A Novel Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive DFNA68 Hearing Loss in a Spanish Family

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive DFNA68 Hearing Loss in a Spanish Family G C A T T A C G G C A T genes Article A Novel Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive DFNA68 Hearing Loss in a Spanish Family María Lachgar 1,2,† , Matías Morín 1,2,† , Manuela Villamar 1,2, Ignacio del Castillo 1,2 and Miguel Ángel Moreno-Pelayo 1,2,* 1 Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar km 9.100, 28034 Madrid, Spain; [email protected] (M.L.); [email protected] (M.M.); [email protected] (M.V.); [email protected] (I.d.C.) 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Nonsyndromic hereditary hearing loss is a common sensory defect in humans that is clinically and genetically highly heterogeneous. So far, 122 genes have been associated with this disorder and 50 of them have been linked to autosomal dominant (DFNA) forms like DFNA68, a rare subtype of hearing impairment caused by disruption of a stereociliary scaffolding protein (HOMER2) that is essential for normal hearing in humans and mice. In this study, we report a novel HOMER2 variant (c.832_836delCCTCA) identified in a Spanish family by using a custom NGS targeted gene panel (OTO-NGS-v2). This frameshift mutation produces a premature stop codon that may lead in the absence of NMD to a shorter variant (p.Pro278Alafs*10) that truncates HOMER2 at the CDC42 binding domain (CBD) of the coiled-coil structure, a region that is essential Citation: Lachgar, M.; Morín, M.; for protein multimerization and HOMER2-CDC42 interaction. c.832_836delCCTCA mutation is Villamar, M.; del Castillo, I.; placed close to the previously identified c.840_840dup mutation found in a Chinese family that Moreno-Pelayo, M.Á. A Novel truncates the protein (p.Met281Hisfs*9) at the CBD. Functional assessment of the Chinese mutant Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive revealed decreased protein stability, reduced ability to multimerize, and altered distribution pattern DFNA68 Hearing Loss in a Spanish in transfected cells when compared with wild-type HOMER2. Interestingly, the Spanish and Chinese Family. Genes 2021, 12, 411. https:// frameshift mutations might exert a similar effect at the protein level, leading to truncated mutants doi.org/10.3390/genes12030411 with the same Ct aberrant protein tail, thus suggesting that they can share a common mechanism of pathogenesis. Indeed, age-matched patients in both families display quite similar hearing loss Academic Editors: Santiago phenotypes consisting of early-onset, moderate-to-profound progressive hearing loss. In summary, Rodriguez and Laura Crisponi we have identified the third variant in HOMER2, which is the first one identified in the Spanish population, thus contributing to expanding the mutational spectrum of this gene in other populations, Received: 20 December 2020 and also to clarifying the genotype–phenotype correlations of DFNA68 hearing loss. Accepted: 9 March 2021 Published: 12 March 2021 Keywords: hereditary hearing loss; next-generation sequencing; custom panel; HOMER2; CDC42 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- 1. Introduction iations. Hearing loss is the most common sensory deficit in humans, affecting around 1 in 1000 newborns. Its prevalence increases with the age up to 6–8% in the adult population, having a strong impact on the individual’s social isolation [1]. Genetic causes account for 50–60% of newborn hearing loss, 30% of which are nonsyndromic forms of deafness [2]. The genetic Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. etiology of hearing impairment is highly heterogeneous. Up to date, 160 nonsyndromic This article is an open access article sensorineural hearing loss (NSSNHL) loci have been mapped, of which 122 genes have been distributed under the terms and identified [3]. Sixty-seven of these loci and 50 of these genes are associated with autosomal conditions of the Creative Commons dominant NSSNHL, being, in most cases, rare forms of post-lingual and progressive Attribution (CC BY) license (https:// hereditary hearing impairment. creativecommons.org/licenses/by/ Autosomal dominant NSSNHL-linked genes encode proteins with a wide variety of 4.0/). functions [4], such as cytoskeleton proteins (ACTG1, DIAPH1, PLS1), adhesion proteins (GJB2, Genes 2021, 12, 411. https://doi.org/10.3390/genes12030411 https://www.mdpi.com/journal/genes Genes 2021, 12, 411 2 of 9 GJB3, GJB6, TJP2), motor proteins (myosins), scaffolding proteins (HOMER2), extracellular matrix proteins (TECTA, COL11A2), proteins involved in ion homeostasis, such as ionic channels (KCNQ4), transcription factors (EYA4, POU4F3), and even a microRNA (MIR96)[5]. The HOMER2 gene maps to chromosome 15q24.3 [6] within the DFNA68 critical interval and consists of nine exons. Two human transcript variants have been described (NM_004839.4 and NM_199330.3) as encoding the short isoform 1 (NP_004830.2, 343aa) and the long isoform 2 (NP_955362.1, 354aa) of HOMER2, respectively. HOMER2 belongs to a protein family encompassing three members: HOMER1 (MIM604798), HOMER2/CUPIDIN (MIM604799), and HOMER3 (MIM604800). Like HOMER2, members 1 and 3 of the family have long and short isoforms due to alternative splicing [7]. HOMER family members are scaffolding proteins that play a key role in Ca2+ signaling [8–10], mostly at the Post- Synaptic-Densities (PSD) [11], where they interact with G-protein coupled metabotropic glutamate receptors (mGluRs) [12] and regulate excitatory signal transduction and re- ceptor plasticity [7]. In their structure, HOMER proteins present a conserved N-terminal domain known as Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) homology 1 (EVH1) domain [7,13] that binds to proline-rich sequences (i.e. Pro-Pro-x-x-Phe, Pro-x-x- Phe or Leu-Pro-Ser-Ser-Pro, where x represents any amino acid) and a C-terminal domain that consists of a coiled-coil (CC) structure that includes a CDC42 binding domain (CBD) and two Leucine Zipper (LZA and LZB) motifs [7,14]. This C-terminal fragment mediates self-association with other Homer family members [7] and the interaction with the small GTPase CDC42 [15] through its CBD. In mice, Homer2 is widespread in the developing and maturing brain [16]. Recently, a study has shown that this gene is also expressed in a wide variety of developing tissues, including tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone, and taste buds, being highly concentrated at puncta [17]. HOMER2 exhibits overlapping distribution patterns with HOMER1 and HOMER3, although they are distributed at distinct subcellular domains in several cell types [17,18]. Within the inner ear, HOMER2 is expressed in the stria vascularis, the Reissner’s membrane, and the inner and outer hair cells of the organ of Corti, especially in the stereocilia but also in perinuclear puncta and the cytoplasm [17,18]. Mild expression is observed in the vascular endothelium of the cochlea and the spiral ganglion [12]. Mice homozygous for the targeted deletion of Homer2 display early-onset rapidly progressive hearing loss [18]. HOMER2 was firstly associated with hearing loss by Azaiez et al. [18] who identified a heterozygous missense variant (p.Arg196Pro) in a European ascent family. A second mutation in HOMER2 (c.840_840dup; p.Met281Hisfs*9) was identified by Lu et al. [19] by Whole Exome Sequencing (WES) in a Chinese family segregating with hearing loss. Here, we present a third variant in HOMER2 (c.832_836delCCTCA, p.Pro278Alafs*10, NM_199330.3). This variant represents the second truncating mutation that affects the CBD and lead, as in the previous two families, to post-lingual and progressive hearing loss. This mutation is the first one identified in the Spanish population, thus increasing the mutational spectrum of this gene associated with DFNA68, a rare form of autosomal dominant nonsyndromic progressive hearing loss. 2. Patients and Methods 2.1. Patients Selection Patients and healthy relatives of family S1074 (Figure 1A) were recruited from the Uni- versity Hospital Ramón y Cajal (Madrid-Spain). Clinical history ruled out environmental factors as the cause of the hearing loss in the probands, and physical examination did not reveal any evidence of syndromic features. No other clinically significant manifestations, including balance or visual problems, were reported by any of the affected individuals. The hearing level was evaluated through pure tone audiometry. Air conduction thresholds were determined at frequencies ranging from 250 to 8000 Hz according to standard protocols. This study was designed in compliance with the tenets of the Helsinki Declaration, and patient enrolment was approved by the ethics committee and the human research Institu- Genes 2021, 12, 411 3 of 9 tional Review Boards of Hospital Ramón y Cajal (IRB number: 288-17). All participants of the family approved of the study and signed the Informed Consent. 2.2. Sample Collection A peripheral blood sample from each subject of the family S1074 enrolled in the study was collected by venipuncture in 5 mM EDTA tubes and genomic DNA was extracted using Chemagen MSM I (Magnetic Separation Module I, PerkinElmer, Massachusetts, MA, USA) according to the manufacturer’s instructions. DNA was quantified by the fluorometric method Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Massachusetts, MA, USA). 2.3. Targeted
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Snapshot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany
    SnapShot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany Formin Regulators Localization Cellular Function Disease Association DIAPH1/DIA1 RhoA, RhoC Cell cortex, Polarized cell migration, microtubule stabilization, Autosomal-dominant nonsyndromic deafness (DFNA1), myeloproliferative (mDia1) phagocytic cup, phagocytosis, axon elongation defects, defects in T lymphocyte traffi cking and proliferation, tumor cell mitotic spindle invasion, defects in natural killer lymphocyte function DIAPH2 Cdc42 Kinetochore Stable microtubule attachment to kinetochore for Premature ovarian failure (mDia3) chromosome alignment DIAPH3 Rif, Cdc42, Filopodia, Filopodia formation, removing the nucleus from Increased chromosomal deletion of gene locus in metastatic tumors (mDia2) Rac, RhoB, endosomes erythroblast, endosome motility, microtubule DIP* stabilization FMNL1 (FRLα) Cdc42 Cell cortex, Phagocytosis, T cell polarity Overexpression is linked to leukemia and non-Hodgkin lymphoma microtubule- organizing center FMNL2/FRL3/ RhoC ND Cell motility Upregulated in metastatic colorectal cancer, chromosomal deletion is FHOD2 associated with mental retardation FMNL3/FRL2 Constituently Stress fi bers ND ND active DAAM1 Dishevelled Cell cortex Planar cell polarity ND DAAM2 ND ND ND Overexpressed in schizophrenia patients Human (Mouse) FHOD1 ROCK Stress fi bers Cell motility FHOD3 ND Nestin, sarcomere Organizing sarcomeres in striated muscle cells Single-nucleotide polymorphisms associated with type 1 diabetes
    [Show full text]
  • Data Sheet 160-3P
    Rudolf-Wissell-Str. 28a Background 37079 Göttingen, Germany Phone: +49 551-50556-0 Homer is a scaffolding protein of the post synaptic density (PSD) and enriched at excitatory synapses. Fax: +49 551-50556-384 The protein binds metabotropic glutamate receptors, TRPC1, proteins of the Shank family and others. E-mail: [email protected] By aggregating these proteins into clusters, Homer was suggested to organize distinct signalling Web: www.sysy.com domains. Homer 3 Three isoforms, Homer 1, 2 and 3 have been described. Each of these isoforms is subject to alternative splicing yielding the splice variants a, b, c, d. Cat.No. 160-3P; control protein, 100 µg protein (lyophilized) Data Sheet Selected General References Homer2 and Homer3 interact with amyloid precursor protein and inhibit Abeta production. Parisiadou L, Bethani I, Michaki V, Krousti K, Rapti G, Efthimiopoulos S Reconstitution/ 100 µg lyophilized protein. For reconstitution add 100 µl H2O to get a 1mg/ml Neurobiology of disease (2008) 303: 353-64. Storage solution in MBS. Then aliquot and store at -20°C until use. Differential expression of Homer family proteins in the developing mouse brain. For detailed information, see back of the data sheet. Shiraishi Y, Mizutani A, Yuasa S, Mikoshiba K, Furuichi T The Journal of comparative neurology (2004) 4734: 582-99. Immunogen Recombinant protein corresponding to AA 1 to 177 from rat Homer3 (UniProt Id: Q9Z2X5) Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing. Soloviev MM, Ciruela F, Chan WY, McIlhinney RA Recommended Optimal concentrations should be determined by the end-user.
    [Show full text]
  • Mitotic Chromosome Binding Predicts Transcription Factor Properties in Interphase
    bioRxiv preprint doi: https://doi.org/10.1101/404723; this version posted August 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Mitotic chromosome binding predicts transcription factor properties in interphase Authors: Mahé Raccaud1, Andrea B. Alber1,2, Elias T. Friman1,2, Harsha Agarwal3, Cédric Deluz1, Timo Kuhn3, J. Christof M. Gebhardt3 and David M. Suter1,4 Affiliations: 1Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland 2These authors contributed equally 3Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany 4Lead contact Corresponding author: David M. Suter ([email protected]) Summary Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence- specific/non-specific DNA binding affinity. How these properties affect the ability of TFs to occupy their specific binding sites in the genome and modify the epigenetic landscape is unclear. Here we combined live cell quantitative measurements of mitotic chromosome binding (MCB) of 502 TFs, measurements of TF mobility by fluorescence recovery after photobleaching, single molecule imaging of DNA binding in live cells, and genome-wide mapping of TF binding and chromatin accessibility. MCB scaled with interphase properties such as association with DNA-rich compartments, mobility, as well as large differences in genome-wide specific site occupancy that correlated with TF impact on chromatin accessibility. As MCB is largely mediated by electrostatic, non-specific TF-DNA interactions, our data suggests that non-specific DNA binding of TFs enhances their search for specific sites and thereby their impact on the accessible chromatin landscape.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Effects and Mechanisms of Eps8 on the Biological Behaviour of Malignant Tumours (Review)
    824 ONCOLOGY REPORTS 45: 824-834, 2021 Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review) KAILI LUO1, LEI ZHANG2, YUAN LIAO1, HONGYU ZHOU1, HONGYING YANG2, MIN LUO1 and CHEN QING1 1School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500; 2Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China Received August 29, 2020; Accepted December 9, 2020 DOI: 10.3892/or.2021.7927 Abstract. Epidermal growth factor receptor pathway substrate 8 1. Introduction (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which Malignant tumours are uncontrolled cell proliferation diseases is involved in cell mitosis, differentiation and other physiological caused by oncogenes and ultimately lead to organ and body functions. Numerous studies over the last decade have demon- dysfunction (1). In recent decades, great progress has been strated that Eps8 is overexpressed in most ubiquitous malignant made in the study of genes and signalling pathways in tumours and subsequently binds with its receptor to activate tumorigenesis. Eps8 was identified by Fazioli et al in NIH-3T3 multiple signalling pathways. Eps8 not only participates in the murine fibroblasts via an approach that allows direct cloning regulation of malignant phenotypes, such as tumour proliferation, of intracellular substrates for receptor tyrosine kinases (RTKs) invasion, metastasis and drug resistance, but is also related to that was designed to study the EGFR signalling pathway. Eps8 the clinicopathological characteristics and prognosis of patients.
    [Show full text]
  • Multivariate Analysis Reveals Genetic Associations of the Resting Default
    Multivariate analysis reveals genetic associations of PNAS PLUS the resting default mode network in psychotic bipolar disorder and schizophrenia Shashwath A. Medaa,1, Gualberto Ruañob,c, Andreas Windemuthb, Kasey O’Neila, Clifton Berwisea, Sabra M. Dunna, Leah E. Boccaccioa, Balaji Narayanana, Mohan Kocherlab, Emma Sprootena, Matcheri S. Keshavand, Carol A. Tammingae, John A. Sweeneye, Brett A. Clementzf, Vince D. Calhoung,h,i, and Godfrey D. Pearlsona,h,j aOlin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT 06102; bGenomas Inc., Hartford, CT 06102; cGenetics Research Center, Hartford Hospital, Hartford, CT 06102; dDepartment of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215; eDepartment of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Psychology, University of Georgia, Athens, GA 30602; gThe Mind Research Network, Albuquerque, NM 87106; Departments of hPsychiatry and jNeurobiology, Yale University, New Haven, CT 06520; and iDepartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87106 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review July 15, 2013) The brain’s default mode network (DMN) is highly heritable and is Although risk for psychotic illnesses is driven in small part by compromised in a variety of psychiatric disorders. However, ge- highly penetrant, often private mutations such as copy number netic control over the DMN in schizophrenia (SZ) and psychotic variants, substantial risk also is likely conferred by multiple genes bipolar disorder (PBP) is largely unknown. Study subjects (n = of small effect sizes interacting together (7). According to the 1,305) underwent a resting-state functional MRI scan and were “common disease common variant” (CDCV) model, one would analyzed by a two-stage approach.
    [Show full text]
  • A Comprehensive Network and Pathway Analysis of Human Deafness Genes
    Otology & Neurotology 34:961Y970 Ó 2013, Otology & Neurotology, Inc. A Comprehensive Network and Pathway Analysis of Human Deafness Genes *Georgios A. Stamatiou and †Konstantina M. Stankovic *Department of Otolaryngology, Hippokration General Hospital, University of Athens, Athens, Greece; and ÞDepartment of Otology and Laryngology, Harvard Medical School and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A. Objective: To perform comprehensive network and pathway factor beta1 (TGFB1) for Group 1, MAPK3/MAPK1 MAP kinase analyses of the genes known to cause genetic hearing loss. (ERK 1/2) and the G protein coupled receptors (GPCR) for Study Design: In silico analysis of deafness genes using inge- Group 2, and TGFB1 and hepatocyte nuclear factor 4 alpha (HNF4A) nuity pathway analysis (IPA). for Group 3. The nodal molecules included not only those known Methods: Genes relevant for hearing and deafness were iden- to be associated with deafness (GPCR), or with predisposition to tified through PubMed literature searches and the Hereditary otosclerosis (TGFB1), but also novel genes that have not been Hearing Loss Homepage. The genes were assembled into 3 groups: described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). 63 genes that cause nonsyndromic deafness, 107 genes that cause Conclusion: A number of molecules that are likely to be key nonsyndromic or syndromic sensorineural deafness, and 112 genes mediators of genetic hearing loss were identified through three associated with otic capsule development and malformations. Each different network and pathway analyses. The molecules included group of genes was analyzed using IPA to discover the most new candidate genes for deafness.
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
    Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Supplemental Figure Legends
    Supplemental Figure Legends: Supplemental Figure 1. Disruption of DIAPH1 gene expression and example of ingressions found in DIAPH1-deficient cultures. A) Western blot analysis of HaCaT cells transduced with non-targeting (NT) and DIAPH1-directed (Dia1) shRNA via lentivirus, cultured in low or high calcium media for 20hrs. Relative abundance indicated with respect to control samples. B) Western blot analysis of control cells (CTL) and those carrying a disrupted DIAPH1 locus (CRISPR) at two different passages. Relative abundance to controls is indicated. C) NGS analysis of genomic DNA flanking CRISPR-editing site and variant frequency. D) Example of DIAPH1-deficient tissue growth into the underlying collagen substrate. Hematoxylin and eosin stain of cross- sectioned, paraffin-embedded tissue fixed 10 days after raising to an air-liquid interface. Scale bar= 20 microns. Yellow arrow indicates basal keratinocyte layer. Red arrows indicate distinct ingressions. Supplemental Figure 2. Organotypic cultures treated with shRNA, ectopic mDia1 constructs and ancillary RNA-seq data. A) Hematoxylin and eosin (H&E) staining and keratin-10 (KRT10) staining of organotypic cultures transduced with control or Dia1- targeted shRNA. Counterstained with Hoechst for DNA. Dotted line indicates keratinocyte/collagen boundary. Scale bars = 20μm. B) Map of mDia1 construct introduced to CRISPR-edited Dia1 knockdown (Dia1KD) cells via lentivirus. Numerals are referenced in subsequent panels. FL= full length. C and D) Western blot analysis of ectopic constructs blotted with anti-DIAPH1 (C) or anti-Cherry (D). Residual Scarlet signal indicated by arrowhead. Irrelevant lanes of western blot lanes were dimmed for clarity. E) RNA-seq analysis of DIAPH1 transcripts in CRISPR-edited Dia1KD cells.
    [Show full text]
  • Wessex Regional Genetics Laboratory Publications for 2017
    Wessex Regional Genetics Laboratory Publications for 2017 Alikian M, Whale AS, Akiki S, Piechocki K, Torrado C, Myint T, Cowen S, Griffiths M, Reid AG, Apperley J, White H , Huggett JF, Foroni L. RT-qPCR and RT-Digital PCR: A comparison of different platforms for the evaluation of residual disease in chronic myeloid leukemia. Clin Chemistry 2017 63.2 :525-531. Butt NM, Lambert J, Ali S, Beer PA, Cross NCP , Duncombe A, Ewing J, Harrison CN, Knapper S, McLornan D, Mead AJ, R D, Bain BJ, on behalf of the British Committee for Standards in Haematology. Guideline for the investigation and management of eosinophilia. Br J Haemat 2017 176 : 553-572. Cooper R, Markham H, Theaker J, Bateman A, Bunyan D , Sommerlad M, Crawford G, Eccles D. Case Report: Primary clear cell microcystic adenoma of the sinonasal cavity: pathological or fortuitous association? Hindawi 2017 doi.org/10.1155/2017/9236780. Defour J-P, Hoade Y, Reuther A-M, Callaway A , Ward D , Chen F, Constantinescu SN, Cross ~NCP . An unusual, activating insertion/deletion MPL mutant in primary myelofibrosis. Leukemia 2017 Letters to the Editor 31 : 1838-1839. Ghazzawi M, Mehra V, Knut M, Brown L, Tapper W, Chase A , de Lavallade H, Cross NCP . A novel PCM1-PDGFRB fusion in a patient with a chronic myeloproliferative neoplasm and an ins(8;5). Acta Haematol 2017 138 :198-200. Giles FJ, Rea D, Rosti G, Cross NCP , Steegmann JL, Griskevicius L, le Coutre P, Coriu D, Petrov L, Ossenkoppele GJ, Mahon F-X, Saussele S, Hellmann A, Koskenvesa P, Brümmendorf TH, Gastl G, Castagnetti F, Vincenzi B, Haenig J, Hochhaus A.
    [Show full text]