Superfund Sites Yield New Drugs/Tourist Attractions

Total Page:16

File Type:pdf, Size:1020Kb

Superfund Sites Yield New Drugs/Tourist Attractions Fact or Fiction? Jack W. Dini 1537 Desoto Way Livermore, CA 94550 E-mail: [email protected] Superfund Sites Yield New Drugs/Tourist Attractions In 1993, Travel and Leisure Magazine The 1.5-mile wide, 1,800-foot deep pit, fi ght migraines and cancer.4 ran an article on the Continental Divide. part of the nation’s largest Superfund site, In recent years, more than 40 small It was tough on Butte: “the ugliest spot in has been fi lling for the last 20 years with organisms have been discovered in the lake Montana - despite a spirited historic dis- a poisonous broth laced with heavy metals and these hold much potential for agricul- trict amid the rubble, the overall picture is and arsenic - a legacy of Butte’s copper ture and medicine. It’s even thought that desolate.” It called nearby Anaconda “a sad mining days. When mining offi cials aban- some of these organisms can be employed sack mining town dominated by a smelter doned the pit and stopped the pumps that to reclaim the lake and other similarly con- smokestack.”1 Today things are somewhat kept it dry, they opened the spigots to about taminated waters by neutralizing acidity different for these two sites. 3 million gallons of water per day. Today, and absorbing dissolved metals. the lake is about 850 feet deep and contains Andrea and Don Stierle and their col- Butte, Montana - Lake Berkeley more than 3 billion cubic feet of water.3 leagues have found a strain of the pitho- Edwin Dobb reports, “At one time Butte Lake Berkeley, also known as The myces fungi producing a compound that provided a third of the copper used in the Berkeley Pit, covers almost 700 acres of bonds to a receptor that causes migraines United States - all from a mining district the former open-pit copper mine. It holds and could block headaches, while a strain only four miles square. Eventually open- some 30 billion gallons of highly acidic, of penicillium fungi makes a different pit mining was used and the pit became metal-laden water. It’s the country’s larg- compound that inhibits the growth of the world’s largest truck operated mine, est and most unusual body of contaminated cancer cells.4 In July 2006, the Stierle team along the way displacing some Italian and water, with a pH of 2.6 and metals such as revealed that a novel Berkeley Lake com- Serbo-Croatian neighborhoods. Mining Al, As, Cd, Cu, Fe, Mn, Zn and others.1 pound called berkelic acid from another came to a halt in the early 1980s, as did the Yet as New Scientist reports, “Every cloud new strain of penicillium fungus reduced pumps that had been sucking groundwater has a silver lining.” The contaminated lake the rate of ovarian cancer cell growth by out of the mines for a century. The fl ooding designated hazardous is turning out to be a 50%.5 began.”2 source of novel chemicals that could help How is this possible? Essentially, some organisms actually fl ourish in the presence of acidity and make use of some of the dis- solved metals in the lake. These are called extremophiles (liking extremes), because they not only tolerate, but even thrive in extreme conditions. As mentioned in a previous column,6 extremophiles can toler- ate heat, very cold climates, high pressure, low pH solutions and high pH solutions. Japanese scientist Koki Horikoshi has found a variety of chemically-tolerant extremophiles in the deepest parts of the ocean. Some of them can even degrade hydrocarbons while thriving in water con- taining up to 50% solutes such as toluene, benzene or kerosene.7 A strain of mold has been reported that grows in a 270 g/L copper sulfate solution containing some sulfuric acid as long as some sugar is pres- ent.8 Rich, blue bacteria have been found in potassium ferricyanide solution.9 Why do extremophiles show new Berkeley Pit Lake, circa 1984. The arrow shows the approximate lake level today (User created public antibiotic and anticarcinogenic activi- domain image - GFDL – Wikipedia, 2006). 24 Plating & Surface Finishing • July 2008 dini column 7/08 24 7/7/08, 8:01:22 PM ties? The best guess is that some of them have evolved powerful toxins to attack an enzyme associated with a particular fungal growth phase. Another possibility is that they are particularly adept at stick- ing tightly to surfaces and this is one of the attributes researchers look for in anti- cancer drugs.10 Anaconda, Montana - The Old Works Golf Course Twenty-five miles down the road from Lake Berkeley is the town of Anaconda, Montana, another Superfund site. The Anaconda smelter was once one of the shining stars of the American mining industry employing thousands of people. The facility first began copper smelting operations in 1884 and the smelter rose quickly to national prominence because of its noticeable annual copper produc- tion. However, this all came at a price to Anaconda Smelter Stack (User created public domain image – Wikipedia, 2007). the environment. The land was left gouged with mines and extensively contaminated with heavy metals. The Anaconda smelter Some other sites sands of migratory and sea birds. Built in was demolished after its closure in 1981. The Homestake Gold Mine in South 1974 to drive El Salvador’s biggest hydro- However, the smelter stack, the tallest and Dakota, site of a spill of six to seven tons of electric project, the 33,360-acre Cerron possibly largest free standing masonry cyanide-laced tailings into a creek in 1998, Grande reservoir collects some 3,800 tons structure in the world, remains standing. has been selected as the preferred site for of excrement each year from the sewage The site is now a Montana State park.11 a $500 million Deep Underground Science pipes, as well as factory run-off and traces And speaking of parks and tourism, these and Engineering Laboratory.14 Because of of heavy metals like chromium and lead, days, the town of Anaconda has redefi ned the up to 8000-foot depth of the mine, this the government estimates. So scientists are itself, turning to tourism and recreational would make it the best shielded laboratory puzzling over the fact that some 150,000 pursuits to attract visitors and provide jobs in the world for neutrino studies and a seabirds from more than 130 species have for its citizens. A major attraction is the major advance in sensitivity in the search chosen to make the reservoir their home. Old Works Golf Course built on the site for proton decay. At least 90 of the species are migratory of the copper smelter. Jack Nicklaus, hired An artifi cial lake in El Salvador, brim- birds arriving from as far away as Alaska.15 to design the course, reportedly called the ming with sewage and industrial waste, is Birds do not survive in Lake Berkeley. site the ugliest he had ever seen. One of mystifying scientists by attracting thou- So what’s the difference between the two the most expensive golf course reclamation lakes? Could it be the 3,800 tons/year of projects ever undertaken, the $15 million excrement? P&SF project included capping the entire area with crushed rock, clay, and topsoil. Lakes Continued on page 36. were created to catch and fi lter water, and plastic liners were installed to protect trees, greens and bunkers.12 The course includes capped slag and tailing pipes and some of the landscape’s century old fl ues and smelting ovens. Sand traps are black, a clever use for more than 14,000 cubic yards of inert smelting slag ground to the texture of sand. Massive stone furnace walls line some of the fair- ways. As mentioned in an earlier column,13 the course’s 18th hole is called “Anode,” for the smelter’s fi nal product, the copper anode bar. For the non-golfer, a historic hiking trail highlighting Anaconda’s smelt- ing heritage and giving hikers an insight into copper mining techniques of years past winds its way around the course. Old Works Golf Course built on the site of the copper smelter July 2008 • Plating & Surface Finishing 25 dini column 7/08 25 7/7/08, 8:01:24 PM COATING 2008 online registration Fact or Fiction? Finishers’ Think Tank opens Continued from page 25 Continued from page 26 On-line registration for COATING 2008, the international conference and trade show for the end users of industrial coat- References ing for ease of installation, maintenance ings, is now available on the show website: 1. Florence Williams, “Butte, Montana, seeks and replacement. Because of the depend- www.thecoatingshow.com. Focusing on a new life,” High Country News, 25 (22), able utility of equipment, one or two bath today’s “hot topics,” COATING 2008 November 29, 1993; http://www.hcn.org/ turnovers can be improved to two to four. will brings the latest on green technolo- servlets/hcn.Article?article_id=2556. More solution fi ltration over time improves gies, energy effi ciency, cost reduction and 2. Edwin Dobb, “New Life in a Death clarity, plating quality and overall process quality improvement in both its conference Trap,” Discover, 21 (12), 86 (2000); performance. A superior fi ltration system sessions and through its more than 150 http://discovermagazine.com/2000/dec/ with carbon would use a system rated to exhibitors on the show fl oor. The three-day featnewlife. turnover the solution from two to ten times conference will feature more than 30 ses- 3. Mark Matthews, “Could a Toxic Lake per hour.
Recommended publications
  • Montana State Parks Guide Reservations for Camping and Other Accommodations: Toll Free: 1-855-922-6768 Stateparks.Mt.Gov
    For more information about Montana State Parks: 406-444-3750 TDD: 406-444-1200 website: stateparks.mt.gov P.O. Box 200701 • Helena, MT 59620-0701 Montana State Parks Guide Reservations for camping and other accommodations: Toll Free: 1-855-922-6768 stateparks.mt.gov For general travel information: 1-800-VISIT-MT (1-800-847-4868) www.visitmt.com Join us on Twitter, Facebook & Instagram If you need emergency assistance, call 911. To report vandalism or other park violations, call 1-800-TIP-MONT (1-800-847-6668). Your call can be anonymous. You may be eligible for a reward. Montana Fish, Wildlife & Parks strives to ensure its programs, sites and facilities are accessible to all people, including those with disabilities. To learn more, or to request accommodations, call 406-444-3750. Cover photo by Jason Savage Photography Lewis and Clark portrait reproductions courtesy of Independence National Historic Park Library, Philadelphia, PA. This document was produced by Montana Fish Wildlife & Parks and was printed at state expense. Information on the cost of this publication can be obtained by contacting Montana State Parks. Printed on Recycled Paper © 2018 Montana State Parks MSP Brochure Cover 15.indd 1 7/13/2018 9:40:43 AM 1 Whitefish Lake 6 15 24 33 First Peoples Buffalo Jump* 42 Tongue River Reservoir Logan BeTableaverta ilof Hill Contents Lewis & Clark Caverns Les Mason* 7 16 25 34 43 Thompson Falls Fort3-9 Owen*Historical Sites 28. VisitorMadison Centers, Buff Camping,alo Ju mp* Giant Springs* Medicine Rocks Whitefish Lake 8 Fish Creek 17 Granite11-15 *Nature Parks 26DisabledMissouri Access Headw ibility aters 35 Ackley Lake 44 Pirogue Island* WATERTON-GLACIER INTERNATIONAL 2 Lone Pine* PEACE PARK9 Council Grove* 18 Lost Creek 27 Elkhorn* 36 Greycliff Prairie Dog Town* 45 Makoshika Y a WHITEFISH < 16-23 Water-based Recreation 29.
    [Show full text]
  • High Country News Vol. 12.22, Nov. 14, 1980
    = = XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX 2-Hi h Count News - Nov. 14 1980 Anaconda ... (continued from page 1) . their mutual ignorance of the impend- ing shut-down. He has worked for what Montanans call "the Company" for 32 years? an association that predates ARCO's ;nvolvement by more than a quarter-century. Before that his father was a blue-collar employee at the smel- ter. "I was raised with the people that work up here," said Stokke. "I'm in- volved morally and socially." He thinks ARCO pulled the plug too quickly, "without looking into (alternatives) in depth ...It should have been researched a lot more." Barkley, Stokke and the rest of the town, are still in shock. The company had reassured them earlier in the year that it planned to keep the smelter open Ph.... and invest in improvements. "",-y "It hit US like somebody had suddenly of the died:' said Lutheran minister Kirby Anaeonda Nave. ;There was an initial reaction of Leoder disbelief and numbness." The surprise announcement set off a flurry of activity to find a quick fix. "A lot of people came in here just before the (Nov.4) election. promising money," said Alberta "Kraus, who works for the Anaconda Local Development Corpora- tion. "Then they left after the election. MEL STOKKE (upper left) runs the Anaconda omeltorworks. Despite the fact that it is not expected to operate again, strikers continue their vigil at the front gate. - Now we're having trouble finding any I . to people come in and invest:' I _Not surprisingly when over 70 per- vey now under way is expected to show back to the 18BOswhen Marcus Daly power to toy with Montanans'lives was cent of a community's payroll has been further decline.
    [Show full text]
  • COPYRIGHTED MATERIAL COPYRIGHTED I
    Avalanche Campground (MT), 66 Big Horn Equestrian Center (WY), Index Avenue of the Sculptures (Billings, 368 MT), 236 Bighorn Mountain Loop (WY), 345 Bighorn Mountains Trail System INDEX A (WY), 368–369 AARP, 421 B Bighorn National Forest (WY), 367 Absaroka-Beartooth Wilderness Backcountry camping, Glacier Big Red (Clearmont, WY), 370 (MT), 225–227 National Park (MT), 68 Big Red Gallery (Clearmont, WY), Academic trips, 44–45 Backcountry permits 370 Accommodations, 413–414 Glacier National Park (MT), Big Salmon Lake (MT), 113 best, 8–10 54–56 Big Sheep Creek Canyon (MT), 160 for families with children, 416 Grand Teton (WY), 325 Big Sky (MT), 8, 215–220 Active vacations, 43–52 Yellowstone National Park Big Sky Brewing Company AdventureBus, 45, 269 (MT—WY), 264 (Missoula, MT), 93 Adventure Sports (WY), 309, 334 Backcountry Reservations, 56 Big Sky Candy (Hamilton, MT), 96 Adventure trips, 45–46 Backcountry skiing, 48 Big Sky Golf Course (MT), 217 AdventureWomen, 201–202 Backroads, 45, 46 Big Sky Resort (MT), 216–217 Aerial Fire Depot and Baggs (WY), 390 Big Sky Waterpark (MT), 131 Smokejumper Center (Missoula, Ballooning, Teton Valley (WY), Big Spring (MT), 188 MT), 86–87 306 Big Spring Creek (MT), 187 Air tours Bannack (MT), 167, 171–172 Big Timber Canyon Trail (MT), 222 Glacier National Park (MT), 59 Bannack Days (MT), 172 Biking and mountain biking, 48 the Tetons (WY), 306 Barry’s Landing (WY), 243 Montana Air travel, 409, 410 Bay Books & Prints (Bigfork, MT), Big Sky, 216 Albright Visitor Center 105 Bozeman, 202 (Yellowstone), 263, 275
    [Show full text]
  • Health Consultation
    Health Consultation Evaluation of Residential Soil Arsenic Action Level ANACONDA CO. SMELTER NPL SITE ANACONDA, DEER LODGE COUNTY, MONTANA EPA FACILITY ID: MTD093291656 OCTOBER 19, 2007 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation Atlanta, Georgia 30333 Health Consultation: A Note of Explanation An ATSDR health consultation is a verbal or written response from ATSDR to a specific request for information about health risks related to a specific site, a chemical release, or the presence of hazardous material. In order to prevent or mitigate exposures, a consultation may lead to specific actions, such as restricting use of or replacing water supplies; intensifying environmental sampling; restricting site access; or removing the contaminated material. In addition, consultations may recommend additional public health actions, such as conducting health surveillance activities to evaluate exposure or trends in adverse health outcomes; conducting biological indicators of exposure studies to assess exposure; and providing health education for health care providers and community members. This concludes the health consultation process for this site, unless additional information is obtained by ATSDR which, in the Agency’s opinion, indicates a need to revise or append the conclusions previously issued. You May Contact ATSDR TOLL FREE at 1-800-CDC-INFO or Visit our Home Page at: http://www.atsdr.cdc.gov HEALTH CONSULTATION Evaluation of Residential Soil Arsenic Action Level ANACONDA CO. SMELTER NPL SITE ANACONDA, DEER LODGE COUNTY, MONTANA EPA FACILITY ID: MTD093291656 Prepared By: US Department of Health and Human Services Agency for Toxic Substance and Disease Registry Division of Health Assessment and Consultation Atlanta, Georgia 30333 Anaconda Co.
    [Show full text]
  • Summary of 2008 Settlement of Clark Fork River Remediation and Natural Resource Damages Claims and Related Restoration Plans
    MONTANA DEPARTMENT Helping to Restore, Replace, and Preserve OF JUSTICE NATURAL RESOURCE DAMAGE PROGRAM 1301 LOCKEY AVE PO BOX 201425 the Natural Resources of Montana HELENA, MT 59620-1425 (406) 444-0205 Summary of 2008 Settlement of Clark Fork River Remediation and Natural Resource Damages Claims and Related Restoration Plans Introduction The State of Montana, the United States, and Atlantic Richfield Company (ARCO) have negotiated a new Consent Decree (CD) that will settle certain litigation, provide for the funding of the remedial action at the Clark Fork River (CFR) Operable Unit and provide for certain restoration actions at the three sites where the State has pending natural resource damages (NRD) claims, namely the Clark Fork River, Butte Area One, and the Smelter Hill Uplands. This CD was lodged with the federal court on February 7, 2008. There is also a second consent decree, involving only the State and ARCO, which was lodged at the same time. Public comment is being sought on this settlement. As part of this settlement, ARCO is paying the State approximately $168 million. ARCO is paying about $95 million for the remedial cleanup provided for in the EPA 2004 Record of Decision for the CFR site; this includes about $11.7 million in interest accruing since April of 2006. The remedial payment settles EPA and the State’s claims for response costs at the site, and will provide for DEQ implementation of the remedy with EPA oversight. The remediation payment will be made in two payments, one year apart; the first payment will most likely be in August or September 2008.
    [Show full text]
  • Geochemistry and Stable Isotope Composition of the Berkeley Pit Lake and Surrounding Mine Waters, Butte, Montana
    Applied Geochemistry Applied Geochemistry 20 (2005) 2116–2137 www.elsevier.com/locate/apgeochem Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana Damon A. Pellicori a,1, Christopher H. Gammons a,*, Simon R. Poulson b a Department of Geological Engineering, Montana Tech of The University of Montana, Butte, MT 59701, United States b Department of Geological Sciences and Engineering, University of Nevada-Reno, Reno, NV 89557-0138, United States Received 31 January 2005; accepted 28 July 2005 Editorial handling by R. Fuge Abstract Samples of mine water from Butte, Montana were collected for paired geochemical and stable isotopic analysis. The samples included two sets of depth profiles from the acidic Berkeley pit lake, deep groundwater from several mine shafts in the adjacent flooded underground mine workings, and the acidic Horseshoe Bend Spring. Beginning in July-2000, the spring was a major surface water input into the Berkeley pit lake. Vertical trends in major ions and heavy metals in the pit lake show major changes across a chemocline at 10–20 m depth. The chemocline most likely represents the boundary between pre-2000 and post-2000 lake water, with lower salinity, modified Horseshoe Bend Spring water on top of higher salinity lake water below. Based on stable isotope results, the deep pit lake has lost approximately 12% of its initial water to evaporation, while the shallow lake is up to 25% evaporated. The stable isotopic composition of SO4 in the pit lake is sim- ilar to that of Horseshoe Bend Spring, but differs markedly from SO4 in the surrounding flooded mine shafts.
    [Show full text]
  • Focus on Genetics Important Plant 2016 Plant Conservation Conference Areas for Montana by Peter Lesica, Clark Fork Chapter by Peter Lesica, Clark Fork Chapter
    Volume 29 No. 3 | Spring 2016 elseyaNewsletter of the Montana Native Plant Society Kelseya uniflora K ill. by Bonnie Heidel Approved: Two More Focus on Genetics Important Plant 2016 Plant Conservation Conference Areas for Montana By Peter Lesica, Clark Fork Chapter By Peter Lesica, Clark Fork Chapter he Montana Native Plant Society, along with the U.S. Forest Service, the MONTANA NOW HAS TWO NEW University of Montana Division of Biological Sciences, the Montana Natural IMPORTANT PLANT AREAS (IPAs), THeritage Program and the Natural Resources Conservation Service, hosted the approved during the February Plant Ninth Montana Plant Conservation Conference at the University of Montana in mid- Conservation Conference, bringing the February. More than 100 people attended, about half being MNPS members. total number of state IPAs to nine. Both The first day was dedicated to learning about population genetics and how new locales are in the southwest part of our molecular-based methods can help inform plant conservation. The three talks in the state — one is above treeline and the morning were conceptual in nature. Fred Allendorf from UM provided a refresher course other in a valley bottom. Descriptions on population genetics that helped provide a context for later talks. Loreen Allphin from of the new new IPAs, as well as of the Brigham Young University followed Fred, focusing on the importance of genetic variation previously approved sites, can be found to rare plant conservation and how using on the Montana Native Plant Society molecular markers can inform these efforts. new molecular-based website (http://www.mtnativeplants.org/ Matt Lavin from MSU ended the morning methods can help inform Important_Plant_Areas).
    [Show full text]
  • Long Term Changes in the Limnology and Geochemistry of the Berkeley Pit Lake, Butte, Montana Christopher H
    Mine Water and the Environment (2006) 25: 76–85 © IMWA Springer-Verlag 2006 Technical Article Long Term Changes in the Limnology and Geochemistry of the Berkeley Pit Lake, Butte, Montana Christopher H. Gammons1 and Terence E. Duaime2 1Dept of Geological Engineering, Montana Tech, Butte MT 59701, USA; 2Montana Bureau of Mines and Geology, Butte MT 59701; corresponding author’s e-mail: [email protected] Abstract. The Berkeley pit lake in Butte, Montana is one of the largest accumulations of acid mine drainage in the world. The pit lake began filling in 1983, and continues to fill at a rate of roughly 10 million liters d-1. This paper details how changes in mining activities have led to changes in the rate of filling of the pit lake, as well as changes in its limnology and geochemistry. As of 2005, the Berkeley pit lake is meromictic, with lower conductivity water resting on top of higher conductivity water. This permanent stratification was set up by diversion of surface water - the so-called Horseshoe Bend Spring - into the pit during the period 2000 to 2003. However, the lake may have been holomictic prior to 2000, with seasonal top-to-bottom turnover events. The present mining company is pumping water from below the chemocline to a copper precipitation plant, after which time the Cu-depleted and Fe-enriched water is returned to the pit. Continued operation of this facility may eventually change the density gradient of the lake, with a return to holomictic conditions. A conceptual model illustrating some of the various physical, chemical, and microbial processes responsible for the unusually poor water quality of the Berkeley pit lake is presented.
    [Show full text]
  • Mine Name Date of Incident Last Name Year G N RR C W AABLE 11
    Mine Name Date of Incident Last Name Year G N RR C W AABLE 11/11/1909 AABLE 1909 MOUNTAIN CON FRANCIS ABBOTT 9/04/1924 ABBOTT 1924 LEONARD JOHN ABEGG 3/18/1907 ABEGG 1907 MINNIE HEALEY ISAAC ABRAHAM 2/26/1904 ABRAHAM 1904 BOSTON & MT JOHN ABRAMOVICH 10/07/1916 ABRAMOVICH 1916 BLACK ROCK WILLIAM ABT 4/22/1929 ABT 1929 BA&P RR GEORGE ACCOLA 8/30/1927 ACCOLA 1927 ANACONDA FIDENCIO ACEBEDO 8/15/1928 ACEBEDO 1928 NETTIE WILLIAM ACKLER 12/07/1923 ACKLER 1923 PITTSMONT SAM ADAMOVICH 1/31/1917 ADAMOVICH 1917 MOUNTAIN CON LASLIE ADAMS 2/14/1952 ADAMS 1952 TRAMWAY CHARLES ADAMS 4/05/1919 ADAMS 1919 TRAMWAY EDWARD ADAMS 7/16/1931 ADAMS 1931 ANACONDA JOHN ADVICH 7/26/1919 ADVICH 1919 PHILADELPHIA ALVIN AFFEN 12/16/1896 AFFEN 1896 PARROT WILLIAM AHERN 12/23/1906 AHERN 1906 BADGER TOIVO AHO 4/05/1925 AHO 1925 BELL DIAMOND DOMINICK AINARDI 3/15/1919 AINARDI 1919 PENNSYLVANIA JOHN ALEXANDER 3/26/1922 ALEXANDER 1922 ANSELMO JACOV ALEXSICH 11/25/1944 ALEXSICH 1944 GRANITE MTN FRANCIS ALLEN 6/08/1917 ALLEN 1917 HIBERNIA COLMAN ALLEN 6/25/1921 ALLEN 1921 MOUNTAIN CON PETER ALLEN 11/24/1924 ALLEN 1924 SEYMOUR MONTAGUE ALLEN 9/03/1924 ALLEN 1924 UNIDENTIFIED MINE JAMES ALLEN 9/27/1891 ALLEN 1891 RARUS FRANK ALOTATO 10/06/1905 ALOTATO 1905 PENNSYLVANIA GEORGE ALQIRE 4/30/1915 ALQIRE 1915 MOUNTAIN CON WALTER ALTONEN 11/17/1956 ALTONEN 1956 LEONARD FRANK AMBROSE 8/21/1927 AMBROSE 1927 BADGER JULES AMIET 8/10/1931 AMIET 1931 ANACONDA SMELTER KNUTE AMUNDSON 2/11/1916 AMUNDSON 1916 STEWARD MICK ANDERLY 6/19/1930 ANDERLY 1930 ANACONDA SMELTER JOHN ANDERSON 6/21/1916
    [Show full text]
  • Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research, Department of History History, Department of 2012 Toxic Tourism: Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana Bridget R. Barry University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/historydiss Part of the Nature and Society Relations Commons, and the United States History Commons Barry, Bridget R., "Toxic Tourism: Promoting the Berkeley Pit and Industrial Heritage in Butte, Montana" (2012). Dissertations, Theses, & Student Research, Department of History. 50. https://digitalcommons.unl.edu/historydiss/50 This Article is brought to you for free and open access by the History, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research, Department of History by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TOXIC TOURISM: PROMOTING THE BERKELEY PIT AND INDUSTRIAL HERITAGE IN BUTTE, MONTANA by Bridget R. Barry A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Arts Major: History Under the Supervision of Professors Andrew R. Graybill and Margaret D. Jacobs Lincoln, Nebraska May, 2012 TOXIC TOURISM: PROMOTING THE BERKELEY PIT AND INDUSTRIAL HERITAGE IN BUTTE, MONTANA Bridget Rose Barry, M.A. University of Nebraska, 2010 Advisers: Andrew R. Graybill and Margaret D. Jacobs Butte, Montana’s Berkeley Pit and its deadly water are a part of the country’s largest Superfund site.
    [Show full text]
  • Hydrologic Investigation. Silver Bow Creek Superfund Site, Montana
    Hydrologic Investigation: Silver Bow Creek Superfund Site, Montana David Stiller President and Principal Hydrogeologist Stiller and Associates, Inc. Helena. MT 59626 The upper Clark Fork River basin in western Montana has the dubious distinction of containing no fewer than three Superfund sites, all of which owe their status to the legacy of Montana's hard rock mining industry. Perhaps the best known and most significant of these sites is Silver Bow Creek. The site extends from within the City of Butte near the southwest edge of the Berkeley Pit, down Butte's Metro Storm Drain, and along the length of Silver Bow Creek to and including the Warm Springs Treatment Ponds near Warm Springs, Montana. Below the Warm Springs Treatment Ponds the Clark Fork River is formed by the confluence of four streams: Silver Bow, Warm Springs, Mill, and Willow Creeks (see map). The Silver Bow Creek site may well be the largest Superfund site in the nation. The predominant "contaminants" to which the site owes its hazardous nature are a direct result of over 100 years of mining and milling for gold, silver, and, most recently and significantly, copper. Too much of a good thing may be the case, because the precious and industrial metals which gave birth to the mining district are the same that have now created public health and related environmental problems. The following metals are of particular concern to the site: copper, zinc, lead, cadmium, and arsenic. These metals presumably originate with abandoned mill tailings presently occupying flood plain positions from within Butte to well below the Warm Springs Treatment Ponds along the Clark Fork River.
    [Show full text]
  • Butte, Montana: the Berkeley Pit, Changes in Water Quality and Water Sampling Quality and Water Changes in Water
    B138 Butte, Montana: The Berkeley Pit, Butte, Montana: The Berkeley Pit, Changes in Water Qualityand W The BerkeleyPit,Changes inWater Butte, Montana: Changes in Water Quality and Water Sampling Methods, 1982–2017 Terence E. Duaime and Steven F. McGrath Bulletin 138 2019 ater SamplingMethods,1982–2017DuaimeandMcGrath Cover Photos: Top, Berkeley Pit looking west towards the “Big M,” 1983. Bottom, Berkeley Pit looking southwest, “Big M” in the upper right, 2017. Photos by Ted Duaime, MBMG. Bulletin 138 Butte, Montana: The Berkeley Pit, Changes in Water Quality and Water Sampling Methods, 1982–2017 Terence E. Duaime and Steven F. McGrath Montana Bureau of Mines and Geology 2019 Montana Bureau of Mines and Geology Bulletin 138 CONTENTS Abstract .................................................................................................................................................... 1 1.0 Introduction ......................................................................................................................................... 3 1.1 Methods ........................................................................................................................................ 4 2.0 Underground Mining and Berkeley Pit Development and Operation ..................................................7 3.0 Suspension of Mining and Early Flooding of the Berkeley Pit and Underground Mines (1982–1984) ..................................................................................................................................... 13
    [Show full text]