Mercury Stabilization Using Thiosulfate Or Selenosulfate
Total Page:16
File Type:pdf, Size:1020Kb
MERCURY STABILIZATION USING THIOSULFATE OR SELENOSULFATE by Zizheng Zhou B.A.Sc, The University of British Columbia, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate Studies (Materials Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April, 2013 © Zizheng Zhou, 2013 ABSTRACT Mercury is often found associated with gold and silver minerals in ore bodies. It is recovered as liquid elemental mercury in several stages including carbon adsorption, carbon elution, electrowinning and retorting. Thus a great amount of mercury is produced as a by-product in gold mines. The Mercury Export Ban Act of 2008 prohibits conveying, selling and distributing elemental mercury by federal agencies in United States. It also bans the export of elemental mercury starting January 1, 2013. As a result, a long-term mercury management plan is required by gold mining companies that generate liquid mercury as a by-product. This thesis will develop a process to effectively convert elemental mercury into much more stable mercury sulfide and mercury selenide for safe disposal. The process consists of 1) extraction of elemental mercury into solution to form aqueous mercury (II) and 2) mercury precipitation as mercury sulfide or mercury selenide. Elemental mercury can be effectively extracted by using hypochlorite solution in acidic environment to form aqueous mercury (II) chloride. The effect of different parameters on the extent and rate of mercury extraction were studied, such as pH, temperature, stirring speed and hypochlorite concentration. Results show that near complete extraction can be achieved within 8 hours by using excess sodium hypochlorite at pH 4 with a fast stirring speed of 1000RPM. Mercury precipitation was achieved by using thiosulfate and selenosulfate solution. In thiosulfate precipitation, cinnabar, metacinnabar or a mixture of both can be obtained depending on the experimental conditions. Elevated temperatures, acidic environment and high reagent concentrations favour the precipitation reaction. Complete mercury removal can be achieved within 4 hours. However, it appears that the less stable metacinnabar tends to form when the precipitation rate increases. Selenosulfate solution can be produced by dissolving elemental selenium in sulfite solution at elevated temperature. Precipitation of mercury selenide using selenosulfate ii reagent was found to be very effective. The precipitation rate proved to be extremely fast, and the formed precipitates have been confirmed to be tiemannite (HgSe) in all experiments. Finally, Solid Waste Disposal Characterization (SWDC) experiments were conducted to examine the mobility of the formed mercury sulfide and mercury selenide. The results show that none of the formed precipitates exceed the Ultimate Treatment Standard (UTS) limit. iii TABLE OF CONTENTS ABSTRACT........................................................................................................................ ii TABLE OF CONTENTS................................................................................................... iv LIST OF TABLES............................................................................................................. ix LIST OF FIGURES ............................................................................................................ x ACKNOWLEDGEMENTS............................................................................................. xiv DEDICATION.................................................................................................................. xv 1 INTRODUCTION ........................................................................................................... 1 2 LITERATURE REVIEW ................................................................................................ 3 2.1 Mercury Generation in Mining Industry and Its Impact........................................... 3 2.1.1 Mercury in Small-Scale Gold Mining............................................................... 3 2.1.2 Mercury in Modern Gold Mining and Non-Ferrous Mining ............................ 4 2.1.3 Impact of Mining Activities on Mercury Emissions......................................... 5 2.2 Legislative Background ............................................................................................ 6 2.3 Overview of Existing Mercury Stabilization Technologies...................................... 7 2.3.1 Stabilization of Mercury as Mercury Sulfide or Mercury Selenide.................. 7 2.3.1.1 DELA Process, German............................................................................ 8 2.3.1.2 Bethlehem Apparatus................................................................................ 8 2.3.1.3 STMI Process, France............................................................................... 8 iv 2.3.1.4 CENIM Milling Process, Spain ................................................................ 9 2.3.1.5 Synthesis of Mercury Sulfide by Shaking ................................................ 9 2.3.1.6 Wet Process............................................................................................... 9 2.3.1.7 Stabilization of Mercury as Mercury Selenide ......................................... 9 2.3.2 Mercury Stabilization via Amalgamation....................................................... 10 2.3.2.1 Amalgamation with Copper.................................................................... 10 2.3.2.2 Amalgamation with Zinc ........................................................................ 10 2.3.3 Stabilization of Mercury into a Stable and Insoluble Matrix.......................... 10 2.3.3.1 ATG Stabilization Process...................................................................... 10 2.3.3.2 Sulfur Polymer Cement Process ............................................................. 11 2.3.3.3 Magnesia Binder ..................................................................................... 11 2.3.3.4 Solidification with Hydraulic Cement and Sulfur Polymer Cement ...... 11 2.4 Aqueous Chemistry of Mercury.............................................................................. 12 2.4.1 Hg - H2O Chemistry........................................................................................ 12 2.4.2 Hg - Cl - H2O Chemistry ................................................................................ 15 2.4.2.1 Interaction between Mercury and Hypochlorite ..................................... 19 2.4.3 Hg - S - H2O Chemistry.................................................................................. 20 2.4.3.1 Thiosulfate Chemistry............................................................................. 22 2.4.3.2 Interaction between Mercury and Thiosulfate ........................................ 23 v 2.4.4 Hg - Se - H2O Chemistry ................................................................................ 26 2.5 Research Objectives................................................................................................ 30 3 EXPERIMENTAL METHODS..................................................................................... 31 3.1 Mercury Leaching Experiments.............................................................................. 31 3.1.1 Hypochlorite Leaching Experiments .............................................................. 32 3.1.2 Hydrogen Peroxide Leaching Experiments .................................................... 35 3.1.3 Cyanidation Experiments............................................................................... 36 3.2 Mercury Precipitation Experiments ........................................................................ 36 3.2.1 Thiosulfate Precipitation Experiments............................................................ 36 3.2.2 Selenosulfate Precipitation Experiments ........................................................ 39 3.2.3 Selenious Acid Precipitation Experiments...................................................... 40 3.3 Selenium Dissolution Experiments......................................................................... 40 3.4 Solid Waste Disposal Characterization................................................................... 42 4 RESULTS AND DISCUSSION.................................................................................... 44 4.1 Hypochlorite Leaching Experiments ...................................................................... 44 4.1.1 Effect of pH..................................................................................................... 44 4.1.2 Effect of Stirring Speed .................................................................................. 46 4.1.3 Effect of Hypochlorite Concentration............................................................. 47 4.1.4 Effect of Temperature..................................................................................... 49 vi 4.1.5 Randomness and Errors .................................................................................. 51 4.2 Other Types of Mercury Leaching Experiments .................................................... 52 4.2.1 Hydrogen Peroxide Leaching Experiments .................................................... 52 4.2.2 Cyanidation Experiments................................................................................ 53 4.2.3 Summary........................................................................................................