ ّ i. The Meaning of Marriage ………….………………………………………. 44 j. Baiji ………….……………………………………….……………………. 45 k. Wishing for Stability …………………….…………………………………. 46 l. Kuwait………………….………………………………………………….. 49 m. The Charity Clinic ………….……………………………………………… n. Postscript: The Empty House ………….………………………………….. 51 52 ا لُّحـــــــتـــــــﻻل IV.
    [Show full text]
  • Local Practices and Knowledge Associated with Date Palm Cultivation in Southeastern Niger
    Agricultural Sciences, 2016, 7, 586-603 http://www.scirp.org/journal/as ISSN Online: 2156-8561 ISSN Print: 2156-8553 Local Practices and Knowledge Associated with Date Palm Cultivation in Southeastern Niger Oumarou Zango1,2,3, Hervé Rey1, Yacoubou Bakasso2, René Lecoustre1, Frédérique Aberlenc4, Jean-Christophe Pintaud4 1UMR AMAP, CIRAD, Montpellier, France 2Faculty of Sciences and Technologies, University of Niamey, Niamey, Niger 3Montpellier University, Montpellier, France 4F2F-Palms Group, UMR DIADE, IRD, Montpellier, France How to cite this paper: Zango, O., Rey, H., Abstract Bakasso, Y., Lecoustre, R., Aberlenc, F. and Pintaud, J.-C. (2016) Local Practices and The date palm (Phoenix dactylifera L.), a dioecious species, is of particular interest in Knowledge Associated with Date Palm the Sahel due to its phenological plasticity in relation to climate change and its dou- Cultivation in Southeastern Niger. Agricul- ble-flowering capacity. This article explores local practices and knowledge associated tural Sciences, 7, 586-603. http://dx.doi.org/10.4236/as.2016.79056 with date palm cultivation in the oasis basins of southeastern Niger, and provides an inventory of local seed propagated varieties, for more effectively guiding agricultural Received: July 7, 2016 research and the breeding of this species. We carried out a survey of 30 date palm Accepted: September 10, 2016 Published: September 14, 2016 growers in 14 villages of the Manga region. The qualitative data of the survey were processed by a Multiple Correspondence Analysis. We inventoried 19 date palm va- Copyright © 2016 by authors and rieties, for which the main distinctive criterion was fruit colour, but some other cri- Scientific Research Publishing Inc.
    [Show full text]
  • Date (Phoenix Dactylifera L.) Varieties Grown in Oman , J Agric Food Chem , 53 , 7586 – 91
    4 Date ( Phoenix dactylifera L.) E. M. Yahia, Autonomous University of Queretaro, Mexico and A. A. Kader, University of California, Davis, USA Abstract: Dates have been an important basic food for several cultures over thousands of years and they are still consumed widely all over the world, especially in the Middle East and North Africa. Date palms grow in several countries, but the industry is still concentrated in the Middle East and North Africa. Over 7 million tons of dates are produced annually, but only about 10% enters world trade. Dates are a nutritious, high-energy food, consumed fresh, dried or in various processed forms. Fruit of some dry date cultivars are not very perishable, and can thus easily be shipped to distant markets and be stored for prolonged periods. In contrast, the shelf life of some moist (soft or syrupy) date cultivars is limited to a few days unless special care is taken to maintain the cold chain between harvest and consumption sites. However, postharvest losses are high due to diverse physical, physiological, pathological and insect problems. Dates adapt very well to very low temperatures, and therefore storage and shipping at low temperatures is the most important method of maintaining quality. Low temperatures signifi cantly reduce losses of colour, fl avour, and textural quality; and delay development of sugar spotting, incidence of moulds and yeasts, and insect infestation; and prevent development of syrupiness and souring of soft, moist dates. Key words: Phoenix dactylifera , postharvest, nutritional quality, health benefi ts, insects, storage, processing. 4.1 Introduction Fruits of the date palm, Phoenix dactylifera L., have been a staple food for the population of the Middle East and North Africa for thousands of years (Yahia, 2005).
    [Show full text]
  • Early Inflorescence and Floral Development in Cocos Nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P
    Available online at www.sciencedirect.com South African Journal of Botany 76 (2010) 482–492 www.elsevier.com/locate/sajb Early inflorescence and floral development in Cocos nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P. Perera a,d, , V. Hocher b, L.K. Weerakoon a, D.M.D. Yakandawala c,d, S.C. Fernando a, J.-L. Verdeil e a Coconut Research Institute, Tissue Culture Division, 61150 Lunuwila, Sri Lanka b Institute for Research and Development (IRD), UMR 1098 BEPC, IRD, BP 64501-911 Avenue Agropolis, 34394 Montpellier Cedex 1, France c Department of Botany, University of Peradeniya, Sri Lanka d Postgraduate Institute of Science, University of Peradeniya, Sri Lanka e CIRAD, TA40/02 Avenue Agropolis, 34398 Montpellier Cedex 5, France Received 9 September 2009; received in revised form 17 March 2010; accepted 18 March 2010 Abstract Palms are generally characterized by a large structure with a massive crown that creates difficulties in anatomical studies. The flowering behaviour of palm species may be a useful indicator of phylogenetic relationships and therefore evolutionary events. This paper presents a detailed histological study of reproductive development in coconut (Cocos nucifera L.), from initiation up to maturation of staminate and pistillate flowers. Reproductive development in coconut consists of a sequence of individual events that span more than two years. Floral morphogenesis is the longest event, taking about one year, while sex determination is a rapid process that occurs within one month. The inflorescence consists of different ultimate floral structural components. Pistillate flowers are borne in floral triads that are flanked by two functional staminate flowers.
    [Show full text]
  • Date Palm Tamar Matzu’I תמר מצוי :Hebrew Name Scientific Name: Phoenix Dactylifera نخيل :Arabic Name Family: Arecaceae (Palmae)
    Signs 10-18 Common name: Date Palm tamar matzu’i תמר מצוי :Hebrew name Scientific name: Phoenix dactylifera نخيل :Arabic name Family: Arecaceae (Palmae) “The righteous shall flourish like the palm-tree; he DatE PaLM shall grow like a cedar in Lebanon” (Psalms 92:12/13) A tall palm tree, one of the symbols of the des- dates; the color of the fruit ranges from yellow to ert. Its trunk is tall and straight, and it bears “scars” dark red. that are remnants of old leaves that have been shed The date palm grows wild throughout the Near or removed. Additional trunks may grow from the East and North Africa and, as a fruit tree, has spread base of the main trunk. At the top of the trunks are around the world. All parts of the tree are used by crowns of large, stiff pinnate leaves. The bluish-gray humans: the trunks for construction, the leaves for leaves (palm fronds) are divided into leaflets with roofing, the fruit-bearing branches for brooms, and pointed tips. the seeds for medicinal purposes. The date palm The date palm is dioecious: large inflorescences is often mentioned in the Bible as an example of a (clusters) of male and female flowers develop on multi-use plant. It is one of the seven species with separate trees. In its natural habitat, the wind which the Land of Israel is blessed, and the lulav – a pollinates female trees, but this is done manually for closed date palm frond – is one of the four species cultivated trees.
    [Show full text]
  • Study of the Thermal Properties of Raffia Bamboo Vinifera L. Arecaceae
    Hindawi Advances in Materials Science and Engineering Volume 2017, Article ID 9868903, 10 pages https://doi.org/10.1155/2017/9868903 Research Article Study of the Thermal Properties of Raffia Bamboo Vinifera L. Arecaceae E. Foadieng,1,2,3 P. K. Talla,2 G. B. Nkamgang,2 and M. Fogue3 1 Higher Technical Teachers’ Training College, University of Buea, Kumba, Cameroon 2LaboratoiredeMecanique´ et de Modelisation´ des Systemes` Physiques, Faculty of Sciences, University of Dschang, Dschang, Cameroon 3Laboratoire d’Ingenierie´ des Systemes` Industriels et de l’Environnement, IUT-Fotso Victor, University of Dschang, Dschang, Cameroon Correspondence should be addressed to E. Foadieng; [email protected] Received 24 August 2016; Accepted 9 January 2017; Published 6 February 2017 Academic Editor: Fernando Lusquinos˜ Copyright © 2017 E. Foadieng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Raffia is a kind of fast-growing palm tree, from the family of Arecaceae, encountered in marshy areas and along rivers. In this study, the“RaffiaBamboo”isthestalkofapalm,madeofafragilemarrowinsideathinshell,smoothandhardtoprotectthelatter.In our region, this material is widely used to build all the low-cost traditional houses and furniture, to make granaries storage of dry products, to build chicken coops, to make decoration. Thus, various jobs are organized around this material, with the fight against poverty. To our knowledge, information on its thermal properties is almost nonexistent. The experimental determination of the transverse thermal properties of the dry shell, the dry marrow, and the whole dry bamboo helped to find, for each, a specific heat, a thermal diffusivity, a thermal conductivity, and finally a thermal effusivity.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • Common Name Scientific Name Type Plant Family Native
    Common name Scientific name Type Plant family Native region Location: Africa Rainforest Dragon Root Smilacina racemosa Herbaceous Liliaceae Oregon Native Fairy Wings Epimedium sp. Herbaceous Berberidaceae Garden Origin Golden Hakone Grass Hakonechloa macra 'Aureola' Herbaceous Poaceae Japan Heartleaf Bergenia Bergenia cordifolia Herbaceous Saxifragaceae N. Central Asia Inside Out Flower Vancouveria hexandra Herbaceous Berberidaceae Oregon Native Japanese Butterbur Petasites japonicus Herbaceous Asteraceae Japan Japanese Pachysandra Pachysandra terminalis Herbaceous Buxaceae Japan Lenten Rose Helleborus orientalis Herbaceous Ranunculaceae Greece, Asia Minor Sweet Woodruff Galium odoratum Herbaceous Rubiaceae Europe, N. Africa, W. Asia Sword Fern Polystichum munitum Herbaceous Dryopteridaceae Oregon Native David's Viburnum Viburnum davidii Shrub Caprifoliaceae Western China Evergreen Huckleberry Vaccinium ovatum Shrub Ericaceae Oregon Native Fragrant Honeysuckle Lonicera fragrantissima Shrub Caprifoliaceae Eastern China Glossy Abelia Abelia x grandiflora Shrub Caprifoliaceae Garden Origin Heavenly Bamboo Nandina domestica Shrub Berberidaceae Eastern Asia Himalayan Honeysuckle Leycesteria formosa Shrub Caprifoliaceae Himalaya, S.W. China Japanese Aralia Fatsia japonica Shrub Araliaceae Japan, Taiwan Japanese Aucuba Aucuba japonica Shrub Cornaceae Japan Kiwi Vine Actinidia chinensis Shrub Actinidiaceae China Laurustinus Viburnum tinus Shrub Caprifoliaceae Mediterranean Mexican Orange Choisya ternata Shrub Rutaceae Mexico Palmate Bamboo Sasa
    [Show full text]
  • Cocos Nucifera (L.) (Arecaceae): a Phytochemical and Pharmacological Review
    Brazilian Journal of Medical and Biological Research (2015) 48(11): 953–964, http://dx.doi.org/10.1590/1414-431X20154773 ISSN 1414-431X Review Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review E.B.C. Lima1, C.N.S. Sousa1, L.N. Meneses1, N.C. Ximenes1, M.A. Santos Júnior1, G.S. Vasconcelos1, N.B.C. Lima2, M.C.A. Patrocínio2, D. Macedo1 and S.M.M. Vasconcelos1 1Laboratório de Neuropsicofarmacologia, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil 2Laboratório de Farmacologia, Curso de Medicina, Centro Universitário Christus-Unichristus, Fortaleza, CE, Brasil Abstract Cocos nucifera (L.) (Arecaceae) is commonly called the ‘‘coconut tree’’ and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti- inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C.
    [Show full text]