The Role of Cyclase-Associated Protein (CAP)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
Annexina7 and CAP1 Are Associated with Regulating Tumor Cell Adhesion Molecule Expression and Biological Behavior
AnnexinA7 and CAP1 are associated with regulating tumor cell adhesion molecule expression and biological behavior Type Research paper Keywords hepatocellular carcinoma, adhesion molecule, AnnexinA7, CAP1, Biological behaviors Abstract Introduction To find out the correlations between the effects of down-regulating AnnexinA7 and CAP1 gene on cell adhesion factors and the biological behavior of Hca-p cells cells, and finally infer the relationship between the two genes. Material and methods Western blot ,qRT-PCR,immunocytochemistry, CCK8 cell proliferation, flow cytometry, lymph node adhesion and transwell chamber assay testing . Results AnnexinA7 and CAP1 were consistent with the regulation of the expression of the adhesion molecules such as FAK, Src, Paxillin and E-cadherin. At the mRNA and protein levels, the expression of FAK, Src and Paxillin were increased with down-regulated AnnexinA7 and CAP1 genes, while E-cadherin was down-regulated in the change of these two genes. And the low expression of AnnexinA7 could affect the expression of CAP1 in mRNA and protein levels. otherwise, the localization of AnnexinA7 and CAP1 in hepatocellular carcinoma cells was also the same. After down-regulating the expression of CAP1, the functions of proliferation, lymph node adhesion and invasion were increased and earlyPreprint apoptotic ability was decreased in Hca-P cells. Conclusions AnnexinA7 and CAP1 could control the expression of these adhesion molecules in the same trend. We speculated they may be co-localization. And AnnexinA7 gene may be related to the molecular mechanism of CAP1 gene, which is likely to have a consistent effect on cell adhesion molecules and be closely related to the biological behaviors of Hca-P cells.AnnexinA7 and CAP1 may play an inhibitory role in lymph node metastasis to provide a reliable basis for the early identification of lymphatic metastasis in hepatocellular carcinoma. -
Partial Deletion of Chromosome 6P Causing Developmental Delay and Mild Dysmorphisms in a Child
Vrachnis et al. Mol Cytogenet (2021) 14:39 https://doi.org/10.1186/s13039-021-00557-y CASE REPORT Open Access Partial deletion of chromosome 6p causing developmental delay and mild dysmorphisms in a child: molecular and developmental investigation and literature search Nikolaos Vrachnis1,2,3* , Ioannis Papoulidis4, Dionysios Vrachnis5, Elisavet Siomou4, Nikolaos Antonakopoulos1,2, Stavroula Oikonomou6, Dimitrios Zygouris2, Nikolaos Loukas7, Zoi Iliodromiti8, Efterpi Pavlidou9, Loretta Thomaidis6 and Emmanouil Manolakos4 Abstract Background: The interstitial 6p22.3 deletions concern rare chromosomal events afecting numerous aspects of both physical and mental development. The syndrome is characterized by partial deletion of chromosome 6, which may arise in a number of ways. Case presentation: We report a 2.8-year old boy presenting with developmental delay and mild dysmorphisms. High-resolution oligonucleotide microarray analysis revealed with high precision a 2.5 Mb interstitial 6p deletion in the 6p22.3 region which encompasses 13 genes. Conclusions: Identifcation and in-depth analysis of cases presenting with mild features of the syndrome will sharpen our understanding of the genetic spectrum of the 6p22.3 deletion. Keywords: 6p22.3 deletion, Syndrome, Developmental delay, Intellectual disability, Dysmorphism, Behavioral abnormalities, High-resolution microarray analysis Background dysmorphic features, and structural organ defects, as well Te interstitial deletion of chromosomal region 6p22.3 as intellectual disability. is a rare condition with variable phenotypic expression. We report herein a case of interstitial deletion of chro- To date, more than 30 children and adolescents with this mosome 6p investigated by array-CGH in a 2.8-year old deletion have been reported [1–11]. -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Effects of Tumor-Specific CAP1 Expression and Body Constitution on Clinical Outcomes in Patients with Early Breast Cancer
Bergqvist et al. Breast Cancer Research (2020) 22:67 https://doi.org/10.1186/s13058-020-01307-5 RESEARCH ARTICLE Open Access Effects of tumor-specific CAP1 expression and body constitution on clinical outcomes in patients with early breast cancer Malin Bergqvist1* , Karin Elebro1,2, Malte Sandsveden2, Signe Borgquist1,3 and Ann H. Rosendahl1* Abstract Background: Obesity induces molecular changes that may favor tumor progression and metastatic spread, leading to impaired survival outcomes in breast cancer. Adenylate cyclase-associated protein 1 (CAP1), an actin regulatory protein and functional receptor for the obesity-associated adipokine resistin, has been implicated with inferior cancer prognosis. Here, the objective was to investigate the interplay between body composition and CAP1 tumor expression regarding breast cancer outcome through long-term survival analyses. Methods: Among 718 women with primary invasive breast cancer within the large population-based prospective Malmö Diet and Cancer Study, tumor-specific CAP1 levels were assessed following thorough antibody validation and immunohistochemical staining of tumor tissue microarrays. Antibody specificity and functional application validity were determined by CAP1 gene silencing, qRT-PCR, Western immunoblotting, and cell microarray immunostaining. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of breast cancer-specific survival (BCSS) and overall survival (OS) according to body composition and CAP1 expression. Results: Study participants were followed for up to 25 years (median 10.9 years), during which 239 deaths were observed. Patients with low CAP1 tumor expression were older at diagnosis, displayed anthropometric measurements indicating a higher adiposity status (wider waist and hip, higher body mass index and body fat percentage), and were more prone to have unfavorable tumor characteristics (higher histological grade, higher Ki67, and estrogen receptor (ER) negativity). -
Gene Ontology Functional Annotations and Pleiotropy
Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question -
Regulation of INF2-Mediated Actin Polymerization Through Site-Specific Lysine Acetylation of Actin Itself
Regulation of INF2-mediated actin polymerization through site-specific lysine acetylation of actin itself Mu Aa, Tak Shun Funga, Lisa M. Francomacaroa, Thao Huynha, Tommi Kotilab, Zdenek Svindrycha, and Henry N. Higgsa,1 aDepartment of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; and bHiLIFE Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved November 26, 2019 (received for review August 13, 2019) INF2 is a formin protein that accelerates actin polymerization. A rich sequences, and a C-terminal CARP domain (Fig. 1B). The common mechanism for formin regulation is autoinhibition, N-terminal OD from both budding yeast CAP and human CAP1 through interaction between the N-terminal diaphanous inhibi- has been shown to hexamerize (9, 10), consistent with our results tory domain (DID) and C-terminal diaphanous autoregulatory on full-length CAP2 (8). domain (DAD). We recently showed that INF2 uses a variant of Two regions of CAP can bind actin monomers: the WH2 motif this mechanism that we term “facilitated autoinhibition,” whereby a and the CARP domain. The CARP domain binds ADP-actin with complex consisting of cyclase-associated protein (CAP) bound to high affinity, while the WH2 domain binds ATP-actin with lower lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, affinity (11–13). The structure of the CARP/actin complex shows in a manner requiring INF2-DID. Deacetylation of actin in the CAP/ that dimeric CARP binds 2 actin monomers in a manner that KAc-actin complex activates INF2. -
Cap1 Mouse Shrna Lentiviral Particle (Locus ID 12331) Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TL500258V Cap1 Mouse shRNA Lentiviral Particle (Locus ID 12331) Product data: Product Type: shRNA Lentiviral Particles Product Name: Cap1 Mouse shRNA Lentiviral Particle (Locus ID 12331) Locus ID: 12331 Vector: pGFP-C-shLenti (TR30023) Format: Lentiviral particles RefSeq: BC005446, BC005472, NM_007598.1, NM_007598.2, NM_007598.3, NM_007598.4, NM_001301067.1 Summary: The product of this gene plays a role in regulating actin dynamics by binding actin monomers and promoting the turnover of actin filaments. Reduced expression of this gene causes a reduction in actin filament turnover rates, causing multiple defects, including an increase in cell size, stress-fiber alterations, and defects in endocytosis and cell motility. A pseudogene of this gene is found on chromosome 14. Alternative splicing results in multiple transcript variants, but does not affect the protein. [provided by RefSeq, Jul 2014] shRNA Design: These shRNA constructs were designed against multiple splice variants at this gene locus. To be certain that your variant of interest is targeted, please contact [email protected]. If you need a special design or shRNA sequence, please utilize our custom shRNA service. Performance OriGene guarantees that the sequences in the shRNA expression cassettes are verified to Guaranteed: correspond to the target gene with 100% identity. One of the four constructs at minimum are guaranteed to produce 70% or more gene expression knock-down provided a minimum transfection efficiency of 80% is achieved. -
Cell-Cycle Regulation of Formin-Mediated Actin Cable Assembly
Cell-cycle regulation of formin-mediated actin PNAS PLUS cable assembly Yansong Miaoa, Catherine C. L. Wongb,1, Vito Mennellac,d, Alphée Michelota,2, David A. Agardc,d, Liam J. Holta, John R. Yates IIIb, and David G. Drubina,3 aDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; bDepartment of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037; and cDepartment of Biochemistry and Biophysics and dThe Howard Hughes Medical Institute, University of California, San Francisco, CA 94158 Edited by Ronald D. Vale, University of California, San Francisco, CA, and approved September 18, 2013 (received for review July 25, 2013) Assembly of appropriately oriented actin cables nucleated by for- Formin-based actin filament assembly using purified proteins min proteins is necessary for many biological processes in diverse also has been reported (29, 30). However, reconstitution of eukaryotes. However, compared with knowledge of how nucle- formin-derived actin cables under the more physiological con- ation of dendritic actin filament arrays by the actin-related pro- ditions represented by cell extracts has not yet been reported. tein-2/3 complex is regulated, the in vivo regulatory mechanisms The actin nucleation activity of formin proteins is regulated by for actin cable formation are less clear. To gain insights into mech- an inhibitory interaction between the N- and C-terminal domains, anisms for regulating actin cable assembly, we reconstituted the which can be released when GTP-bound Rho protein binds to the assembly process in vitro by introducing microspheres functional- formin N-terminal domain, allowing access of the C terminus ized with the C terminus of the budding yeast formin Bni1 into (FH1-COOH) to actin filament barbed ends (31–40). -
Transdifferentiation of Human Mesenchymal Stem Cells
Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone -
Adenylate Cyclase-Associated Protein 1 Overexpressed in Pancreatic Cancers Is Involved in Cancer Cell Motility
Laboratory Investigation (2009) 89, 425–432 & 2009 USCAP, Inc All rights reserved 0023-6837/09 $32.00 Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility Ken Yamazaki1, Masaaki Takamura2, Yohei Masugi1, Taisuke Mori1, Wenlin Du1, Taizo Hibi3, Nobuyoshi Hiraoka4, Tsutomu Ohta4, Misao Ohki4, Setsuo Hirohashi5 and Michiie Sakamoto1 Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement -
CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription