Homer2 and Homer3 Modulate RANKL-Induced Nfatc1 Signaling in Osteoclastogenesis and Bone Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Homer2 and Homer3 Modulate RANKL-Induced Nfatc1 Signaling in Osteoclastogenesis and Bone Metabolism 242 3 Journal of A Son, N Kang et al. Roles of Homer2/3 in 242:3 241–249 Endocrinology osteoclastogenesis RESEARCH Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism Aran Son1,*, Namju Kang1,2,*, Sue Young Oh1, Ki Woo Kim1, Shmuel Muallem3, Yu-Mi Yang1 and Dong Min Shin1,2 1Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea 2BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea 3Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA Correspondence should be addressed to Y-M Yang or D M Shin: [email protected] or [email protected] *(A Son and N Kang contributed equally to this work) Abstract The receptor activator of nuclear factor-kappa B ligand (RANKL) induces Key Words osteoclastogenesis by induction of Ca2+ oscillation, calcineurin activation and f RANKL translocation into the nucleus of nuclear factor of activated T cells type c1 (NFATc1). f osteoclast differentiation Homer proteins are scaffold proteins. They regulate Ca2+ signaling by modulating f scaffold protein the activity of multiple Ca2+ signaling proteins. Homers 2 and 3, but not Homer1, also f osteoporosis independently affect the interaction between NFATc1 and calcineurin. However, to date, f NFATc1 whether and how the Homers are involved in osteoclastogenesis remains unknown. In the present study, we investigated Homer2 and Homer3 roles in Ca2+ signaling and NFATc1 function during osteoclast differentiation. Deletion of Homer2/Homer3 (Homer2/3) markedly decreased the bone density of the tibia, resulting in bone erosion. RANKL-induced osteoclast differentiation is greatly facilitated in Homer2/3 DKO bone marrow-derived monocytes/macrophages (BMMs) due to increased NFATc1 expression and nuclear translocation. However, these findings did not alter RANKL-induced Ca2+ oscillations. Of note, RANKL treatment inhibited Homer proteins interaction with NFATc1, but it was restored by cyclosporine A treatment to inhibit calcineurin. Finally, RANKL treatment of Homer2/3 DKO BMMs significantly increased the formation of multinucleated cells. These findings suggest a novel potent mode of bone homeostasis regulation through osteoclasts differentiation. Specifically, we found that Homer2 and Homer3 regulate NFATc1 function through its interaction with calcineurin to regulate Journal of Endocrinology RANKL-induced osteoclastogenesis and bone metabolism. (2019) 242, 241–249 Introduction Bone is a dynamic organ. It is constantly renewing through can be found. Examples are autoimmune arthritis, a bone remodeling process, mediated by osteoblastic osteoporosis, periodontitis, osteopetrosis and bone bone formation and osteoclastic bone resorption. In tumors (Takayanagi 2007, Zaidi 2007). Multinucleated numerous bone diseases, an imbalance in this process mature osteoclasts originate from bone marrow-derived https://joe.bioscientifica.com © 2019 Society for Endocrinology https://doi.org/10.1530/JOE-19-0123 Published by Bioscientifica Ltd. Printed in Great Britain Downloaded from Bioscientifica.com at 09/23/2021 07:42:04PM via free access -19-0123 Journal of A Son, N Kang et al. Roles of Homer2/3 in 242:3 242 Endocrinology osteoclastogenesis monocytes/macrophages (BMMs) through two essential (Brakeman et al. 1997, Xiao et al. 1998, Bottai et al. 2002). factors. One is receptor activator of nuclear factor- Homer1a predominantly consists of the N-terminal kappa B ligand (RANKL) secreted by osteoblasts. The Ena/VASP homology 1 (EVH) protein-binding domain. other is macrophage-colony-stimulating factor (M-CSF) The remaining Homer proteins (i.e., Homer1b/c, Homer2 (Takayanagi 2007). RANK receptor’s activation by RANKL and Homer3, referred to as ‘long Homers’) are composed leads to oscillations in intracellular Ca2+ concentration of an EVH domain and a C-terminus. The latter includes 2+ ([Ca ]i). The latter is linked to the activation of Gq. In a coiled-coil multimerization domain and leucine zipper turn, Gq generates inositol 1,4,5-triphosphate (IP3) to (Tu et al. 1998, Worley et al. 2007). Of note, the EVH 2+ activate the IP3 receptors (IP3Rs), Ca release from the ER domain binds to several G protein coupled-receptors and activation of Ca2+ influx from the extracellular space (GPCRs). Specifically, these are as follows: canonical by the Orai channels and transient receptor potential TRP (TRPC) channels, IP3Rs, ryanodine receptors (RyRs) (TRP) channels. Ultimately, as previously reported, this and the Shank family of scaffold proteins (Tu et al. generates an increase in intracellular reactive oxygen 1998, 1999, Xiao et al. 1998, Feng et al. 2002, Shin species (Yang et al. 2009, 2013, Kim et al. 2010, Son et al. 2003, Yuan et al. 2003). Homer proteins were et al. 2012, Park et al. 2013). Subsequently, the RANKL- previously identified as synaptic proteins regulating 2+ mediated [Ca ]i oscillations increase NFATc1’s nuclear synaptic activity in neurons. However, earlier studies translocation, multinucleated cells’ formation and bone have reported on the importance of the Homer family resorption (Takayanagi et al. 2002, Yang et al. 2009, Kim in other tissues (Brakeman et al. 1997, Tu et al. 1998, et al. 2010). 1999, Xiao et al. 1998). In previous studies, it has been Members of the NFAT family of transcription factors shown that Homer2 modulates the intensity of the play a central role in immune responses and in the GPCRs stimulus. Of note, this is done by regulating the development of cardiac and skeletal muscles, bone and the GAP activity of RGS proteins and of PLCβ in pancreas nervous system. In these tissues, the NFAT family members acinar cells (Shin et al. 2003). In the skeletal muscle, are expressed in most cells. The NFAT family consists of Homer2 enhances the NFATc1-dependent signaling five members (NFATc1-5). NFATc1 through NFATc4 are pathway by increasing the release of RyR-dependent regulated by Ca2+ signaling. Specifically, Ca2+ activates Ca2+ during myogenic differentiation (Stiber et al. calcineurin by calmodulin. This dephosphorylates NFAT 2005). It has been demonstrated that Homer3’s deletion to expose its nuclear import signal (Olson & Williams induces severe autoimmune phenotypes in the lung and 2000, Crabtree & Olson 2002, Hogan et al. 2003, liver. Additionally, Homer3’s phosphorylation by the Takayanagi 2007). Ca2+/calmodulin-dependent protein kinase (CaMK) II Ca2+ is a universal intracellular messenger that is regulates Purkinje cells synaptic activity (Huang et al. involved in various cellular functions and processes, 2008, Mizutani et al. 2008). Of note, Homer2 and Homer3 such as cell proliferation, differentiation and apoptosis have been shown to regulate T cell activation through (Bootman et al. 2001, Berridge et al. 2003). Disruption the interaction with NFATc2. Specifically, this is done of Ca2+ signaling is one mechanism by which RANKL by competing with calcineurin to bind with NFATc2 function, NFATc1 activation and the associated bone (Huang et al. 2008). Additionally, Homer2 identified metabolism can be altered. An additional less explored a co-localization with NFATc1 at the neuromuscular mechanism NFAT function’s regulation is through their junction. The latter is part of the calcineurin-NFATc1 interaction with adapter proteins. As for example SH3 signaling pathway (Salanova et al. 2011). However, to domain-binding protein 2 (3BP2), NFAT-interacting date, there is a poor understanding of the characteristics protein (NIP45) and most prominently the Homer of the RANKL-induced NFATc1 signaling pathway during proteins (Takayanagi et al. 2002, Foucault et al. 2005, osteoclastogenesis and whether and how it is regulated Huang et al. 2008, GuezGuez et al. 2010, Shanmugarajan by Homer proteins. et al. 2012). The Homer family of scaffolding proteins In the present study, we investigated the role of consists of Homer1, Homer2 and Homer3 and several Homer proteins in the RANKL-induced NFATc1 signaling splice variants. The short Homer1a’s gene coding was pathway, osteoclast differentiation and bone metabolism identified as an immediate early gene transcriptionally with the use of Homer2 and Homer3 (Homer2/3) upregulated by synaptic activity in neuronal cells double-knockout (DKO) mice. https://joe.bioscientifica.com © 2019 Society for Endocrinology https://doi.org/10.1530/JOE-19-0123 Published by Bioscientifica Ltd. Printed in Great Britain Downloaded from Bioscientifica.com at 09/23/2021 07:42:04PM via free access Research Journal of A Son, N Kang et al. Roles of Homer2/3 in 242:3 243 Endocrinology osteoclastogenesis Materials and methods male mice were injected twice with calcein (15 mg/kg intraperitoneally) 2 days apart. The animals were killed Cell culture and reagents on day 4, and undecalcified bones were embedded in methylmethacrylate. Longitudinal sections (10 m The Homer2/3 DKO mice were generously provided μ thickness) of the tibias were prepared, and new bone by Dr Paul F Worley (Johns Hopkins University School formation was assessed by confocal microscopy (model of Medicine, Baltimore, MD) (Huang et al. 2008) and LSM 510; Carl Zeiss) by capturing images of calcein green. all animal care and experimental procedures complied with institutional guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC) 2+ [Ca ]i measurement in Yonsei University (IACUC approval no. 2014-0067). The cells were seeded
Recommended publications
  • Data Sheet 160-3P
    Rudolf-Wissell-Str. 28a Background 37079 Göttingen, Germany Phone: +49 551-50556-0 Homer is a scaffolding protein of the post synaptic density (PSD) and enriched at excitatory synapses. Fax: +49 551-50556-384 The protein binds metabotropic glutamate receptors, TRPC1, proteins of the Shank family and others. E-mail: [email protected] By aggregating these proteins into clusters, Homer was suggested to organize distinct signalling Web: www.sysy.com domains. Homer 3 Three isoforms, Homer 1, 2 and 3 have been described. Each of these isoforms is subject to alternative splicing yielding the splice variants a, b, c, d. Cat.No. 160-3P; control protein, 100 µg protein (lyophilized) Data Sheet Selected General References Homer2 and Homer3 interact with amyloid precursor protein and inhibit Abeta production. Parisiadou L, Bethani I, Michaki V, Krousti K, Rapti G, Efthimiopoulos S Reconstitution/ 100 µg lyophilized protein. For reconstitution add 100 µl H2O to get a 1mg/ml Neurobiology of disease (2008) 303: 353-64. Storage solution in MBS. Then aliquot and store at -20°C until use. Differential expression of Homer family proteins in the developing mouse brain. For detailed information, see back of the data sheet. Shiraishi Y, Mizutani A, Yuasa S, Mikoshiba K, Furuichi T The Journal of comparative neurology (2004) 4734: 582-99. Immunogen Recombinant protein corresponding to AA 1 to 177 from rat Homer3 (UniProt Id: Q9Z2X5) Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing. Soloviev MM, Ciruela F, Chan WY, McIlhinney RA Recommended Optimal concentrations should be determined by the end-user.
    [Show full text]
  • Mitotic Chromosome Binding Predicts Transcription Factor Properties in Interphase
    bioRxiv preprint doi: https://doi.org/10.1101/404723; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mitotic chromosome binding predicts transcription factor properties in interphase Authors: Mahé Raccaud1, Andrea B. Alber1,2, Elias T. Friman1,2, Harsha Agarwal3, Cédric Deluz1, Timo Kuhn3, J. Christof M. Gebhardt3 and David M. Suter1,4 Affiliations: 1Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland 2These authors contributed equally 3Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany 4Lead contact Corresponding author: David M. Suter ([email protected]) Summary Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence- specific/non-specific DNA binding affinity. How these properties affect the ability of TFs to occupy their specific binding sites in the genome and modify the epigenetic landscape is unclear. Here we combined live cell quantitative measurements of mitotic chromosome binding (MCB) of 502 TFs, measurements of TF mobility by fluorescence recovery after photobleaching, single molecule imaging of DNA binding in live cells, and genome-wide mapping of TF binding and chromatin accessibility. MCB scaled with interphase properties such as association with DNA-rich compartments, mobility, as well as large differences in genome-wide specific site occupancy that correlated with TF impact on chromatin accessibility. As MCB is largely mediated by electrostatic, non-specific TF-DNA interactions, our data suggests that non-specific DNA binding of TFs enhances their search for specific sites and thereby their impact on the accessible chromatin landscape.
    [Show full text]
  • Multivariate Analysis Reveals Genetic Associations of the Resting Default
    Multivariate analysis reveals genetic associations of PNAS PLUS the resting default mode network in psychotic bipolar disorder and schizophrenia Shashwath A. Medaa,1, Gualberto Ruañob,c, Andreas Windemuthb, Kasey O’Neila, Clifton Berwisea, Sabra M. Dunna, Leah E. Boccaccioa, Balaji Narayanana, Mohan Kocherlab, Emma Sprootena, Matcheri S. Keshavand, Carol A. Tammingae, John A. Sweeneye, Brett A. Clementzf, Vince D. Calhoung,h,i, and Godfrey D. Pearlsona,h,j aOlin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT 06102; bGenomas Inc., Hartford, CT 06102; cGenetics Research Center, Hartford Hospital, Hartford, CT 06102; dDepartment of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215; eDepartment of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Psychology, University of Georgia, Athens, GA 30602; gThe Mind Research Network, Albuquerque, NM 87106; Departments of hPsychiatry and jNeurobiology, Yale University, New Haven, CT 06520; and iDepartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87106 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review July 15, 2013) The brain’s default mode network (DMN) is highly heritable and is Although risk for psychotic illnesses is driven in small part by compromised in a variety of psychiatric disorders. However, ge- highly penetrant, often private mutations such as copy number netic control over the DMN in schizophrenia (SZ) and psychotic variants, substantial risk also is likely conferred by multiple genes bipolar disorder (PBP) is largely unknown. Study subjects (n = of small effect sizes interacting together (7). According to the 1,305) underwent a resting-state functional MRI scan and were “common disease common variant” (CDCV) model, one would analyzed by a two-stage approach.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0009296A1 Glessner Et Al
    US 20170009296A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0009296A1 Glessner et al. (43) Pub. Date: Jan. 12, 2017 (54) ASSOCIATION OF RARE RECURRENT (60) Provisional application No. 61/376.498, filed on Aug. GENETIC VARATIONS TO 24, 2010, provisional application No. 61/466,657, ATTENTION-DEFICIT, HYPERACTIVITY filed on Mar. 23, 2011. DISORDER (ADHD) AND METHODS OF USE THEREOF FOR THE DAGNOSS AND TREATMENT OF THE SAME Publication Classification (71) Applicant: The Children's Hospital of Philadelphia, Philadelphia, PA (US) (51) Int. Cl. CI2O I/68 (2006.01) (72) Inventors: Joseph Glessner, Mullica Hill, NJ A63L/454 (2006.01) (US); Josephine Elia, Penllyn, PA (52) U.S. Cl. (US); Hakon Hakonarson, Malvern, CPC ........... CI2O I/6883 (2013.01); A61 K3I/454 PA (US) (2013.01); C12O 2600/156 (2013.01); C12O (21) Appl. No.: 15/063,482 2600/16 (2013.01) (22) Filed: Mar. 7, 2016 Related U.S. Application Data (57) ABSTRACT (63) Continuation of application No. 13/776,662, filed on Feb. 25, 2013, now abandoned, which is a continu ation-in-part of application No. PCT/US 11/48993, Compositions and methods for the detection and treatment filed on Aug. 24, 2011. of ADHD are provided. Patent Application Publication Jan. 12, 2017. Sheet 1 of 18 US 2017/000929.6 A1 Figure 1A ADHD Cases and Parentsi Siblings O SO Samples8 O 1. 1. 250C 40 gE 520 - Samples 3. Figure 1B Patent Application Publication Jan. 12, 2017. Sheet 2 of 18 US 2017/000929.6 A1 S&s sess'. ; S&s' ' Ny erre 8 Y-8 W - - 8 - - - - 8 - W - 8-8- W - 8 w w W & .
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
    Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • (Arc/Arg3.1) in the Nucleus Accumbens Is Critical for the Acqui
    Behavioural Brain Research 223 (2011) 182–191 Contents lists available at ScienceDirect Behavioural Brain Research j ournal homepage: www.elsevier.com/locate/bbr Research report Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference ∗ Xiu-Fang Lv, Ya Xu, Ji-Sheng Han, Cai-Lian Cui Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Key Laboratory of Neuroscience, the Ministry of Education and Ministry of Public Health, 38 Xueyuan Road, Beijing 100191, PR China a r t i c l e i n f o a b s t r a c t Article history: Activity-regulated cytoskeleton-associated protein (Arc), also known as activity-regulated gene 3.1 Received 27 January 2011 (Arg3.1), is an immediate early gene whose mRNA is selectively targeted to recently activated synaptic Received in revised form 1 April 2011 sites, where it is translated and enriched. This unique feature suggests a role for Arc/Arg3.1 in coupling Accepted 18 April 2011 synaptic activity to protein synthesis, leading to synaptic plasticity. Although the Arc/Arg3.1 gene has been shown to be induced by a variety of abused drugs and its protein has been implicated in diverse Key words: forms of long-term memory, relatively little is known about its role in drug-induced reward memory. In Activity regulated cytoskeleton-associated this study, we investigated the potential role of Arc/Arg3.1 protein expression in reward-related associa- protein/activity-regulated gene (Arc/Arg3.1) tive learning and memory using morphine-induced conditioned place preference (CPP) in rats.
    [Show full text]
  • Brain Region-Dependent Gene Networks Associated with Selective Breeding for Increased Voluntary Wheel-Running Behavior
    UC Riverside UC Riverside Previously Published Works Title Brain region-dependent gene networks associated with selective breeding for increased voluntary wheel-running behavior. Permalink https://escholarship.org/uc/item/8c49g8fd Journal PloS one, 13(8) ISSN 1932-6203 Authors Zhang, Pan Rhodes, Justin S Garland, Theodore et al. Publication Date 2018 DOI 10.1371/journal.pone.0201773 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Brain region-dependent gene networks associated with selective breeding for increased voluntary wheel-running behavior Pan Zhang1,2, Justin S. Rhodes3,4, Theodore Garland, Jr.5, Sam D. Perez3, Bruce R. Southey2, Sandra L. Rodriguez-Zas2,6,7* 1 Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America, 2 Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United a1111111111 States of America, 3 Beckman Institute for Advanced Science and Technology, Urbana, IL, United States of a1111111111 America, 4 Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, Urbana, a1111111111 IL, United States of America, 5 Department of Evolution, Ecology, and Organismal Biology, University of a1111111111 California, Riverside, CA, United States of America, 6 Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America, 7 Carle Woese Institute for Genomic Biology, a1111111111 University of Illinois at Urbana-Champaign, Urbana, IL, United States of America * [email protected] OPEN ACCESS Abstract Citation: Zhang P, Rhodes JS, Garland T, Jr., Perez SD, Southey BR, Rodriguez-Zas SL (2018) Brain Mouse lines selectively bred for high voluntary wheel-running behavior are helpful models region-dependent gene networks associated with for uncovering gene networks associated with increased motivation for physical activity and selective breeding for increased voluntary wheel- other reward-dependent behaviors.
    [Show full text]
  • HOMER2 (NM 199330) Human Tagged ORF Clone – RC223154L4
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC223154L4 HOMER2 (NM_199330) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: HOMER2 (NM_199330) Human Tagged ORF Clone Tag: mGFP Symbol: HOMER2 Synonyms: ACPD; CPD; DFNA68; HOMER-2; VESL-2 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC223154). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_199330 ORF Size: 1062 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 HOMER2 (NM_199330) Human Tagged ORF Clone – RC223154L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_199330.1 RefSeq Size: 2005 bp RefSeq ORF: 1065 bp Locus ID: 9455 UniProt ID: Q9NSB8 Protein Families: Druggable Genome MW: 40.4 kDa Gene Summary: This gene encodes a member of the homer family of dendritic proteins.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Synapse Development Organized by Neuronal Activity-Regulated Immediate- Early Genes Seungjoon Kim1, Hyeonho Kim1 and Ji Won Um1
    Kim et al. Experimental & Molecular Medicine (2018) 50:11 DOI 10.1038/s12276-018-0025-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Synapse development organized by neuronal activity-regulated immediate- early genes Seungjoon Kim1, Hyeonho Kim1 and Ji Won Um1 Abstract Classical studies have shown that neuronal immediate-early genes (IEGs) play important roles in synaptic processes critical for key brain functions. IEGs are transiently activated and rapidly upregulated in discrete neurons in response to a wide variety of cellular stimuli, and they are uniquely involved in various aspects of synapse development. In this review, we summarize recent studies of a subset of neuronal IEGs in regulating synapse formation, transmission, and plasticity. We also discuss how the dysregulation of neuronal IEGs is associated with the onset of various brain disorders and pinpoint key outstanding questions that should be addressed in this field. Introduction experience-dependent synaptic changes and maturation Numerous studies have shown that neural activity plays of neural circuits. an important role in regulating synaptic strength, neuro- More than dozens of neuronal IEGs were identified by fi 1– 12 1234567890():,; 1234567890():,; nal membrane properties, and neural circuit re nement Paul Worley, Elly Nedivi, and colleagues , owing to the 3. In particular, sensory experiences continually influence use of the subtractive hybridization method, in combi- brain development at synaptic, circuit, and organismal nation with various neural stimulation protocols, most levels, as Hubel4 and Wiesel5 elegantly demonstrated in notably seizure paradigms. Among them, cAMP- their work on visual cortex organization during the cri- responsive element-binding protein (CREB) has been tical period5.
    [Show full text]
  • Podocin Inactivation in Mature Kidneys Causes Focal Segmental Glomerulosclerosis and Nephrotic Syndrome
    BASIC RESEARCH www.jasn.org Podocin Inactivation in Mature Kidneys Causes Focal Segmental Glomerulosclerosis and Nephrotic Syndrome Ge´raldine Mollet,*† Julien Ratelade,*† Olivia Boyer,*†‡ Andrea Onetti Muda,*§ ʈ Ludivine Morisset,*† Tiphaine Aguirre Lavin,*† David Kitzis,*† Margaret J. Dallman, ʈ Laurence Bugeon, Norbert Hubner,¶ Marie-Claire Gubler,*† Corinne Antignac,*†** and Ernie L. Esquivel*† *INSERM, U574, Hoˆpital Necker-Enfants Malades, Paris, France; †Faculte´deMe´ decine Rene´ Descartes, Universite´ Paris Descartes, Paris, France; ‡Pediatric Nephrology Department and **Department of Genetics, Hoˆpital Necker- Enfants Malades, Assistance Publique-Hoˆpitaux de Paris, Paris, France; §Department of Pathology, Campus ʈ Biomedico University, Rome, Italy; Department of Biological Sciences, Imperial College London, London, England; and ¶Max-Delbruck Center for Molecular Medicine, Berlin, Germany ABSTRACT Podocin is a critical component of the glomerular slit diaphragm, and genetic mutations lead to both familial and sporadic forms of steroid-resistant nephrotic syndrome. In mice, constitutive absence of podocin leads to rapidly progressive renal disease characterized by mesangiolysis and/or mesangial sclerosis and nephrotic syndrome. Using established Cre-loxP technology, we inactivated podocin in the adult mouse kidney in a podocyte-specific manner. Progressive loss of podocin in the glomerulus recapitu- lated albuminuria, hypercholesterolemia, hypertension, and renal failure seen in nephrotic syndrome in humans. Lesions of FSGS appeared
    [Show full text]