Significant Changes to the Smelter Hill Subarea Remedy

Total Page:16

File Type:pdf, Size:1020Kb

Significant Changes to the Smelter Hill Subarea Remedy Case 2:89-cv-00039-SEH Document 1185-3 Filed 10/23/20 Page 900 of 1201 Section 8 Significant Changes to the Smelter Hill Subarea Remedy human health and wildlife in these restricted access areas. This ROD Amendment incorporates the Smelter Hill HAA as shown in Figure 8-1 as part of the remedy. The following remedial requirements apply to the Smelter Hill HAA: Vehicular access by the public will be prohibited. Vehicular traffic will be limited to authorized monitoring and maintenance personnel. Fences, gates, signs, and other constructed controls will be used to maintain vehicle restrictions. Development of ground water resources is prohibited, unless it can be demonstrated that proposed actions will not increase or expand the existing ground water contaminant plume. Future residential or commercial development in the project area is prohibited, unless the area is cleaned up to meet the appropriate action level. 8.3 Consolidation of Railroad Bed Wastes (Significant Change) The 1998 ROD identified abandoned railroad beds and ties on Smelter Hill as a Miscellaneous Waste and required that these materials be consolidated into the Smelter Hill WMA. During the RD, additional historic railroad beds were identified near the smelter site. Additionally, an active rail line, constructed of waste material, west of Anaconda was abandoned after the 1998 ROD. To be consistent with the 1998 ROD requirements for Miscellaneous Wastes, cleanup of these abandoned and inactive railroad beds is required under this ROD Amendment. This waste will be addressed as Miscellaneous Waste in accordance with the 1998 ROD. 54 c:\users\podolinskyna\desktop\decision summary.docx Case 2:89-cv-00039-SEH Document 1185-3 Filed 10/23/20 Page 901 of 1201 Section 9 Fundamental Changes to the Bedrock Aquifer/Spring Fed Tributaries Ground Water/Surface Water Remedy The Bedrock Aquifer TI Zone and the associated Spring-Fed Tributaries affect ground water and/or surface water arsenic concentrations in each of the five subareas. Section 9.1 summarizes the fundamental change and associated analysis for expanding the Bedrock Aquifer TI Zone from the 1998 ROD boundaries. Section 9.2 summarizes the fundamental change (TI Waiver) and associated analysis for Spring- Fed Tributaries which is impacted by ground water discharge from the Bedrock Aquifer. Alternative remedial strategies for ground water and surface water are provided at the end of Sections 9.1 and 9.2, respectively. Finally, Section 9.3 describes the Domestic Well Sampling and Replacement Program which is a key component of the alternative remedial strategy for these TI zones and well as the North and South Opportunity TI Zones. 9.1 Summary of Bedrock Aquifer TI Waiver Decision This section presents the remedial alternatives analyzed for the revision of the Bedrock Aquifer TI Zone boundaries, a detailed evaluation of those alternatives for the bedrock aquifer ground water with respect to nine evaluation criteria that EPA has developed to address the statutory requirements of CERCLA, and the revised selected remedy and remedial requirements for the TI zone. 9.1.1 Bedrock Aquifer TI Zones The 1998 ROD provided a TI waiver for the bedrock aquifer in the Mount Haggin, Stucky Ridge, and Smelter Hill uplands. The TI evaluation previously indicated that it was technically impractical to remediate the bedrock aquifer to levels below the arsenic human health criterion of 18g/L. The Second Addendum to TI Evaluation, Bedrock Aquifer (EPA 2011c) updated the 1998 TI evaluation to address the change in the arsenic human health standard to 10 µg/L and incorporate additional data collected to refine the boundaries of the TI Zone. This ROD Amendment revises the bedrock aquifer TI zone, as shown in Figure 9-1. 9.1.2 Description of Remedial Alternatives The additional data collected since completion of the first addendum to the bedrock aquifer TI evaluation has confirmed the previous site characterization and has not provided any data that would change the previous conceptual site model. Therefore, the sources and pathways previously identified in the original TI evaluation remain valid. 55 c:\users\podolinskyna\desktop\decision summary.docx Case 2:89-cv-00039-SEH Document 1185-3 Filed 10/23/20 Page 902 of 1201 Section 9 Fundamental Changes to the Bedrock Aquifer/Spring Fed Tributaries Ground Water/ Surface Water Remedy Very little RA has been completed in the bedrock TI zones. Soil treatment and revegetation on a small area of Stucky Ridge surrounding the MW-248 well cluster was completed around 1998 and the wells have shown and improving trend. Although this is a small sample, it provides encouraging data to suggest that soil treatment may positively impact ground water quality as was expected in the ROD: “These source control measures will minimize transport of COCs to the ground water, prevent further migration of the plume, and may improve ground water conditions over time.” (EPA and DEQ 1998) Since no changes to the site characterization have been made, no changes to the overall remedial alternatives presented in the original TI are needed for the bedrock aquifers TI Zone. 9.1.3 Comparative Analysis of Alternatives Based on the lack of change to the site characterization and minimal updates to the remedial alternatives analysis, no changes to the restoration potential analysis are needed. The analysis presented in the 1996 TI evaluation remains valid. Since there were no new remedial alternatives identified in Section 6, the nine criteria analysis from Feasibility Study 3A (EPA 1996a) and the ARWW&S OU ROD (EPA and DEQ 1998) still apply. The following sections, however, discuss the 1996 alternatives with respect to technology changes and corresponding effects to the nine criteria. 9.1.3.1 Source Removal Although innovative equipment may have become available since 1996, the area to be addressed through removal actions has increased due to a lower ARAR and following additional investigation to refine the TI Zone boundaries. Potential efficiencies obtained from newer technologies are offset by the large area requiring removal. The effectiveness may be slightly lower than previously identified due to the lower water quality standard. No significant changes to the effectiveness, implementability, or short-term effects need to be made as a result of the availability of new data. It is expected that costs would be higher due to a larger area to be removed and inflation, but no detailed analysis will be conducted. 9.1.3.2 Source Containment Since the original TI evaluation was conducted, two large and several smaller soil capping projects have occurred in the ARWW&S OU. The 500 acre Anaconda Ponds was covered with 18 inches of soil cover borrowed from a site on the east slope of Smelter Hill in 2000. This borrow area was also used to cover 11 acres of lowlands at the former town site of Mill Creek east of Smelter Hill. A large project was initiated to provide cover soil over the 2,200 acre Opportunity Ponds. An extensive borrow area investigation was completed and no significant sources of low permeability soil were found near the Opportunity Ponds. Based on this information, a borrow source capable of producing a sufficient quality of cover soil capable of supporting adequate vegetation may be difficult to find in the vicinity of Anaconda. 56 c:\users\podolinskyna\desktop\decision summary.docx Case 2:89-cv-00039-SEH Document 1185-3 Filed 10/23/20 Page 903 of 1201 Section 9 Fundamental Changes to the Bedrock Aquifer/Spring Fed Tributaries Ground Water/ Surface Water Remedy Also, the area requiring cover soil has increased following additional investigation. The effectiveness may be slightly lower than previously identified due to the lower water quality standard. No significant changes to the effectiveness or short-term effects need to be made as a result of the availability of new data. The TI evaluation previously identified the lack of borrow as a factor for implementability and the new information has confirmed this concern. It is expected that costs would be higher due to a larger area to be removed and inflation, but no detailed analysis will be conducted. 9.1.3.3 Ground Water Extraction and Treatment Although innovative equipment may have become available since 1996, the area to be addressed through removal actions has increased due to a lower ARAR and following additional investigation to refine the TI Zone boundaries. Potential efficiencies obtained from newer technologies are offset by the large area requiring removal. The effectiveness may be slightly lower than previously identified due to the lower water quality standard. No significant changes to the effectiveness, implementability, or short-term effects need to be made as a result of the availability of new data. It is expected that costs would be higher due to a larger area requiring extraction and inflation, but no detailed analysis will be conducted. 9.1.3.4 In-Situ Soil Treatment This alternative was selected in the 1998 ARWW&S OU ROD as the remedy for upland soils and has been partially implemented. Data from monitoring wells installed adjacent to revegetated test plots constructed in 1999 on Stucky Ridge is encouraging and suggests that soil treatment may be effective at reducing arsenic loading to ground water. However, the upper Willow Creek drainage is well- vegetated but arsenic concentrations in ground water still exceed the 10 g/L standard, so while reductions in arsenic concentrations will be achieved by the soils remedy, achievement of the standard is unlikely. No significant changes to the effectiveness, implementability, or short-term effects need to be made as a result of the availability of new data. It is expected that costs would be higher due to a larger area requiring treatment and inflation, but no detailed analysis will be conducted.
Recommended publications
  • Superfund Sites Yield New Drugs/Tourist Attractions
    Fact or Fiction? Jack W. Dini 1537 Desoto Way Livermore, CA 94550 E-mail: [email protected] Superfund Sites Yield New Drugs/Tourist Attractions In 1993, Travel and Leisure Magazine The 1.5-mile wide, 1,800-foot deep pit, fi ght migraines and cancer.4 ran an article on the Continental Divide. part of the nation’s largest Superfund site, In recent years, more than 40 small It was tough on Butte: “the ugliest spot in has been fi lling for the last 20 years with organisms have been discovered in the lake Montana - despite a spirited historic dis- a poisonous broth laced with heavy metals and these hold much potential for agricul- trict amid the rubble, the overall picture is and arsenic - a legacy of Butte’s copper ture and medicine. It’s even thought that desolate.” It called nearby Anaconda “a sad mining days. When mining offi cials aban- some of these organisms can be employed sack mining town dominated by a smelter doned the pit and stopped the pumps that to reclaim the lake and other similarly con- smokestack.”1 Today things are somewhat kept it dry, they opened the spigots to about taminated waters by neutralizing acidity different for these two sites. 3 million gallons of water per day. Today, and absorbing dissolved metals. the lake is about 850 feet deep and contains Andrea and Don Stierle and their col- Butte, Montana - Lake Berkeley more than 3 billion cubic feet of water.3 leagues have found a strain of the pitho- Edwin Dobb reports, “At one time Butte Lake Berkeley, also known as The myces fungi producing a compound that provided a third of the copper used in the Berkeley Pit, covers almost 700 acres of bonds to a receptor that causes migraines United States - all from a mining district the former open-pit copper mine.
    [Show full text]
  • Health Consultation
    Health Consultation Evaluation of Residential Soil Arsenic Action Level ANACONDA CO. SMELTER NPL SITE ANACONDA, DEER LODGE COUNTY, MONTANA EPA FACILITY ID: MTD093291656 OCTOBER 19, 2007 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation Atlanta, Georgia 30333 Health Consultation: A Note of Explanation An ATSDR health consultation is a verbal or written response from ATSDR to a specific request for information about health risks related to a specific site, a chemical release, or the presence of hazardous material. In order to prevent or mitigate exposures, a consultation may lead to specific actions, such as restricting use of or replacing water supplies; intensifying environmental sampling; restricting site access; or removing the contaminated material. In addition, consultations may recommend additional public health actions, such as conducting health surveillance activities to evaluate exposure or trends in adverse health outcomes; conducting biological indicators of exposure studies to assess exposure; and providing health education for health care providers and community members. This concludes the health consultation process for this site, unless additional information is obtained by ATSDR which, in the Agency’s opinion, indicates a need to revise or append the conclusions previously issued. You May Contact ATSDR TOLL FREE at 1-800-CDC-INFO or Visit our Home Page at: http://www.atsdr.cdc.gov HEALTH CONSULTATION Evaluation of Residential Soil Arsenic Action Level ANACONDA CO. SMELTER NPL SITE ANACONDA, DEER LODGE COUNTY, MONTANA EPA FACILITY ID: MTD093291656 Prepared By: US Department of Health and Human Services Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation Atlanta, Georgia 30333 Anaconda Co.
    [Show full text]
  • Geochemistry and Stable Isotope Composition of the Berkeley Pit Lake and Surrounding Mine Waters, Butte, Montana
    Applied Geochemistry Applied Geochemistry 20 (2005) 2116–2137 www.elsevier.com/locate/apgeochem Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana Damon A. Pellicori a,1, Christopher H. Gammons a,*, Simon R. Poulson b a Department of Geological Engineering, Montana Tech of The University of Montana, Butte, MT 59701, United States b Department of Geological Sciences and Engineering, University of Nevada-Reno, Reno, NV 89557-0138, United States Received 31 January 2005; accepted 28 July 2005 Editorial handling by R. Fuge Abstract Samples of mine water from Butte, Montana were collected for paired geochemical and stable isotopic analysis. The samples included two sets of depth profiles from the acidic Berkeley pit lake, deep groundwater from several mine shafts in the adjacent flooded underground mine workings, and the acidic Horseshoe Bend Spring. Beginning in July-2000, the spring was a major surface water input into the Berkeley pit lake. Vertical trends in major ions and heavy metals in the pit lake show major changes across a chemocline at 10–20 m depth. The chemocline most likely represents the boundary between pre-2000 and post-2000 lake water, with lower salinity, modified Horseshoe Bend Spring water on top of higher salinity lake water below. Based on stable isotope results, the deep pit lake has lost approximately 12% of its initial water to evaporation, while the shallow lake is up to 25% evaporated. The stable isotopic composition of SO4 in the pit lake is sim- ilar to that of Horseshoe Bend Spring, but differs markedly from SO4 in the surrounding flooded mine shafts.
    [Show full text]
  • Long Term Changes in the Limnology and Geochemistry of the Berkeley Pit Lake, Butte, Montana Christopher H
    Mine Water and the Environment (2006) 25: 76–85 © IMWA Springer-Verlag 2006 Technical Article Long Term Changes in the Limnology and Geochemistry of the Berkeley Pit Lake, Butte, Montana Christopher H. Gammons1 and Terence E. Duaime2 1Dept of Geological Engineering, Montana Tech, Butte MT 59701, USA; 2Montana Bureau of Mines and Geology, Butte MT 59701; corresponding author’s e-mail: [email protected] Abstract. The Berkeley pit lake in Butte, Montana is one of the largest accumulations of acid mine drainage in the world. The pit lake began filling in 1983, and continues to fill at a rate of roughly 10 million liters d-1. This paper details how changes in mining activities have led to changes in the rate of filling of the pit lake, as well as changes in its limnology and geochemistry. As of 2005, the Berkeley pit lake is meromictic, with lower conductivity water resting on top of higher conductivity water. This permanent stratification was set up by diversion of surface water - the so-called Horseshoe Bend Spring - into the pit during the period 2000 to 2003. However, the lake may have been holomictic prior to 2000, with seasonal top-to-bottom turnover events. The present mining company is pumping water from below the chemocline to a copper precipitation plant, after which time the Cu-depleted and Fe-enriched water is returned to the pit. Continued operation of this facility may eventually change the density gradient of the lake, with a return to holomictic conditions. A conceptual model illustrating some of the various physical, chemical, and microbial processes responsible for the unusually poor water quality of the Berkeley pit lake is presented.
    [Show full text]
  • Mine Name Date of Incident Last Name Year G N RR C W AABLE 11
    Mine Name Date of Incident Last Name Year G N RR C W AABLE 11/11/1909 AABLE 1909 MOUNTAIN CON FRANCIS ABBOTT 9/04/1924 ABBOTT 1924 LEONARD JOHN ABEGG 3/18/1907 ABEGG 1907 MINNIE HEALEY ISAAC ABRAHAM 2/26/1904 ABRAHAM 1904 BOSTON & MT JOHN ABRAMOVICH 10/07/1916 ABRAMOVICH 1916 BLACK ROCK WILLIAM ABT 4/22/1929 ABT 1929 BA&P RR GEORGE ACCOLA 8/30/1927 ACCOLA 1927 ANACONDA FIDENCIO ACEBEDO 8/15/1928 ACEBEDO 1928 NETTIE WILLIAM ACKLER 12/07/1923 ACKLER 1923 PITTSMONT SAM ADAMOVICH 1/31/1917 ADAMOVICH 1917 MOUNTAIN CON LASLIE ADAMS 2/14/1952 ADAMS 1952 TRAMWAY CHARLES ADAMS 4/05/1919 ADAMS 1919 TRAMWAY EDWARD ADAMS 7/16/1931 ADAMS 1931 ANACONDA JOHN ADVICH 7/26/1919 ADVICH 1919 PHILADELPHIA ALVIN AFFEN 12/16/1896 AFFEN 1896 PARROT WILLIAM AHERN 12/23/1906 AHERN 1906 BADGER TOIVO AHO 4/05/1925 AHO 1925 BELL DIAMOND DOMINICK AINARDI 3/15/1919 AINARDI 1919 PENNSYLVANIA JOHN ALEXANDER 3/26/1922 ALEXANDER 1922 ANSELMO JACOV ALEXSICH 11/25/1944 ALEXSICH 1944 GRANITE MTN FRANCIS ALLEN 6/08/1917 ALLEN 1917 HIBERNIA COLMAN ALLEN 6/25/1921 ALLEN 1921 MOUNTAIN CON PETER ALLEN 11/24/1924 ALLEN 1924 SEYMOUR MONTAGUE ALLEN 9/03/1924 ALLEN 1924 UNIDENTIFIED MINE JAMES ALLEN 9/27/1891 ALLEN 1891 RARUS FRANK ALOTATO 10/06/1905 ALOTATO 1905 PENNSYLVANIA GEORGE ALQIRE 4/30/1915 ALQIRE 1915 MOUNTAIN CON WALTER ALTONEN 11/17/1956 ALTONEN 1956 LEONARD FRANK AMBROSE 8/21/1927 AMBROSE 1927 BADGER JULES AMIET 8/10/1931 AMIET 1931 ANACONDA SMELTER KNUTE AMUNDSON 2/11/1916 AMUNDSON 1916 STEWARD MICK ANDERLY 6/19/1930 ANDERLY 1930 ANACONDA SMELTER JOHN ANDERSON 6/21/1916
    [Show full text]
  • Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research, Department of History History, Department of 2012 Toxic Tourism: Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana Bridget R. Barry University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/historydiss Part of the Nature and Society Relations Commons, and the United States History Commons Barry, Bridget R., "Toxic Tourism: Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana" (2012). Dissertations, Theses, & Student Research, Department of History. 50. https://digitalcommons.unl.edu/historydiss/50 This Article is brought to you for free and open access by the History, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research, Department of History by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TOXIC TOURISM: PROMOTING THE BERKELEY PIT AND INDUSTRIAL HERITAGE IN BUTTE, MONTANA by Bridget R. Barry A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Arts Major: History Under the Supervision of Professors Andrew R. Graybill and Margaret D. Jacobs Lincoln, Nebraska May, 2012 TOXIC TOURISM: PROMOTING THE BERKELEY PIT AND INDUSTRIAL HERITAGE IN BUTTE, MONTANA Bridget Rose Barry, M.A. University of Nebraska, 2010 Advisers: Andrew R. Graybill and Margaret D. Jacobs Butte, Montana’s Berkeley Pit and its deadly water are a part of the country’s largest Superfund site.
    [Show full text]
  • Hydrologic Investigation. Silver Bow Creek Superfund Site, Montana
    Hydrologic Investigation: Silver Bow Creek Superfund Site, Montana David Stiller President and Principal Hydrogeologist Stiller and Associates, Inc. Helena. MT 59626 The upper Clark Fork River basin in western Montana has the dubious distinction of containing no fewer than three Superfund sites, all of which owe their status to the legacy of Montana's hard rock mining industry. Perhaps the best known and most significant of these sites is Silver Bow Creek. The site extends from within the City of Butte near the southwest edge of the Berkeley Pit, down Butte's Metro Storm Drain, and along the length of Silver Bow Creek to and including the Warm Springs Treatment Ponds near Warm Springs, Montana. Below the Warm Springs Treatment Ponds the Clark Fork River is formed by the confluence of four streams: Silver Bow, Warm Springs, Mill, and Willow Creeks (see map). The Silver Bow Creek site may well be the largest Superfund site in the nation. The predominant "contaminants" to which the site owes its hazardous nature are a direct result of over 100 years of mining and milling for gold, silver, and, most recently and significantly, copper. Too much of a good thing may be the case, because the precious and industrial metals which gave birth to the mining district are the same that have now created public health and related environmental problems. The following metals are of particular concern to the site: copper, zinc, lead, cadmium, and arsenic. These metals presumably originate with abandoned mill tailings presently occupying flood plain positions from within Butte to well below the Warm Springs Treatment Ponds along the Clark Fork River.
    [Show full text]
  • Butte, Montana: the Berkeley Pit, Changes in Water Quality and Water Sampling Quality and Water Changes in Water
    B138 Butte, Montana: The Berkeley Pit, Butte, Montana: The Berkeley Pit, Changes in Water Qualityand W The BerkeleyPit,Changes inWater Butte, Montana: Changes in Water Quality and Water Sampling Methods, 1982–2017 Terence E. Duaime and Steven F. McGrath Bulletin 138 2019 ater SamplingMethods,1982–2017DuaimeandMcGrath Cover Photos: Top, Berkeley Pit looking west towards the “Big M,” 1983. Bottom, Berkeley Pit looking southwest, “Big M” in the upper right, 2017. Photos by Ted Duaime, MBMG. Bulletin 138 Butte, Montana: The Berkeley Pit, Changes in Water Quality and Water Sampling Methods, 1982–2017 Terence E. Duaime and Steven F. McGrath Montana Bureau of Mines and Geology 2019 Montana Bureau of Mines and Geology Bulletin 138 CONTENTS Abstract .................................................................................................................................................... 1 1.0 Introduction ......................................................................................................................................... 3 1.1 Methods ........................................................................................................................................ 4 2.0 Underground Mining and Berkeley Pit Development and Operation ..................................................7 3.0 Suspension of Mining and Early Flooding of the Berkeley Pit and Underground Mines (1982–1984) ..................................................................................................................................... 13
    [Show full text]
  • Geochemistry of the Berkeley Pit Lake, Butte, Montana
    GeochemistryGeochemistry ofof thethe BerkeleyBerkeley pitpit lake,lake, Butte,Butte, MontanaMontana Chris Gammons, Ph.D. Dept. of Geological Engineering Montana Tech of The University of Montana Talk overview •• SiteSite orientationorientation •• HistoryHistory ofof minemine floodingflooding •• GeochemicalGeochemical profilesprofiles inin spacespace andand timetime •• WhyWhy isis waterwater qualityquality soso bad?bad? – Geological controls – Evapoconcentration – Bad influent groundwater – Subaqueous pyrite oxidation •• ConceptualConceptual limnolimno--biobio-- hydrohydro--geogeo--chemicalchemical modelmodel Extent of Butte mine workings (as of 1980) Over 15,000 km of underground mine workings Continental Pit old leach Tailings Pond pads U D HSB Berkeley Pit Image courtesy of NASA History of mine flooding Water balance Water inputs Water outputs • Direct precipitation • Evaporation – Only ~ 12”/yr – Roughly 24”/yr • Pitwall runoff – Not quantified, believed to be minor • Groundwater seepage ~ 10 million L/day • Surface water inputs – Horseshoe Bend – Diverted storm water deep Berkeley Pit chemistry… changes with time 100000 B-Pit 30 to 60 m depth Cu recovery 10000 SO4 1000 Fe Zn Cu 100 dissolved concentration, mg/L 10 Jan-82 Jan-84 Jan-86 Jan-88 Jan-90 Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Shaded regions show when HSB dumped into pit Shallow Berkeley Pit chemistry… changes with time 100000 B-Pit surface Cu recovery 10000 SO4 Fe 1000 Zn Cu 100 dissolved concentration, mg/L 10 Jan-82 Jan-84 Jan-86 Jan-88 Jan-90 Jan-92 Jan-94
    [Show full text]
  • Berkeley Pit Water Treatment and Resource Recovery Strategy
    PNL- 10786 UC-602 Clean Option - Berkeley Pit Water Treatment and Resource Recovery Strategy M.A. Gerber R. J. Orth M. R. Elmore B.F. Monzyk 'Battelle Memorial Institute September 1995 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest Laboratory Richland, .Washington 993524999 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document, Summary The U.S. Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effdto evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources fi-om contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the arid western states have been rendered unusable because of contamhation fi-om heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams.
    [Show full text]
  • 2019 Anaconda Edition
    Volume 7, Issue 1 cfwep.org A Publication of the Clark Fork Watershed Education Program July, 2019 AnacondaAnaconda Remediation and Mount Haggin Waste Voices from the Watershed: Restoration Update Management Area Anaconda Students Page 5 Page 10 Page 12 AnacondaThis is part two in our watershed series. For the Headwaters Edition Edition see cfwep.org/montana-steward A view of Mount Haggin and Anaconda from Stucky Ridge. Photo by Kayla Lappin. Ask Dr. A: What is the Origin of the Town of Anaconda Dr. Arlene Alvarado Located in southwest Montana in Deer Lodge the “copper kings,” founded the town for his soldier of the Civil War, was inspired by Valley at the foot of the Anaconda Range employees to work at the Washoe Smelter, Horace Greeley, who said, “go west, young (locally known as the Pintler’s), Anaconda is refining the copper ore extracted from man.” And westward Hickey headed, a small town, spanning just 737 square miles. Daly’s Anaconda Mine in Butte. In the mid- bringing with him another Greeley quote Presently, she is home to about 9,100 residents, 1890’s, Daly unsuccessfully campaigned to concerning the Civil War. Greely stated that a large town by Montana standards. Anaconda have Anaconda designated as Montana’s Union armies would “encircle Lee’s forces is rich in history, culture and personality, and state capital, losing out to William A. Clark, and crush them like a giant anaconda.” The is surrounded by beautiful natural areas like another copper king, who pushed to keep image of this awesome snake stayed with Mount Haggin Wildlife Management Area Helena as the state capital.
    [Show full text]
  • Silver Bow Creek/Butte Area Superfund Site in Butte, Montana
    Building on Mining History: Cleanup, Reuse and Community Resilience at the Silver Bow Creek/Butte Area Superfund Site www.epa.gov/aml/revital in Butte, Montana Introduction Dubbed the “the richest hill on earth,” Butte, Montana, had over 450 mines by the early twentieth century. Underground mining in Butte began in the 1870s. The chance to work in the mines lured workers from across the United States and Europe. Butte’s mines were known internationally for the technological innovations used to extract the ore from deep below the earth’s surface and the high quality of its workforce. In the early 1900s, Butte’s population soared to over 100,000. After 1918, copper production began to decline, triggering a population decrease that continued for decades. While adjusting to tough economic times, Butte The SilverSilver Bow Bow Cree Creek/Buttek/Butte Area SuperfundArea Superfund site is located site inis westernlocated Montana in western. It is residents also grappled with the challenge of living in a historical Montana.part of a larger It regionalis part cleanup of a largereffort addressing regional much cleanup of the Clarkeffort Fork addressing River mining landscape contaminated with mine waste. muchwatershed. of the The Clark Silver BowFork Creek/Butte River watershed. Area site includesThe Silver a large Bow portion Creek/Butte of Butte and nearby Walkerville. Area site includes a large portion of Butte and nearby Walkerville. In 1983, EPA listed the original Silver Bow Creek site as a Superfund site on EPA’s National Priorities List (NPL). This This case study explores key partnerships and collaborative tools area stretched from the creek’s headwaters in Butte to the Warm that have led to successful remediation and reuse of large parts of Springs Ponds near Anaconda, about 26 miles away.
    [Show full text]