Vol63-No1-A03.Pdf (7.976Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Vol63-No1-A03.Pdf (7.976Mb) Quaternary Science Journal GEOZON SCIENCE MEDIA Volume 63 / Number 1 / 2014 / 44-59 / DOI 10.3285/eg.63.1.03 ISSN 0424-7116 E&G www.quaternary-science.net Ice-Rafted Erratics and Bergmounds from Pleistocene Outburst Floods, Rattlesnake Mountain, Washington, USA Bruce N. Bjornstad How to cite: Bjornstad, B. N. (2014): Ice-Rafted Erratics and Bergmounds from Pleistocene Outburst Floods, Rattlesnake Mountain, Washing- ton, USA. – E&G Quaternary Science Journal, 63 (1): 44–59. DOI: 10.3285/eg.63.1.03 Abstract: Exotic ice-rafted debris from the breakup of ice-dammed glacial lakes Missoula and Columbia is common in slackwater areas along the 1,100-km route for outburst floods in the northwestern US. A detailed analysis was performed at Rattlesnake Mountain, which lay beyond the limit of the former ice sheet, where an exceptionally high concentration of ice-rafted debris exists midway along the floods’ path. Here floodwaters temporarily rose to 380 m elevation (forming short-lived Lake Lewis) behind the first substantial hydraulic constriction for the outburst floods near Wallula Gap. Within the 60 km2 study area more than 2,100 erratic isolates and clusters, as well as bergmounds were recorded. Three quarters of erratic boulders are of an exotic granitic composition, which stand in stark contrast to dark Columbia River basalt, the sole bedrock in the region. Other exotics include Proterozoic quartzite and argillite as well as gneiss, diorite, schist and gabbro, all once in direct contact with the Cordilleran Ice Sheet to the north. Most ice-rafted debris is concentrated between 200 and 300 m elevation. Far fewer erratics and bergmounds lie above 300 m elevation because of the preponderance of less-than-maximum floods. Plus, larger deep-rooted icebergs were forced to ground farther away from the ancient shorelines of transient Lake Lewis. As floodwaters moved across the uneven surface of Rattlesnake Mountain, many erratic-bearing icebergs congregated into pre-existing gullies that trend crosswise to flood flow. Eisverfrachtete Findlinge und Bergmounds aus Ausbruchsflutwellen im Pleistozän,R attlesnake Mountain, Washington, USA Kurzfassung: Eisverfrachteter Schutt findet sich häufig im Stauwasserbereich der 1.100 km weit reichenden gigantischen Ausbruchsflutwellen aus den eiszeitlichen Missoula- und Columbia-Seen im Nordwesten der USA. Eine detaillierte Analyse erfolgte am Rattlesnake Moun- tain. Dort ist eine außergewöhnlich hohe Konzentration dieses Schutts in der Mitte des Gerinnebettbodens zu finden. Zeitweilig bildete der Flaschenhals des Wallula Gap die erste wesentliche hydraulische Verengung und ließ die Gletscherflut vorübergehend auf 380 m Seehöhe ansteigen, wodurch kurzzeitig der Lewis See gebildet wurde. Auf einer Fläche von 60 km2 wurden mehr als 2.100 Findlinge, Ansammlungen von erratischen Felsbrocken und Bergmounds registriert. Im Gegensatz zum lokal vorkommenden dunklen Columbia River Basalt bestehen drei Viertel der Findlinge aus granitartigem Material. Auch Schutt von dem ehemals im Norden verlaufenden Eisgebirgszug wie sedimentärer Quarzit aus dem Proterozoikum, Tonschiefer, Gneisgestein, Diorit, Schiefer und Paulitfels wurden hier gefunden. Ein Großteil des eis-verfrachteten Schutts befindet sich auf 200–300 m Seehöhe. Weit weniger Findlinge und Bergmounds sind über 300 m Seehöhe anzutreffen, da es überwiegend Fluten von sub-maximalen Ausmaßen gab. Außerdem liefen größere Eisberge aufgrund ihres Tiefgangs weit von der Küstenlinie des vorübergehend bestehenden Lake Lewis auf Grund. Bei der Flutbewegung über den unebenen Untergrund des Rattlesnake Mountain blieben viele Findlinge in bereits vorhandenen, quer zur Flutrichtung verlaufenden Wasserrinnen hängen. Keywords: ice-rafted debris, erratic, bergmound, Missoula floods, Wallula Gap, Lake Lewis, glacial Lake Missoula, Wisconsin Glaciation, Columbia River basalt Address of author: Bruce N. Bjornstad, P.O. Box 999, MSIN K6-81, Pacific Northwest National Laboratory, Richland, Washington 99354. E-Mail: [email protected] 1 Introduction and Background Ice Sheet (Bretz et al. 1956; Bretz 1969; Baker 1978; Baker & Bunker 1985; Allen et al. 2009; Smith 1993; Waitt 1980, Characteristics and distribution patterns of ice-rafted de- 1985). Other sources for Ice Age floods in the area include bris (erratics and bergmounds) can provide insight into the at least one flood from ice-dammed glacial Lake Columbia flow dynamics as well as possible source(s), timing, and (Atwater 1987; Waitt 1994; Waitt et al. 2009), Lake Bon- frequency of Ice Age flood events. Erratics in the Pacific neville (O’Connor 1993) and possibly from one or more Northwest have long been recognized in areas downstream subglacial outbursts from beneath the Cordilleran Ice Sheet of the maximum extent of glacial ice (Bretz 1919, 1923a, itself (Shaw et al. 1999). The Cordilleran Ice Sheet never 1923b, 1930, 1969; Allison 1933, 1935; Bretz et al. 1956; advanced south into the mid-Columbia Basin where much Fecht & Tallman 1978; Minervini et al. 2003). Multiple ice-rafted debris came to rest. Therefore, the only plausible cataclysmic outburst floods, mostly from ice-dammed gla- explanation for high-elevation erratic debris beyond the ice cial Lake Missoula (Figure 1), are now generally accepted as front is from floating icebergs carried during outburst-flood the source for erratics beyond the limits of the Cordilleran events. 44 E&G / Vol. 63 / No. 1 / 2014 / 44–59 / DOI 10.3285/eg.63.1.03 / © Authors / Creative Commons Attribution License 120o 118o 116o 114o 49o Cordilleran Ice Sheet Columbia Lobe Colville Okanogan Lobe Lobe o 48 Glacial Lake Columbia Ice Dam o u n t a i n s M Spokane R o c k y Wenatchee Glacial Lake Missoula 47o Vantage M o u n t a i n s Missoula C a s c a d e Yakima Study Area o WA N 46 Fig. 2 ID OR o u n t a i n s Columbia R. Gorge Wallula M Gap ID MT B l u e 0 100 mi. Pleistocene lake Higher-Energy Flood Deposits 0 100 km Palouse loess (>1m thick) Slackwater Flood Deposits Fig. 1: Ice Age glacial and flood features over a portion of the northwestern United States. Abb. 1: Eigenschaften von Gletschern und Gletscherläufen im Nordwesten der USA. Although the largest Missoula floods drained within sev- bedrock-constrained reaches between basins like Wallula eral days, up to three weeks were required for the flood- Gap and the Columbia River Gorge (Figure 1). waters to completely pass through several hydraulic con- The earliest floods occurred during one of many previ- strictions along route (Waitt et al. 2009; Denlinger & ous glacial cycles >780,000 yr ago in the early Pleistocene O’Connell 2010). The first major constriction for the out- (Patton & Baker 1978; Bjornstad et al. 2001; Pluhar et al. burst floods was at Wallula Gap where, after spreading out 2006; Bjornstad 2006). The last period of flooding occurred across a 160 km-wide tract of the Channeled Scabland, flood- during the Late Wisconsin Glaciation between 20,000– waters were forced through a single, narrow opening only 3 15,000 cal years BP (O’Connor & Benito 2009) when as km wide (Bjornstad et al. 2007). During the largest floods many as 100 discrete flood events may have occurred At( - Wallula Gap and the Columbia River Gorge downstream water 1986; Waitt et al. 2009). Many of these floods were could transmit only a portion (10 +/– 2.5 million m3/sec) of proportionally small (a few million m3/sec) relative to dis- all the floodwater entering the Pasco Basin O’Connor( & charge for the largest (>17.5 million m3/sec) Late Wisconsin Baker 1992; Benito & O’Connor 2003). Subsequently, a outburst flood(s) from glacial Lake Missoula O’Connor( & huge temporary lake (Lake Lewis shown in Figure 2) backed Baker 1992). up to a maximum elevation of ~380 m (1,250 feet) behind this The majority of erratics, which consist of light-colored bedrock constriction (Bretz 1923a). Ice-rafted debris float- plutonic and metamorphic rocks, stand out in sharp con- ing in Lake Lewis was sequestered in slackwater areasalong trast to the dark, Miocene, Columbia River Basalt Group – basin margins and backflooded valleys(Figures 2 and 3). The the only bedrock native to southeastern Washington State stranded icebergs eventually melted, forever leaving behind (Figure 6). Most ice-rafted debris appears derived from the their payloads of exotic detritus (Figures 4 and 5). breakup of the Purcell Trench Lobe of the Cordilleran Ice Maximum heights for the floods are indicated by strand- Sheet that temporarily dammed glacial Lake Missoula (Fig- lines, scarped hills, ice-rafted erratics, and divide crossings ure 1). Ice-rafted debris may also be associated with the final (Baker 1978). The upper limit of the ice-rafted debris de- breakup of the Okanogan Lobe that blocked glacial Lake Co- scends downstream in a stair-step fashion as floodwaters lumbia until the end of the Wisconsin Glaciation. passed through a series of constrictions en route (Baker The detailed study of the nature and distribution of ice- 1978; Benito & O’Connor 2003). Water-surface profiles of rafted erratics and bergmounds provides valuable data sets floods were relatively flat within basins but steepened in to test various hypotheses regarding the history and rela- E&G / Vol. 63 / No. 1 / 2014 / 44–59 / DOI 10.3285/eg.63.1.03 / © Authors / Creative Commons Attribution License 45 Fig. 3 Othello Yakima Rattlesnak M ount ai n e N Richland Wallula Walla Gap Walla Fig. 2: Maximum extent (up to 380 m elevation) of back flooding (Lake Lewis in blue) behind hydraulic constriction at Wallula Gap during the largest outburst flood(s). Abb. 2: Maximale Ausdehnung der Rückstauflut (bis zu 380 m Seehöhe) hinter der hydraulischen Verengung des Wallula Gap (blaue Markierung: Lewis- See). 120o o o 119 30' 119 tive sizes of Ice Age floods. Only a few previous studies ex- Slackwater Area ist for erratics emplaced by outburst floods. These include a study by Allison (1935) within the Portland Basin and later expanded upon by Minervini et al.
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    RECONNAISSANCE SURFICIAL GEOLOGIC MAPPING OF THE LATE CENOZOIC SEDIMENTS OF THE COLUMBIA BASIN, WASHINGTON by James G. Rigby and Kurt Othberg with contributions from Newell Campbell Larry Hanson Eugene Kiver Dale Stradling Gary Webster Open File Report 79-3 September 1979 State of Washington Department of Natural Resources Division of Geology and Earth Resources Olympia, Washington CONTENTS Introduction Objectives Study Area Regional Setting 1 Mapping Procedure 4 Sample Collection 8 Description of Map Units 8 Pre-Miocene Rocks 8 Columbia River Basalt, Yakima Basalt Subgroup 9 Ellensburg Formation 9 Gravels of the Ancestral Columbia River 13 Ringold Formation 15 Thorp Gravel 17 Gravel of Terrace Remnants 19 Tieton Andesite 23 Palouse Formation and Other Loess Deposits 23 Glacial Deposits 25 Catastrophic Flood Deposits 28 Background and previous work 30 Description and interpretation of flood deposits 35 Distinctive geomorphic features 38 Terraces and other features of undetermined origin 40 Post-Pleistocene Deposits 43 Landslide Deposits 44 Alluvium 45 Alluvial Fan Deposits 45 Older Alluvial Fan Deposits 45 Colluvium 46 Sand Dunes 46 Mirna Mounds and Other Periglacial(?) Patterned Ground 47 Structural Geology 48 Southwest Quadrant 48 Toppenish Ridge 49 Ah tanum Ridge 52 Horse Heaven Hills 52 East Selah Fault 53 Northern Saddle Mountains and Smyrna Bench 54 Selah Butte Area 57 Miscellaneous Areas 58 Northwest Quadrant 58 Kittitas Valley 58 Beebe Terrace Disturbance 59 Winesap Lineament 60 Northeast Quadrant 60 Southeast Quadrant 61 Recommendations 62 Stratigraphy 62 Structure 63 Summary 64 References Cited 66 Appendix A - Tephrochronology and identification of collected datable materials 82 Appendix B - Description of field mapping units 88 Northeast Quadrant 89 Northwest Quadrant 90 Southwest Quadrant 91 Southeast Quadrant 92 ii ILLUSTRATIONS Figure 1.
    [Show full text]
  • Surficial Geologic Map of the Lenore Quadrangle, Nez Perce County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 14 MOSCOW-BOISE-POCATELLO OTHBERG, BRECKENRIDGE, AND WEISZ Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format S URFICIAL G EOLOGIC M AP OF THE L ENORE Q UADRANGLE, N EZ P ERCE C OUNTY, I DAHO may not conform to agency standards. Kurt L. Othberg, Roy M. Breckenridge, and Daniel W. Weisz 2003 Qac CORRELATION OF MAP UNITS Qls Qls Qcb Qcb Surficial Latah Columbia River QTlbr Deposits Formation Basalt Qls m Qac Qam Qoam Qas Qac HOLOCENE QTlbr Qad Qls Qcb Qcg Qm 13,000 years Qad Qag QUATERNARY PLEISTOCENE QTlbr QTlbr Qac Qls QTlbr Qac PLIOCENE TERTIARY Qac Tl Tcb MIOCENE Qcb QTlbr INTRODUCTION Qcg Colluvium from granitic and metamorphic rocks (Holocene and Pleistocene)— Primarily poorly sorted muddy gravel composed of angular and subangular pebbles, cobbles, and boulders in a matrix of sand, silt, and clay. Emplaced The surficial geologic map of the Lenore quadrangle identifies earth materials by gravity movements in Bedrock Creek canyon where there are outcrops on the surface and in the shallow subsurface. It is intended for those interested of pre-Tertiary granitic rocks and quartzite. Includes local debris-flow deposits in the area's natural resources, urban and rural growth, and private and and isolated rock outcrops. Includes colluvium and debris-flow deposits Qac public land development. The information relates to assessing diverse QTlbr from the upslope basalt section, and areas of thin loess (typically less than conditions and activities, such as slope stability, construction design, sewage 5 feet).
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Sculpted by Floods Learning Resource Guide Overview
    Sculpted by Floods Learning Resource Guide Overview: KSPS’s Sculpted by Floods tells the story of the ice age floods in the Pacific Northwest. It is a story of the earth's power, scientific discovery and human nature - one touted by enthusiasts as the greatest story left untold. During the last ice age, floods flowing with ten times the volume of all the world's current rivers combined inundated the Northwest. What they left behind was a unique landscape that citizens of the Pacific Northwest call home. Subjects: Earth Science, Geology, History, Pacific Northwest History Grade Levels: 6-8 Materials: Lesson handouts, laptops/computers Learning Guide Objectives: Define the following vocabulary terms and use them orally and in writing: glacier, flood, cataracts, landform, canyon, dam. Analyze how floods can create landforms and shape a region’s landscape, using the Missoula Floods as a case study. Next Generation Science Standards MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales. Washington State History Standards EALR 4: HISTORY: 3.1. Understands the physical characteristics, cultural characteristics, and location of places, regions, and spatial patterns on the Earth’s surface Common Core English Language Arts Anchor & Literacy in History/Social Studies Standards CCSS.ELA-LITERACY.CCRA.R.7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words. CCSS.ELA-LITERACY.CCRA.W.4. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
    [Show full text]
  • Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: a Review ⇑ Chunqiao Song A, Bo Huang A,B, , Linghong Ke C, Keith S
    ISPRS Journal of Photogrammetry and Remote Sensing 92 (2014) 26–37 Contents lists available at ScienceDirect ISPRS Journal of Photogrammetry and Remote Sensing journal homepage: www.elsevier.com/locate/isprsjprs Review Article Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review ⇑ Chunqiao Song a, Bo Huang a,b, , Linghong Ke c, Keith S. Richards d a Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong b Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong c Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong d Department of Geography, University of Cambridge, Cambridge CB2 3EN, United Kingdom article info abstract Article history: Alpine lakes on the Tibetan Plateau (TP) are key indicators of climate change and climate variability. The Received 16 September 2013 increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad Received in revised form 26 February 2014 coverage and low costs allows for effective monitoring lake changes on the TP and surroundings and Accepted 3 March 2014 understanding climate change impacts, particularly in remote and inaccessible areas where there are lack Available online 26 March 2014 of in situ observations. This paper firstly introduces characteristics of Tibetan lakes, and outlines available satellite observation platforms and different remote sensing water-body extraction algorithms. Then, this Keyword: paper reviews advances in applying remote sensing methods for various lake environment monitoring, Tibetan Plateau including lake surface extent and water level, glacial lake and potential outburst floods, lake ice phenol- Lake Remote sensing ogy, geological or geomorphologic evidences of lake basins, with a focus on the trends and magnitudes of Glacial lake lake area and water-level change and their spatially and temporally heterogeneous patterns.
    [Show full text]
  • Interior Columbia Basin Mollusk Species of Special Concern
    Deixis l-4 consultants INTERIOR COLUMl3lA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN cryptomasfix magnidenfata (Pilsbly, 1940), x7.5 FINAL REPORT Contract #43-OEOO-4-9112 Prepared for: INTERIOR COLUMBIA BASIN ECOSYSTEM MANAGEMENT PROJECT 112 East Poplar Street Walla Walla, WA 99362 TERRENCE J. FREST EDWARD J. JOHANNES January 15, 1995 2517 NE 65th Street Seattle, WA 98115-7125 ‘(206) 527-6764 INTERIOR COLUMBIA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN Terrence J. Frest & Edward J. Johannes Deixis Consultants 2517 NE 65th Street Seattle, WA 98115-7125 (206) 527-6764 January 15,1995 i Each shell, each crawling insect holds a rank important in the plan of Him who framed This scale of beings; holds a rank, which lost Would break the chain and leave behind a gap Which Nature’s self wcuid rue. -Stiiiingfieet, quoted in Tryon (1882) The fast word in ignorance is the man who says of an animal or plant: “what good is it?” If the land mechanism as a whole is good, then every part is good, whether we understand it or not. if the biota in the course of eons has built something we like but do not understand, then who but a fool would discard seemingly useless parts? To keep every cog and wheel is the first rule of intelligent tinkering. -Aido Leopold Put the information you have uncovered to beneficial use. -Anonymous: fortune cookie from China Garden restaurant, Seattle, WA in this “business first” society that we have developed (and that we maintain), the promulgators and pragmatic apologists who favor a “single crop” approach, to enable a continuous “harvest” from the natural system that we have decimated in the name of profits, jobs, etc., are fairfy easy to find.
    [Show full text]
  • Prevention of Outburst Floods from Periglacial Lakes at Grubengletscher, Valais, Swiss Alps
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2001 Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps Haeberli, Wilfried ; Kääb, Andreas ; Vonder Mühll, Daniel ; Teysseire, Philip Abstract: Flood and debris-flow hazards at Grubengletscher near Saas Balen in the Saas Valley, Valais, Swiss Alps, result from the formation and growth of several lakes at the glacier margin and within the surrounding permafrost. In order to prevent damage related to such hazards, systematic investigations were carried out and practical measures taken. The evolution of the polythermal glacier, the creeping permafrost within the large adjacent rock glacier and the development of the various periglacial lakes were monitored and documented for the last 25 years by photogrammetric analysis of annually flown high-resolution aerial photographs. Seismic refraction, d.c. resistivity and gravimetry soundings were performed together with hydrological tracer experiments to determine the structure and stability of a moraine dam at a proglacial lake. The results indicate a maximum moraine thickness of > 100 m; extremely high porosity and even ground caverns near the surface may have resulted from degradation of sub- and periglacial permafrost following 19th/20thcentury retreat of the partially cold glacier tongue. The safety and retention capacity of the proglacial lake were enhanced by deepening and reinforcing the outlet structure on top of the moraine complex. The water level of an ice-dammed lake was lowered and a thermokarst lake artficially drained. DOI: https://doi.org/10.3189/172756501781832575 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-63516 Journal Article Originally published at: Haeberli, Wilfried; Kääb, Andreas; Vonder Mühll, Daniel; Teysseire, Philip (2001).
    [Show full text]
  • Mapping Glacial Lake Outburst Flood Landforms for Enhanced
    GEOGRAZ 68 - 2021 SCHWERPUNKT ADAM EMMER ON THE AUTHOR Adam Emmer is physical geographer Mapping glacial lake and member of the re- search group Cascade with specialization in outburst flood landforms high mountain geomor- phology and natural hazard science. In his for enhanced understanding research, he focuses on hazardous conse- of their occurrence quences of retrea Sudden release of water retained in a glacial lake can produce a glacial lake outburst flood (GLOF), which is among the most effective geomorphic agents in mountain regions during the time of glacier ice loss. Extreme GLOFs imprint in relief with specific landforms (e.g. failed moraine dams, outwash fans) which can be used to document their occurrence in space and time. This contribution introduces typical landforms associated with GLOFs and outlines their utilization ting in reconstructing timing and magnitude for enhanced hazard identification and glaciers, mainly lake outburst floods. assessment. 1 Introduction: GLOFs in a range of triggers including landslide into areas as well as agricultural land (Haeber- changing world the lake, extreme precipitation and snow- li et al. 2016). Concerns about increasing melt or earthquake (Clague and O’Con- risk of GLOFs are driven by two factors: (i) Glacial lakes are typical features of re- nor 2015). GLOFs are rare, low frequency, increasing population pressure and settle- cently deglaciated high mountain regions high magnitude events with extreme char- ment expansion in mountain regions (espe- across the world (Shugar et al. 2020). acteristics (peak discharge, flood volume), cially in South America and Central Asia); While glacial lakes contribute to human with thousands of fatalities and tremen- and (ii) increasing number of glacial lakes well-being by providing goods and ser- dous material damages claimed globally and volume of stored water.
    [Show full text]
  • The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia
    Aberystwyth University The 2015 Chileno Valley glacial lake outburst flood, Patagonia Wilson, R.; Harrison, S.; Reynolds, John M.; Hubbard, Alun; Glasser, Neil; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. Published in: Geomorphology DOI: 10.1016/j.geomorph.2019.01.015 Publication date: 2019 Citation for published version (APA): Wilson, R., Harrison, S., Reynolds, J. M., Hubbard, A., Glasser, N., Wündrich, O., Iribarren Anacona, P., Mao, L., & Shannon, S. (2019). The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 332, 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Geomorphology 332 (2019) 51–65 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The 2015 Chileno Valley glacial lake outburst flood, Patagonia R.
    [Show full text]
  • Washington Geology Released Since [Project Chief: W
    ·- July 1983 Volume 11 Number 3 Washington Geologic Newsletter · . Lovitt mine, near Wenatchee, Chelan County, Washington, 1977. Photo by Jack Jansons BRIAN J . BOYLE COMMISSIONER OF PUBLIC LANDS ART STEARNS, Supervisor RAYMOND LASMANIS, State Geologist DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND EARTH RESOURCES Marlin Woy - To Porllond n Exit IOs·• [" GEOLOGY ANO /. t Roctl)11onl•t ... Solllh EARTH ~CES i..-<-....<....<c.L..'-'-! !! 0 I u Sound .. C 'Entrance- Moll Elf!H~~• · 0Poulsot\S. Mortin\ s,. : ••••• ,Porklno .....~ :....... ----. ........... .................... • • • • •• • • • • Coll•o• Z ·········o····· ... 4224 6th Ave. S.E., Lacey, Washington in Albortson• MAILING ADDRESS: Department of Natural Resources Division of Geology and Earth Resources Olympia, WA 98504 (206) 459-6372 Field office address: Department of Natural Resources Division of Geology and Earth Resources Spokane County Agricultural Center N. 222 Havana Spokane, WA 99202 ( 509) 458-2038 Lauta Btay, Editor The Washington Geologic Newsletter, a quarterly report of geologlc articles, Ts published by the Division of Geology and Earth Resources, Department of Natural Resources. The newsletter is free upon request. The division also publishes bulletins, information circulars, and geologic maps. A list of these publicatiOflS will be sent upon request. .. THE WENATCHEE GOLD RUSH by Bonnie Bunning* INTRODUCTION from the D ''reef" between 1949 and 1967. For a long time the ore was shipped directly to the Tacoma smelter On March 4, 19831 when Breakwater Resources LLd. where a substantial credit for the siliceous ores (used as and Asamera Minerals, Inc., made their exciting gold find flux in the smelter) helped make t he mine profitable. In public, companies and individuals from Canada and the 1961, Day Mines, Inc., and Lovitt Mining Co.
    [Show full text]
  • Chapter 85. the Example of the Lake Missoula Flood
    Chapter 85 The Example of the Lake Missoula Flood As already noted, uniformitarian hypotheses rarely, if ever, can be supported by extensive geological evidence. Part of this is due to the nature of the features, since they originated in the past. The same charge could be leveled against Flood explanations. However, geomorphological evidence for the Retreating Stage of the Flood is strong, as this ebook shows. Whereas uniformitarian scientists have to invent speculative secondary hypotheses to salvage their paradigm in the light of conflicting evidence, the Flood paradigm does not need to invent secondary hypotheses, because the evidence is consistent with the paradigm. Furthermore, the Flood paradigm has an example of how a well-substantiated catastrophic flood at the peak of the Ice Age created a water and wind gap.1 The Lake Missoula flood (earlier called the Spokane or the Bretz flood) demonstrates catastrophic floods can easily produce water and wind gaps. Figure 85.1. Glacial Lake Missoula as shown on a kiosk sign at Lake Pend Oreille. 1 Oard, M.J., 2004. The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ. The Lake Missoula Flood One of the largest lakes ever ponded by an ice dam was glacial Lake Missoula (Figure 85.1). After this lake deepened to 2,000 feet (610 m) at the dam site in northern Idaho, the bursting ice dam initiated one of the largest floods on earth, except that described in Genesis. Glacial Lake Missoula contained 540 mi3 (2,210 km3) of water and emptied in two days.
    [Show full text]
  • The Missoula Flood
    THE MISSOULA FLOOD Dry Falls in Grand Coulee, Washington, was the largest waterfall in the world during the Missoula Flood. Height of falls is 385 ft [117 m]. Flood waters were actually about 260 ft deep [80 m] above the top of the falls, so a more appropriate name might be Dry Cataract. KEENAN LEE DEPARTMENT OF GEOLOGY AND GEOLOGICAL ENGINEERING COLORADO SCHOOL OF MINES GOLDEN COLORADO 80401 2009 The Missoula Flood 2 CONTENTS Page OVERVIEW 2 THE GLACIAL DAM 3 LAKE MISSOULA 5 THE DAM FAILURE 6 THE MISSOULA FLOOD ABOVE THE ICE DAM 6 Catastrophic Flood Features in Eddy Narrows 6 Catastrophic Flood Features in Perma Narrows 7 Catastrophic Flood Features at Camas Prairie 9 THE MISSOULA FLOOD BELOW THE ICE DAM 13 Rathdrum Prairie and Spokane 13 Cheny – Palouse Scablands 14 Grand Coulee 15 Wallula Gap and Columbia River Gorge 15 Portland to the Pacific Ocean 16 MULTIPLE MISSOULA FLOODS 17 AGE OF MISSOULA FLOODS 18 SOME REFERENCES 19 OVERVIEW About 15 000 years ago in latest Pleistocene time, glaciers from the Cordilleran ice sheet in Canada advanced southward and dammed two rivers, the Columbia River and one of its major tributaries, the Clark Fork River [Fig. 1]. One lobe of the ice sheet dammed the Columbia River, creating Lake Columbia and diverting the Columbia River into the Grand Coulee. Another lobe of the ice sheet advanced southward down the Purcell Trench to the present Lake Pend Oreille in Idaho and dammed the Clark Fork River. This created an enormous Lake Missoula, with a volume of water greater than that of Lake Erie and Lake Ontario combined [530 mi3 or 2200 km3].
    [Show full text]