Evaluation of a Selective Flatfish Trawl and Diel Variation in Rockfish Catchability As Bycatch Reduction Tools in the Deepwater Complex Fishery Off the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of a Selective Flatfish Trawl and Diel Variation in Rockfish Catchability As Bycatch Reduction Tools in the Deepwater Complex Fishery Off the U.S This article was downloaded by: [Oregon State University] On: 07 September 2011, At: 16:29 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK North American Journal of Fisheries Management Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujfm20 Evaluation of a Selective Flatfish Trawl and Diel Variation in Rockfish Catchability as Bycatch Reduction Tools in the Deepwater Complex Fishery off the U.S. West Coast Robert W. Hannah a , Steven J. Parker a & Troy V. Buell a a Oregon Department of Fish and Wildlife, Marine Resources Program, 2040 Southeast Marine Science Drive, Newport, Oregon, 97365, USA Available online: 08 Jan 2011 To cite this article: Robert W. Hannah, Steven J. Parker & Troy V. Buell (2005): Evaluation of a Selective Flatfish Trawl and Diel Variation in Rockfish Catchability as Bycatch Reduction Tools in the Deepwater Complex Fishery off the U.S. West Coast, North American Journal of Fisheries Management, 25:2, 581-593 To link to this article: http://dx.doi.org/10.1577/M04-126.1 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. North American Journal of Fisheries Management 25:581±593, 2005 q Copyright by the American Fisheries Society 2005 [Article] DOI: 10.1577/M04-126.1 Evaluation of a Selective Flat®sh Trawl and Diel Variation in Rock®sh Catchability as Bycatch Reduction Tools in the Deepwater Complex Fishery off the U.S. West Coast ROBERT W. H ANNAH,* STEVEN J. PARKER, AND TROY V. B UELL Oregon Department of Fish and Wildlife, Marine Resources Program, 2040 Southeast Marine Science Drive, Newport, Oregon 97365, USA Abstract.ÐWe tested the potential of a selective ¯at®sh trawl to reduce bycatch of slope rock®sh in the upper continental slope bottom-trawl ®shery (250±500 m) on the U.S. West Coast. The trawl we tested differed from typical slope trawls in that it was a low-rise, two-seam trawl with a severely cut back headrope. We used an alternate haul, randomized block design to compare catches of the experimental trawl with those of a typical four-seam, high-rise trawl and to examine diel changes in catch rates for both trawls. The experimental trawl produced catches similar to the control trawl for all commercially valuable ¯at®sh, except arrowtooth ¯ounder Atheresthes stomias, which was reduced 24%. Catches of most rock®sh and round®sh were signi®cantly reduced in the experimental trawl (50±94% depending on species). However, the catches of darkblotched rock®sh Sebastes crameri and redbanded rock®sh S. babcocki were not reduced signi®cantly in the experimental trawl. Nighttime catches were reduced 30±99% for most rock®sh species, the greatest reductions occurring in the experimental trawl. The large nighttime catch reduction for several rock®sh species for both trawls along with no catch reduction in Dover sole Microstomus paci®cus, suggests that ®shing only at night may be a viable bycatch-reduction strategy for some rock®sh species. The diel and depth-related variation in catch rates we noted for the selective ¯at®sh trawl indicates that catches by this trawl may be especially sensitive to physical and environmental factors such as time of day, depth, or turbidity. The U.S. West Coast bottom-trawl ®shery on (PFMC 2002). Given the low productivity of rock- the upper continental slope targets sable®sh An- ®shes (Clark 2002; Ralston 2002), a better solution oplopoma ®mbria, Dover sole Microstomus paci- for the deepwater-complex ®shery might be to de- ®cus, and shortspine thornyhead Sebastolobus velop gears that do not ef®ciently capture slope alascanus and, at greater depths, longspine thor- rock®sh species. nyhead Sebastolobus altivelis. This group of spe- Comparative ®shing experiments on the U.S. cies is also known as the ``deepwater complex.'' West Coast continental shelf have shown that the In recent years, this ®shery has been allowed to bycatch of some over®shed rock®sh species, no- operate only in areas deeper than about 275±366 tably canary rock®sh Sebastes pinniger, can be re- m because of concerns about bycatch of two over- duced with the use of a selective ¯at®sh trawl ®shed rock®sh species, darkblotched rock®sh Se- (King et al. 2004). The trawl tested by King et al. bastes crameri and Paci®c ocean perch Sebastes (2004) incorporated very low total rise and a se- alutus (PFMC 2002; the ®shing area boundaries Downloaded by [Oregon State University] at 16:29 07 September 2011 verely cut back headrope, similar to a trawl de- vary seasonally). Given the depth distributions of veloped in the Faroe Islands by Thomsen (1993). these two rock®shes, the depth restriction should The bycatch for some larger species of rock®sh be very effective at limiting bycatch. Longer term and round®sh in this trawl was 70±90% less than however, the concentration of deepwater-complex in traditional trawls (i.e., less or greater percent- ®shing effort in deeper areas could lead to serious ages in this paper 5 the tested value minus the bycatch problems with other species. For example, concentrating the ®shery deeper than 366 m will comparison base value/the comparison base val- probably increase impacts on aurora rock®sh Se- ue). The experimental results of King et al. (2004) bastes aurora and rougheye rock®sh Sebastes aleu- were also veri®ed under actual commercial ®shing tianus, species for which stock status is unknown conditions through a large-scale exempted ®shing permit ®shery, demonstrating similar levels of by- catch reduction (Parker et al. 2004). As a result * Corresponding author: [email protected] beginning in 2005, selective ¯at®sh trawls are re- Received July 27, 2004; accepted September 21, 2004 quired for all trawling shallower than 183 m off Published online May 13, 2005 Oregon and Washington. The potential for selec- 581 582 HANNAH ET AL. tive trawls to reduce bycatch of bocaccio Sebastes sual stimuli that could cause ®sh to dive into the paucispinis is also being tested in waters off Cal- trawl. Our trawl differed from that tested by King ifornia. et al. (2004) only in that it employed a rock-hopper West Coast tests of selective ¯at®sh trawls have style footrope that better matched the footropes been primarily conducted in waters shallower than used in the deepwater ®shery. The con®guration 200 m. Several important slope rock®sh species consisted of a 31.2-m chain footrope covered with are primarily found deeper than 200 m. Therefore, rubber disks 17.8 cm in diameter, which were in- the available data do not provide information on terspaced with single rubber disks (35.6 cm in di- species such as Paci®c ocean perch, yellowmouth ameter) at 58.4-cm intervals along the length of rock®sh Sebastes reedi, aurora, or rougheye and the footrope. Another chain, called the rockhopper darkblotched rock®shes. The primary objective of chain, ran through the outer edge of the large disks this research was to test a selective ¯at®sh trawl and was covered by rubber disks 12.7-cm in di- at the depths ®shed by the deepwater-complex ®sh- ameter. A chain ®shing line was attached to the ery to determine if it could be effective at reducing rock-hopper chain with shackles spaced at 51 cm. slope rock®sh bycatch. The netting of the trawl was attached to a rope A secondary objective of this project was to bolsh line, which was lashed to the chain ®shing estimate the reduction in catch of shortspine thor- line. The sweeps (mud gear) between the trawl nyheads using the experimental trawl in the slope doors and the trawl bridles consisted of 110 m of ®shery. The shortspine thornyhead is not a highly 1.5-cm cable covered with 7.5-cm rubber disks. productive species, based on life history charac- The trawl doors were 1.5 3 2.1 m AMCO V-type teristics and recent population trends (PFMC 2002; steel doors and were used for both trawls. Ralston 2002). King et al. (2004) found the catch The control trawl chosen for this experiment of large ($26 cm) shortspine thornyheads on the was a typical four-seam Aberdeen trawl designed continental shelf to be 34% less with a selective for a much higher overall rise than the experi- ¯at®sh trawl than the traditional trawl. However, mental trawl (Figure 2). This trawl had a footrope as for slope rock®sh, the study did not sample at length of 32 m and a headrope length of 27 m, the optimal depths for shortspine thornyheads. creating the typical square or overhanging hood. Any noted reduction in shortspine thornyhead The control trawl had no netting in the forward catch in the deepwater-complex ®shery should be part of the lower wing, creating an open space evaluated because it could provide a useful man- above the footrope ends, also known as a ¯ying agement tool if the shortspine thornyhead stock wing.
Recommended publications
  • Nursery Origin and Population Connectivity of Swordfish Xiphias Gladius in the North Pacific Ocean
    Received: 15 January 2021 Accepted: 9 March 2021 DOI: 10.1111/jfb.14723 REGULAR PAPER FISH Nursery origin and population connectivity of swordfish Xiphias gladius in the North Pacific Ocean R. J. David Wells1,2 | Veronica A. Quesnell1 | Robert L. Humphreys Jr3 | Heidi Dewar4 | Jay R. Rooker1,2 | Jaime Alvarado Bremer1,2 | Owyn E. Snodgrass4 1Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas Abstract 2Department of Ecology & Conservation Element:Ca ratios in the otolith cores of young-of-the-year (YOY) swordfish, Xiphias Biology, Texas A&M University, College gladius, were used as natural tracers to predict the nursery origin of subadult and adult Station, Texas 3Retired, Pacific Islands Fisheries Science swordfish from three foraging grounds in the North Pacific Ocean (NPO). First, the Center, National Marine Fisheries Service, chemistry of otolith cores (proxy for nursery origin) was used to develop nursery- Honolulu, Hawaii specific elemental signatures in YOY swordfish. Sagittal otoliths of YOY swordfish were 4Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, California collected from four regional nurseries in the NPO between 2000 and 2005: (1) Central Equatorial North Pacific Ocean (CENPO), (2) Central North Pacific Ocean (CNPO), Correspondence R. J. David Wells, Texas A&M University at (3) Eastern Equatorial North Pacific Ocean (EENPO) and (4) Western North Pacific Galveston, Department of Marine Biology, Ocean (WNPO). Calcium (43Ca), magnesium (24Mg), strontium (88Sr) and barium (138Ba) 1001 Texas Clipper Rd. Galveston, TX 77554, USA. were quantified in the otolith cores of YOY swordfish using laser ablation inductively Email: [email protected] coupled plasma mass spectrometry.
    [Show full text]
  • Appendix E: Fish Species List
    Appendix F. Fish Species List Common Name Scientific Name American shad Alosa sapidissima arrow goby Clevelandia ios barred surfperch Amphistichus argenteus bat ray Myliobatis californica bay goby Lepidogobius lepidus bay pipefish Syngnathus leptorhynchus bearded goby Tridentiger barbatus big skate Raja binoculata black perch Embiotoca jacksoni black rockfish Sebastes melanops bonehead sculpin Artedius notospilotus brown rockfish Sebastes auriculatus brown smoothhound Mustelus henlei cabezon Scorpaenichthys marmoratus California halibut Paralichthys californicus California lizardfish Synodus lucioceps California tonguefish Symphurus atricauda chameleon goby Tridentiger trigonocephalus cheekspot goby Ilypnus gilberti chinook salmon Oncorhynchus tshawytscha curlfin sole Pleuronichthys decurrens diamond turbot Hypsopsetta guttulata dwarf perch Micrometrus minimus English sole Pleuronectes vetulus green sturgeon* Acipenser medirostris inland silverside Menidia beryllina jacksmelt Atherinopsis californiensis leopard shark Triakis semifasciata lingcod Ophiodon elongatus longfin smelt Spirinchus thaleichthys night smelt Spirinchus starksi northern anchovy Engraulis mordax Pacific herring Clupea pallasi Pacific lamprey Lampetra tridentata Pacific pompano Peprilus simillimus Pacific sanddab Citharichthys sordidus Pacific sardine Sardinops sagax Pacific staghorn sculpin Leptocottus armatus Pacific tomcod Microgadus proximus pile perch Rhacochilus vacca F-1 plainfin midshipman Porichthys notatus rainwater killifish Lucania parva river lamprey Lampetra
    [Show full text]
  • Management Plan for the Rougheye/Blackspotted Rockfish Complex (Sebastes Aleutianus and S
    DRAFT SPECIES AT RISK ACT MANAGESPECIESMENT PLAN AT RISK SERIES ACT MANAGEMENT PLAN SERIES MANAGEMENT PLAN FOR THE ROUGHEYE/BLACKSPOTTEDMANAGEMENT PLAN FOR THE ROCKFISH ROUGHEY E COMPLEXROCKFISHROUGHEYE (SEBASTES ALEUTIANUSROCKFISH COMPLEX AND S. MELANOSTICTUS(SEBASTES ALEUTIANUS) AND LONGSPINE AND S. THORNYHEADMELANOSTICTUS (SEBASTOLOBUS) AND LONGSPINE ALTIVELIS THORNYHE) IN AD CANADA(SEBAST OLOBUS ALTIVELIS)INCANADA SEBASTES ALEUTIANUS; SEBASTES MELANOSTICTUS SEBASTES ASEBASTOLOBUSLEUTIANUS; SEBASTES ALTIVELIS MEL ANOSTICTUS SEBASTOLOBUS ALTIVELIS S. aleutianus S. melanostictus 2012 Photo Credit: DFO Sebastolobus altivelis 2012 About the Species at Risk Act Management Plan Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to manage species of special concern to prevent them from becoming endangered or threatened.” What is a species of special concern? Under SARA, a species of special concern is a wildlife species that could become threatened or endangered because of a combination of biological characteristics and identified threats. Species of special concern are included in the SARA List of Wildlife Species at Risk. What is a management plan? Under SARA, a management plan is an action-oriented planning document that identifies the conservation activities and land use measures needed to ensure, at a minimum, that a species of special concern does not become threatened or endangered. For many species, the ultimate aim of the management plan will be to alleviate human threats and remove the species from the List of Wildlife Species at Risk.
    [Show full text]
  • Periodic Status Review for the Steller Sea Lion
    STATE OF WASHINGTON January 2015 Periodic Status Review for the Steller Sea Lion Gary J. Wiles The Washington Department of Fish and Wildlife maintains a list of endangered, threatened, and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix E). In 1990, the Washington Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix A). The procedures include how species listings will be initiated, criteria for listing and delisting, a requirement for public review, the development of recovery or management plans, and the periodic review of listed species. The Washington Department of Fish and Wildlife is directed to conduct reviews of each endangered, threatened, or sensitive wildlife species at least every five years after the date of its listing. The reviews are designed to include an update of the species status report to determine whether the status of the species warrants its current listing status or deserves reclassification. The agency notifies the general public and specific parties who have expressed their interest to the Department of the periodic status review at least one year prior to the five-year period so that they may submit new scientific data to be included in the review. The agency notifies the public of its recommendation at least 30 days prior to presenting the findings to the Fish and Wildlife Commission. In addition, if the agency determines that new information suggests that the classification of a species should be changed from its present state, the agency prepares documents to determine the environmental consequences of adopting the recommendations pursuant to requirements of the State Environmental Policy Act.
    [Show full text]
  • (Sebastes Chrysomelas) from Central California
    Fall 2013 237 California Fish and Game 99(4):237-239; 2013 Orange coloration in a black-and-yellow rockfish (Sebastes chrysomelas) from central California KEVIN O. LEWAND, JOHN R. HYDE, VINCE P. BUONACCORSI, AND ROBERT N. LEA Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA (KOL) Southwest Fisheries Science Center,8604 La Jolla Shores Drive, La Jolla, CA 92037-1508, USA (JRH) Von Liebig Science Center, 601 17th Street, Huntingdon, PA 16652, USA (VPB) California Department of Fish and Game (retired), 20 Lower Ragsdale Drive, Monterey, CA 93940, USA and California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA (RNL) *Correspondent: [email protected] Key words: abnormal coloration, black-and-yellow rockfish,Sebastes chrysomelas ________________________________________________________________________ In November 2010 an orange colored rockfish (Sebastes sp.) was caught by hook and line off Avila Beach, San Luis Obispo County, California (35º 14’ N, 120º 64’ W) at a depth of 6 m near the Point San Luis Lighthouse. The fish initially was not identifiable with any of the shallow-water rockfishes, yet had the general conformation of a member of the Pteropodus rockfish complex. Through analysis of morphological characters the specimen was determined to be either a black-and-yellow rockfish (S. chrysomelas) or gopher rockfish (S. carnatus). Both are considered as shallow-water species with gopher rockfish generally found deeper than black-and-yellow rockfish (Larson 1980, Love et al. 2002) and we initially assumed that the orange colored rockfish was a black-and-yellow rockfish. Within aquarium conditions, the fish demonstrated behavioral characteristics similar to those of both black-and- yellow rockfish and gopher rockfish by hiding in cracks in rocks covered with invertebrates such as California hydrocoral (Stylaster californicus), strawberry anemone (Corynactis californica), sponges (Porifera), and algae (Figure 1).
    [Show full text]
  • Status of Yellowtail Rockfish (Sebastes Flavidus) Along the U.S
    Status of Yellowtail Rockfish (Sebastes flavidus) Along the U.S. Pacific Coast in 2017 Andi Stephens1 Ian G. Taylor2 1Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2032 S.E. OSU Drive Newport, Oregon 97365 2Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112 January 2018 Status of Yellowtail Rockfish (Sebastes flavidus) Along the U.S. Pacific Coast in 2017 Contents Executive Summary1 Stock...........................................1 Catches . .3 Data and Assessment . .7 Stock Biomass . .7 Recruitment . 10 Exploitation status . 12 Ecosystem Considerations . 15 Reference Points . 15 Management Performance . 16 Unresolved Problems And Major Uncertainties . 17 Decision Tables . 18 Research And Data Needs . 23 1 Introduction 25 1.1 Basic Information . 25 1.2 Life History . 26 1.3 Ecosystem Considerations . 26 1.4 Fishery and Management History . 27 1.5 Assessment History . 28 1.6 Fisheries off Canada, Alaska, and/or Mexico . 28 2 Data 30 2.1 Biological Parameters . 30 2.1.1 Weight-Length . 30 2.1.2 Maturity And Fecundity . 30 2.1.3 Natural Mortality . 31 i 2.1.4 Aging Precision And Bias . 31 2.2 Biological Data and Indices . 32 2.3 Northern Model Data . 32 2.3.1 Commercial Fishery Landings . 32 2.3.2 Sport Fishery Removals . 33 2.3.3 Estimated Discards . 33 2.3.4 Abundance Indices . 34 2.3.5 Fishery-Independent Data . 34 2.3.6 Biological Samples . 36 2.4 Southern Model Data .
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • Why Do Some Pelagic Fishes Have Wide Fluctuations in Their Numbers? ---Biological Basis of Fluctuation from the Viewpoint of Evolutionary Ecology
    WHY DO SOME PELAGIC FISHES HAVE WIDE FLUCTUATIONS IN THEIR NUMBERS? ---BIOLOGICAL BASIS OF FLUCTUATION FROM THE VIEWPOINT OF EVOLUTIONARY ECOLOGY--- by Tsuyoshi Kawasaki Faculty of Agriculture Tohoku University 1–1 Amamiya-cho Tsutsumi-dori Sendai-shi 980, Japan Resumen Los patrones de fluctuación en número de individuos varían de una especie (sub-población) a otra, los que han sido seleccionados a través del pro- ceso de evolución. En el caso de teleósteos marinos se presentan tres tipos extremos de patrones de fluctuación, IA, IB y II, representados respectiva- mente por saury y amodites, arenque y sardina, atunes y peces planos. Una relación entre estos tres tipos puede ser expresada por un triángulo con dimensiones de longevidad, fecundidad y tasa de crecimiento. El tipo IA, muestra cambios espaciados de breve tiempo, es una especie de vida corta, tiene una fecundidad baja, y el producto de k (parámetro de crecimiento de la ecuación de Bertalanffy) y T (tiempo generación) es bajo, lo que hace que la tasa instantánea de incremento natural de la población (r) sea alta, mientras que el tipo IB, se caracteriza por mostrar variaciones fenomenales de largo tiempo, son especies de vida larga, menos fecundas y el producto de kT es alto, y además acumulan una gran cantidad de peces cuando se presenta una sucesión de clases anuales fuertes a pesar de una r baja. El tipo II tiene una biomasa estable, son de vida larga, son más fecundos y el producto de kT es bajo así como r. El patrón de fluctuación específico para esta especie depende mucho de las condiciones ambientales bióticas y abióticas en que se desarrolla la especie.
    [Show full text]
  • Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition
    NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by James Wilder Orr, Michael A. Brown, and David C. Baker U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 2000 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by J. W. Orr,1 M. A. Brown, 2 and D. C. Baker 2 1 Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center 7600 Sand Point Way N.E.
    [Show full text]
  • Hepatic Lesions in a Redstriped Rockfish (Sebastes Proriger)
    DISEASES OF AQUATIC ORGANISMS I Published July 14 Dis Aquat Org NOTE Hepatic lesions in a redstriped rockfish (Sebastesproriger) suggestive of a herpesvirus infection 'Center for Salmon Disease Research, Department of Microbiology, 220 Nash Hall. Corvallis. Oregon 97331-3804. USA 'Environmental Conservation Division. Northwest and Alaska Fisheries Center, National Marine Fisheries Service. National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, Washington 98112, USA ABSTRACT: Unusual lesions were observed in a redstriped herpesvirus, sheatfish herpesvirus, smelt papilloma rockfish (Sebastes proriger) collected during a survey of herpesvirus, turbot herpesvirus, Herpesvirus cypnni), marine fishes off the coast of British Columbia, Canada. This whereas others cause systemic disease (e.g., channel particular fish exhibited prominent hepatomegaly, with large, coalescing, multiple hemorrhages. The affected hver exhib- catfish virus, Herpesvirus salmonis, Oncorhynchus ited remarkable histological changes that, taken together, masou virus) (Wolf 1988, Hetrick & Hedrick 1993). strongly suggested infection by a virus of the herpesvirus Cells infected with several viruses of this family exhibit group. Multiple, multinucleated giant cells or syncytia of typical, amphophilic to eosinophilic intranuclear inclu- hepatocytes occurred throughout the liver and were assocl- sion bodies (Cowdry Type A inclusions), surrounded ated with massive, coalescing areas of coagulation necrosis, edema, congestion and cavernous hemorrhages
    [Show full text]
  • Steller Sea Lion,Eumetopias Jubatus
    COSEWIC Assessment and Status Report on the Steller Sea Lion Eumetopias jubatus in Canada SPECIAL CONCERN 2013 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2013. COSEWIC assessment and status report on the Steller Sea Lion Eumetopias jubatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 54 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2003. COSEWIC assessment and status report on the Steller Sea Lion Eumetopias jubatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 50 p. BIGG, M.A. 1987. COSEWIC status report on the Steller sea lion Eumetopias jubatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 63 p. Production note: COSEWIC would like to acknowledge Andrew W. Trites for writing the status report on the Steller Sea Lion, Eumetopias jubatus, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Jane Watson and Hal Whitehead, Co-chairs of the COSEWIC Marine Mammals Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur L’otarie de Steller (Eumetopias jubatus) au Canada. Cover illustration/photo: Steller Sea Lion — photo: A.W. Trites.
    [Show full text]
  • The Threatened Status of Steller Sea Lions, Eumetopias Jubatus, Under the Endangered Species Act: Effects on Alaska Groundfish Fisheries Management
    The Threatened Status of Steller Sea Lions, Eumetopias jubatus, under the Endangered Species Act: Effects on Alaska Groundfish Fisheries Management LOWELL W. FRITZ, RICHARD C. FERRERO and RONALD J. BERG Introduction altered fishery resource management in listed under the ESA were large ceta­ the Gulf of Alaska, Bering Sea, and ceans. These animals were among the During the 1970's, the U.S. Congress Aleutian Islands regions. In 1976, the first to be listed in 1973 after nearly two passed legislation which significantly Magnuson Fishery Conservation and centuries of commercial whaling sig­ Management Act (MFCMA) instituted nificantly reduced their populations. Lowell W. Fritz and Richard C. Ferrero are with a fishery management system under The majority of these harvests occurred the Alaska Fisheries Science Center, National NOAA's National Marine Fisheries Ser­ outside of Alaska waters. In contrast, Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, WA 98115, and Ronald vice (NMFS) and established the North the Steller sea lion listing addressed a J. Berg is with the Alaska Regional Office, Na­ Pacific Fisheries Management Council more recent phenomenon, and it was tional Marine Fisheries Service, NOAA, Federal Building, 709 West 9th St., Juneau, AK 98802. (NPFMC). Earlier, the Marine Mammal prompted by studies in the 1970's and This paper was presented at a symposium entitled Protection Act (MMPA) of 1972 ad­ 1980's that revealed major declines in "Fisheries Management: Global Trends," June dressed the diminished status of many abundance in the core of the species' 1994, held in Seattle, Wash., which was spon­ soredjointly by the University ofWashington and marine mammal populations and intro­ range (Fig.
    [Show full text]