Prescription for Mercury and PCB Elimination

Total Page:16

File Type:pdf, Size:1020Kb

Prescription for Mercury and PCB Elimination Prescription for Mercury and PCB Elimination Mercury and PCB Reduction Guidance for Oil Refineries A joint project between City of Superior Wastewater Division of Public Works and Murphy Oil USA Superior Refinery Prescription for Mercury and PCB Elimination Mercury and PCB Reduction Guidance for Oil Refineries Report prepared and printed using funds from the following grant: Environmental Protection Agency Great Lakes National Program Office Grant # GL-97516901-0 Acknowledgements: Thanks to Murphy employees: Liz Lundmark (Environmental Manager), Corey Mead (Environmental Engineer), Paul Velin (Warehouse), John Peterson (Laboratory) and Brad Carlson (Instrument Department) for their help at Murphy Oil Refinery. Special thanks goes to Zada Talus, formerly at Superior’s Wastewater Division of Public Works (WDPW), for her work establishing contacts, conducting the mercury inventory, compiling the information for this report, and contributing several early drafts of the report. Diane Thompson, Jane Ed- wards, and Bonita Martin from the WDPW also provided helpful reference material, informa- tion, and guidance. Kari Jacobson Hedin prepared the final version of this report. Report prepared by: City of Superior Wastewater Division of Public Works Pollution Prevention Team Kari Jacobson Hedin Zada Talus Diane Thompson Jane Edwards See the Murphy Project online and obtain an electronic copy of the report at: http://www.ci.superior.wi.us/publicwks/wastewater/MurphyProject.htm Printed on recycled paper March 2005 Contents Introduction…………………………………………………………………. 1 A Voluntary Pollution Reduction Program at Murphy Oil Refinery………... 2 Diagnosis: Mercury and PCBs Cause Environmental Distress………………….. 3 What You Should Know About Mercury…………………………………………………… 3 9 What You Should Know About PCBs……………………………………………………… Collaborating to Devise a Treatment Plan for a Healthy Lake Superior………… 12 Take Your Medicine: A Voluntary Approach to Fix the Pollution Problem………. 13 How to Write Your Own Prescription for Mercury and PCB Elimination………… 14 A Remedy for Mercury Use at Murphy Oil…………………………………………. 18 Tracking Down the Source of the Disease………………………………………………... 22 How Serious is the Disease?......................................................................................... 22 Keeping the Laboratory Disease-Free…………………………………………………….. 24 What to do if the Disease Spreads…………………………………………………………. 26 Prevent the Disease at its Source………………………………………………………….. 26 Results of the Mercury Inventory at Murphy Oil…………………………………… 28 A Remedy for PCB Use at Murphy Oil……………………………………………... 30 A PCB Checkup………………………………………………………………………………. 30 The Healing Process………………………………………………………………………… 32 Healthy Alternatives …………………………………………………………………………. 32 A Long-Term Plan for Staying Healthy……………………………………………… 33 Appendices……………………………………………………………………………. 35 References……………………………………………………………………………. 57 Introduction Imagine several biologists in northern Wisconsin studying the reproductive success of fish-eating water birds such as herons and loons. Over several years of the study, the biologists notice certain patterns: some the adults are not producing as many young as they once did, and several birds are displaying behavioral abnor- malities. To find the causes for what they see, the biologists run tests to determine the concentration of mercury and polychlorinated biphenyls (PCBs) in the tissues of some of these birds. When the tests show the concentrations of these toxins are high, the biologists are faced with new questions: Are the patterns they have been noticing due to these pollutants? If they are, what can be done to reduce mercury and PCBs release into the environment, where they can get into the food chain and affect the health of predators that eat fish, including humans? These biologists are much like doctors, only they are not diagnosing the causes of a disease in an indi- vidual patient, but the factors that are causing ailments in entire ecosystems. Just like doctors, they must first find what is causing the problem. Then they must deter- mine a course of action to reduce or eliminate the problem, though it is much more difficult than simply writing a prescription for a bottle of medicine. Most environ- mental problems have many sources, and it takes the combined efforts of govern- ments, communities, and independent organizations to decide on an effective and comprehensive cure. A biologist studies levels of mercury and PCBs in loons 1 A Voluntary Pollution Reduction Program at Murphy Oil Refinery This guidance manual is a prescription to reduce mercury and PCBs in the environment. It gives direction to employees at oil refineries and other industries who want to learn how to reduce the mercury and PCBs they use in their daily operations, and it also shows how vol- untary partnerships between industry and governmental organizations can work to enhance pollution prevention initiatives. This guide uses as a case study the PCB- and mercury- reduction efforts at Murphy Oil USA Superior Refinery (Murphy Oil), a 35,000 barrel-a-day refinery on Stinson Avenue in Superior, Wisconsin. In 2001, Murphy Oil and the City of Superior Wastewater Division of Public Works (WDPW) entered into a voluntary partnership to develop a pollution prevention guidebook for refiner- ies and other industries interested in reducing use of mercury and PCBs. WDPW staff, with the assistance of Murphy employees, conducted an inventory of mercury at Murphy and re- viewed Murphy’s removal activities for PCBs. This was done in an effort to work towards the elimination of devices containing mercury and PCBs at Murphy Oil and provide a case study for the guidebook. Murphy Oil is joining other industries, including three steel mills in Indiana (Ispat Inland, USS Gary Works, and Bethlehem Steel) that partnered with the United States Environmental Protection Agency (US EPA) and the Indiana Department of Environ- mental Management in efforts to reduce the use of mercury- and PCB-containing products and incidental releases of these pollutants. HOW CAN YOU USE THIS PRESCRIPTION? 1) To learn about the environmental and health problems caused by mercury and PCBs. 2) To put together a voluntary pollution reduction plan for mercury and PCBs, develop partnerships with other groups, and gather funding. 3) To use Murphy Oil Refinery’s pollution reduction efforts as a guide to discover ways to reduce mercury and PCBs in your own refinery. 4) To conduct an inventory of devices and products containing mer- cury and PCBs on site, properly document the results of this inven- tory, and insure the proper disposal of these products. 5) To develop a spill policy for mercury, phase out use and identify alternatives to mercury- and PCB-containing products, and organize a mercury-free purchasing policy. 2 Diagnosis: Mercury and PCBs Cause Environmental Distress The usefulness of mercury and PBCs and their many applications in industry is well known – their negative impact on the environment has been much harder to recog- nize. Only in the recent past have we begun to understand the risks posed by these materials when they are used in industry. What You Should Know About Mercury The expression “mad as a hatter” comes from 19th-century hat makers who used mercuric nitrate until the 1940s to aid in the felting process. 1, 2 Hat-makers in Dan- bury, Connecticut developed a reputation for strange behavior that was eventually traced to their exposure to mercury, and the “Danbury shakes” was a term that re- ferred to the tremors that resulted from mercury poisoning. In extreme cases, peo- ple who have had repeated or excessive contact with mercury or mercury vapors have experienced a range of health and behavioral problems, from tremors, head- aches, insomnia, stumbling, and depression, to brain, liver, and kidney damage. 2.Many hatters eventually died of mercury poisoning. 1, 3 However, mercury doesn’t just cause health problems in people; it can get into the environment and lead to wide-ranging troubles, especially in aquatic ecosystems. Mercury: A Useful but Dangerous Metal: Even during Roman times, mercury’s useful- ness and toxicity were well known. Slaves who were sent to mine cinnabar, the mineral that contains mercury, were basically given a death sentence — they only survived 2 or 3 years in the mines. Mercury is most familiar in its ele- mental form, often called quicksilver, where it exists as a shiny silver-white liquid at room temperature. The letters “Hg” represent the ele- Elemental mercury droplets ment mercury on the Periodic Table of the Ele- sitting atop cinnabar ments. As the only liquid metal, it is a good electrical conductor and it expands and contracts uniformly in response to changes in temperature and pressure. 2 Elemen- tal mercury is used in many instruments, including thermometers, barometers, and electrical switches (Table 1). 3 All the mercury in use today was originally acquired from natural sources; it continues to be mined from mercuric sulfide (cinnabar) in the earth. 2 Though mercury can also be released from natural sources such as volcanic eruptions, much of the mercury that makes its way into the environment comes from anthropogenic (human-caused) sources (Table 1). Mer- cury can be released from coal-burning power plants, during the manufacture of mercury- containing products, metal mining, and the use of chemicals. And humans don’t just put mercury in the air. Mercury can also make its way from wastewater into our lakes, rivers, and oceans (Figure 1). The deposition rates of mercury
Recommended publications
  • Influence of Sulfide, Chloride and Dissolved Organic Matter On
    Chen et al. Sustainable Environment Research (2020) 30:22 Sustainable Environment https://doi.org/10.1186/s42834-020-00065-5 Research RESEARCH Open Access Influence of sulfide, chloride and dissolved organic matter on mercury adsorption by activated carbon in aqueous system Chi Chen, Yu Ting, Boon-Lek Ch’ng and Hsing-Cheng Hsi* Abstract Using activated carbon (AC) as thin layer capping to reduce mercury (Hg) released from contaminated sediment is a feasible and durable remediation approach. However, several aqueous factors could greatly affect the Hg fate in the aquatic system. This study thus intends to clarify the influences on Hg adsorption by AC with the presence of sulfide, dissolved organic matter (DOM), and chloride. The lab-scale batch experiments were divided into two parts, including understanding (1) AC adsorption performance and (2) Hg distribution in different phases by operational definition method. Results showed that the Hg adsorption rate by AC was various with the presence of sulfide, chloride, and DOM (from fast to slow). Hg adsorption might be directly bonded to AC with Hg-Cl and Hg-DOM complexes and the rate was mainly controlled by intraparticle diffusion. In contrast, “Hg + sulfide” result was better described by pseudo-second order kinetics. The Hg removal efficiency was 92–95% with the presence of 0–400 mM chloride and approximately 65–75% in the “Hg + sulfide” condition. Among the removed Hg, 24–29% was formed into aqueous-phase particles and about 30% HgwasadsorbedonACwith2–20 μM sulfide. Increasing DOM concentration resulted in more dissolved Hg. The proportion of dissolved Hg increased 31% by increasing DOM concentration from 0.25 to 20 mg C L− 1.
    [Show full text]
  • Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, M
    Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, M. Feygenson, C. J. Benmore, Alex Hannon, et al. To cite this version: Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, et al.. Mer- cury Sulfide Dimorphism in Thioarsenate Glasses. Journal of Physical Chemistry B, American Chem- ical Society, 2016, 120 (23), pp.5278 - 5290. 10.1021/acs.jpcb.6b03382. hal-01426924 HAL Id: hal-01426924 https://hal.archives-ouvertes.fr/hal-01426924 Submitted on 5 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Mercury Sulfide Dimorphism in Thioarsenate Glasses Mohammad Kassem, Anton Sokolov, Arnaud Cuisset, Takeshi Usuki, Sohayb Khaoulani, Pascal Masselin, David Le Coq, Joerg C. Neuefeind, Mikhail Feygenson, Alex C Hannon, Chris J. Benmore, and Eugene Bychkov J. Phys. Chem. B, Just Accepted Manuscript • Publication Date (Web): 23 May 2016 Downloaded from http://pubs.acs.org on May 23, 2016 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing.
    [Show full text]
  • ECO PASSPORT by OEKO-TEX®
    Edition 01.2020 Restricted Substance List: ECO PASSPORT by OEKO-TEX® OEKO-TEX® – International Association for Research and Testing in the Field of Textile and Leather Ecology. OEKO-TEX® Association | Genferstrasse 23 | CH-8002 Zurich Phone 41 44 501 26 00 | [email protected] | www.oeko-tex.com Restricted Substance List: ECO PASSPORT by OEKO-TEX® This document is an extensive list of all substances which are restricted for the ECO PASSPORT by OEKO-TEX®. Each substance is listed through CAS-number and chemical name as well as through its toxicological properties and other restricted substances lists and literature where they can be found. Below is a legend for the different toxicity abbreviation and a numbering of the different restricted substances lists and literature. Toxicity Abbreviations AA Acute Aquatic Toxicity IrS Skin Irritation AT Acute Mammalian Toxicity M Mutagenicity and Genotoxicity B Bioaccumulation N Neurotoxicity C Carcinogenicity P Persistence CA Chronic Aquatic Toxicity R Reproductive Toxicity D Developmental ToxicitY Rx Reactivity E Endocrine Activity SnS Skin Sensitization F Flammability SnR Respiratory Sensitization IrE Eye Irritation ST Systemic/Organ Toxicity 05.11.20 Edition 01.2020 2|82 Restricted Substance List: ECO PASSPORT by OEKO-TEX® List Numbering American Apparel & Footwear Association Restricted Subs- 1 30 MAK Mutagen tance List 2 AOEC - Asthmagens 31 MAK Pregnancy Risk 3 Boyes - Neurotoxicants 32 MAK Sensitizing 4 CA DTSC Candidate 33 OR DEQ - Priority Persistent Pollutants 5 CA Prop 65 34 OSPAR - Priority
    [Show full text]
  • Mercury Transformation and Release from Contaminated Soil Following Perturbations in Solution Chemistry and Application of Polysulfide
    Mercury Transformation and Release from Contaminated Soil Following Perturbations in Solution Chemistry and Application of Polysulfide by Matthew Corriveau A thesis Presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Earth Sciences Waterloo, Ontario, Canada, 2018 © Matthew Corriveau 2018 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of this thesis, including any final required revisions, as accepted by my examiners. I understand that this thesis may be made electronically available to the public. ii Abstract Mercury (Hg) is a contaminant of concern due to the very high toxicity and bioaccumulating nature of organic Hg and the persistent leaching of Hg to water bodies from contaminated soils and sediments. The deleterious properties of Hg pose challenges for remediation as point source contamination can expand over time to affect much wider areas. Saturated, flow-through column experiments were conducted with riverbank sediment and floodplain soil collected from a contaminated reach of the South River near Waynesboro, VA. In one experiment, the composition of input solutions was varied to observe relationships among mobilized Hg, aqueous parameters and effluent constituents and identify dominant mechanisms and controls on Hg transport. Effluent Hg concentrations increased and remained elevated when a higher pH and alkalinity solution was input to the column. Effluent Hg and DOC concentrations were generally positively correlated. Increased effluent Hg concentrations broadly coincided with increased effluent iron (Fe) and manganese (Mn) concentrations and redox (Eh) minima. The lowest effluent Hg concentrations were observed upon decreasing the input solution pH from ~8.7 to ~6, whereas an increase in input pH from ~6 to ~12 coincided with the highest effluent Hg concentrations along with spikes in effluent Fe, Mn and DOC concentrations.
    [Show full text]
  • Survey of Mercury and Mercury Compounds
    Survey of mercury and mercury compounds Part of the LOUS-review Environmental Project No. 1544, 2014 Title: Authors and contributors: Survey of mercury and mercury compounds Jakob Maag Jesper Kjølholt Sonja Hagen Mikkelsen Christian Nyander Jeppesen Anna Juliana Clausen and Mie Ostenfeldt COWI A/S, Denmark Published by: The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K Denmark www.mst.dk/english Year: ISBN no. 2014 978-87-93026-98-8 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, the Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor COWI or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. Sources must be acknowledged. 2 Survey of mercury and mercury compounds Contents Preface ...................................................................................................................... 5 Summary and conclusions ......................................................................................... 7 Sammenfatning og konklusion ................................................................................ 14 1.
    [Show full text]
  • Reporting Requirements for the TSCA Mercury Inventory
    30054 Federal Register / Vol. 83, No. 124 / Wednesday, June 27, 2018 / Rules and Regulations N.J.A.C. 7:27B–3.10. Procedures for the DATES: This final rule is effective August • All other basic organic chemical determination of volatile organic 27, 2018. manufacturing (NAICS code 325199). compounds in surface coating ADDRESSES: The docket for this action, • Plastics material and resin formulations identified by docket identification (ID) manufacturing (NAICS code 325211). N.J.A.C. 7:27B–3.11. Procedures for the • Pesticide and other agricultural determination of volatile organic number EPA–HQ–OPPT–2017–0421, is compounds emitted from transfer available at http://www.regulations.gov chemical manufacturing (NAICS code operations using a flame ionization or at the Office of Pollution Prevention 325320). • detector (FID) or non-dispersive infrared and Toxics Docket (OPPT Docket), Medicinal and botanical analyzer (NDIR) Environmental Protection Agency manufacturing (NAICS code 325411). • N.J.A.C. 7:27B–3.12. Procedures for the Docket Center (EPA/DC), West William Pharmaceutical preparation determination of volatile organic Jefferson Clinton Bldg., Rm. 3334, 1301 manufacturing (NAICS code 325412). • compounds in cutback and emulsified Constitution Ave. NW, Washington, DC. Biological product (except asphalts diagnostic) manufacturing (NAICS code N.J.A.C. 7:27B–3.13. Procedures for the The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through 325414). determination of leak tightness of • Paint and coating manufacturing gasoline delivery vessels Friday, excluding legal holidays. The (NAICS code 325510). N.J.A.C. 7:27B–3.14. Procedures for the direct telephone number for the Public • detection of fugitive volatile organic Reading Room is (202) 566–1744, and Adhesive manufacturing (NAICS compound leaks code 325520).
    [Show full text]
  • Mercury Cycling in Sulfur Rich Sediment from the Brunswick Estuary
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2017 Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary Travis William Nicolette Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Environmental Engineering Commons Recommended Citation Nicolette, Travis William, "Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary" (2017). Electronic Theses and Dissertations. 1626. https://digitalcommons.georgiasouthern.edu/etd/1626 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. MERCURY CYCLING IN SULFUR RICH SEDIMENTS FROM THE BRUNSWICK ESTUARY by TRAVIS NICOLETTE (Under the direction of major professor Franciscan Cubas) ABSTRACT Mercury is potentially toxic to the environment. Mercury is absorbed into anaerobic sediments of surface waters, which may be converted to methylmercury, a toxic form of mercury that bio-accumulates in aquatic biota. Sources of mercury in the environment vary, but the production of methylmercury is common in sulfur-rich sediments containing mercury. In such environments, sulfur reducing bacteria (SRB) produce methylmercury as a by-product. The metabolic process uses energy from the reduction of sulfate to sulfide. This study focuses on determining the methylmercury production and release potential from sulfur-rich sediments extracted from different areas of the Brunswick Estuary. Previous studies note considerable levels of mercury in the Brunswick Estuary due to a local super fund site.
    [Show full text]
  • Titania - Supported Transition Metals Sulfides As Photocatalysts for Hydrogen Production from Propan-2-Ol and Methanol C
    Titania - Supported transition metals sulfides as photocatalysts for hydrogen production from propan-2-ol and methanol C. Maheu, Eric Puzenat, Christophe Geantet, Luis Cardenas, Pavel Afanasiev To cite this version: C. Maheu, Eric Puzenat, Christophe Geantet, Luis Cardenas, Pavel Afanasiev. Titania - Supported transition metals sulfides as photocatalysts for hydrogen production from propan-2-ol and methanol. International Journal of Hydrogen Energy, Elsevier, 2019, 10.1016/j.ijhydene.2019.05.080. hal- 02935057 HAL Id: hal-02935057 https://hal.archives-ouvertes.fr/hal-02935057 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version of Record: https://www.sciencedirect.com/science/article/pii/S0360319919319366 Manuscript_e2d3289b89e0d9fb215783198a4bf081 1 Titania - supported transition metals sulfides as photocatalysts for hydrogen production 2 from propan-2-ol and methanol 3 Clement Maheu*, Eric Puzenat, Christophe Geantet, Luis Cardenas, Pavel Afanasiev* 4 Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256, 5 CNRS – Université Lyon 1, 2 av A. Einstein 69626 Villeurbanne Cedex (France); Fax: 33 04 6 7244 5399; Tel: 33 04 72 44 5466; 7 8 9 E-mail: [email protected] 10 [email protected] 11 12 13 Abstract 14 A series of transition metals sulfides deposited on anatase titania (MSx/TiO2) were prepared 15 by precipitation of transition metals salts with thioacetamide in aqueous medium under reflux.
    [Show full text]
  • Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: a Fascinating and Challenging Playground for the Chemist
    crystals Review Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: A Fascinating and Challenging Playground for the Chemist Silvia Gross 1,2,*, Andrea Vittadini 1,2 and Nicola Dengo 1,2 1 Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, ICMATE-CNR, via Marzolo 1, I-35131 Padova, Italy; [email protected] (A.V.); [email protected] (N.D.) 2 Dipartimento di Scienze Chimiche, Università degli Studi di Padova and INSTM, UdR Padova, via Marzolo 1, I-35131 Padova, Italy * Correspondence: [email protected]; Tel.: +39-049-827-5736 Academic Editor: Roberto Comparelli Received: 27 December 2016; Accepted: 24 March 2017; Published: 14 April 2017 Abstract: Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry.
    [Show full text]
  • Mercury Dynamics in Sulfide-Rich Sediments: Geochemical Influence on Contaminant Mobilization and Methylation Within the Penobscot River Estuary, Maine, USA Karen A
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2007 Mercury Dynamics in Sulfide-Rich Sediments: Geochemical Influence on Contaminant Mobilization and Methylation within the Penobscot River Estuary, Maine, USA Karen A. Merritt University of Maine - Main Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Civil and Environmental Engineering Commons Recommended Citation Merritt, Karen A., "Mercury Dynamics in Sulfide-Rich Sediments: Geochemical Influence on Contaminant Mobilization and Methylation within the Penobscot River Estuary, Maine, USA" (2007). Electronic Theses and Dissertations. 99. http://digitalcommons.library.umaine.edu/etd/99 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. MERCURY DYNAMICS IN SULFIDE-RICH SEDIMENTS: GEOCHEMICAL INFLUENCE ON CONTAMINANT MOBILIZATION AND METHYLATION WITHIN THE PENOBSCOT RIVER ESTUARY, MAINE, USA By Karen A. Merritt B.A. Carleton College, 1989 M.S. University of Maine, 2002 M.S. University of Maine, 2006 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Civil Engineering) August, 2007 Advisory Committee: Aria Amirbahman, Associate Professor of Civil Engineering, Advisor Jean MacRae, Associate Professor of Civil Engineering Lawrence Mayer, Professor of Oceanography Stephen
    [Show full text]
  • Selective Extraction of Mercury and Antimony from Cinnabar-Stibnite Ore
    Bureau of Mines Report of Investigations 5243 SELECTIVE EXTRACTION OF MERCURY AND ANTIMONY FROM CINNABAR-STIBNITE ORE BY E. G. ERSPAMER AND R. R. WELLS p i _I -- United States Department of the Interior- September 1956 ... 1-- - SELECTIVE EXTRACTION OF MERCURY AND ANTIMONY FROM CINNABAR-STIBNITE ORE « BY E. G. ERSPAMER AND R. R. WELLS * * * * * * * * * Report of Investigations 5243 UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary BUREAU OF MINES Marling J. Ankeny, Director Work on manuscript completed November 1955. The Bureau of Mines will welcome reprinting of this paper, provided the following footnote acknowledgment is made: "Reprinted from Bureau of Mines Report of Investigations 5243." September 1956 SELECTIVE EXTRACTION OF MERCURY AND ANTIMONY FROM CINNABAR-STIBNITE ORE by E. G. Erspamerl/ and R. R. Wells2J/ CONTENTS Page Summnary .......................... ,............. 1 Introduction ................... eww=...e=,e, .* .., 1 Concentration of mercury ores ............................ 2 Previous laboratory studies of Red Devil ore ................. 4 Current investigations .................................. .... 5 Scope *............. ............. ....... 5 Mineral-dressing studies ................................. 5 Character of the ore .............................. 5 Physical ..................... ........... 5 Chemical ........................ ........... 5 Preliminary tests ..................... 6 Screen analysis ................................ 6 Heavy-liquid test .............................. 6 Methods
    [Show full text]
  • Thermodynamic and Experimental Study of the Degradation of the Red Pigment Mercury Sulfide Cite This: J
    JAAS View Article Online PAPER View Journal | View Issue Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide Cite this: J. Anal. At. Spectrom.,2015, 30,599 Marie Radepont,*abc Yvan Coquinot,d Koen Janssens,a Jean-Jacques Ezrati,d Wout de Nolfa and Marine Cottebce The red pigment mercury sulfide, called cinnabar or vermilion, is well known to suffer from an alteration giving rise to a grey, grey-white or black color at the surface of degraded works of art. This phenomenon can dramatically affect the esthetical value of artworks. This work aims at assessing the factors (light, halides) influencing the instability of red mercury sulfide and understanding (by combining thermodynamic and experimental approaches) the chemical equilibria governing the formation and evolution of the different degradation compounds. From the thermodynamic study of the Hg–S–Cl– H2O system, it was concluded that Hg(0), Hg3S2Cl2, and Hg2Cl2 can be formed from the reaction of a- HgS with ClO(g). In the second part, the artificial ageing experiments presented were carried out on model samples following the conditions assessed in the first part, in order to reproduce natural ageing observed on red mercury sulfide. Similarly to degradation compounds detected on original works of art, Received 30th October 2014 mercury chlorine compounds such as calomel (Hg Cl ) and corderoite (a-Hg S Cl ) were identified on Accepted 2nd January 2015 2 2 3 2 2 the surface of a-HgS model samples, when exposed to light and a sodium hypochlorite solution. Sulfates DOI: 10.1039/c4ja00372a were detected as well, and more particularly gypsum (CaSO4$2H2O) when Ca was originally present in www.rsc.org/jaas the model sample.
    [Show full text]