Gene Regulatory Networks

Total Page:16

File Type:pdf, Size:1020Kb

Gene Regulatory Networks Advanced Algorithms and Models for Computational Biology -- a machine learning approach Systems Biology: Inferring gene regulatory network using graphical models Eric Xing Lecture 24, April 17, 2006 Gene regulatory networks z Regulation of expression of genes is crucial: z Genes control cell behavior by controlling which proteins are made by a cell and when and where they are delivered z Regulation occurs at many stages: z pre-transcriptional (chromatin structure) z transcription initiation z RNA editing (splicing) and transport z Translation initiation z Post-translation modification z RNA & Protein degradation z Understanding regulatory processes is a central problem of biological research 1 Inferring gene regulatory networks z Expression network E B R A mostly sometimes rarely C z gets most attentions so far, many algorithms z still algorithmically challenging z Protein-DNA interaction network + + z actively pursued recently, some interesting methods available z lots of room for algorithmic advance Inferring gene regulatory networks z Network of cis-regulatory pathways z Success stories in sea urchin, fruit fly, etc, from decades of experimental research z Statistical modeling and automated learning just started 2 1: Expression networks z Early work z Clustering of expression data z Groups together genes with similar expression pattern z Disadvantage: does not reveal structural relations between genes z Boolean Network z Deterministic models of the logical interactions between genes z Disadvantage: deterministic, static z Deterministic linear models z Disadvantage: under-constrained, capture only linear interactions z The challenge: z Extract biologically meaningful information from the expression data z Discover genetic interactions based on statistical associations among data z Currently dominant methodology z Probabilistic network Probabilistic Network Approach z Characterize stochastic (non-deterministic!) relationships between expression patterns of different genes z Beyond pair-wise interactions => structure! z Many interactions are explained by intermediate factors z Regulation involves combined effects of several gene-products z Flexible in terms of types of interactions (not necessarily linear or Boolean!) 3 Probabilistic graphical models • Given a graph G = (V,E), where each node v∈V is associated with a random variable Xv X3 p(X3| X2) AAAAGAGTCA X2 p(X2| X1) X 1 X6 p(X1) p(X6| X2, X5) p(X4| X1) p(X5| X4) X4 X5 • The joint distribution on (X1, X2,…, XN) factors according to the “parent-of” relations defined by the edges E : p(X1, X2, X3, X4, X5, X6) = p(X1) p(X2| X1)p(X3| X2) p(X4| X1)p(X5| X4)p(X6| X2, X5) Probabilistic Inference z Computing statistical queries regarding the network, e.g.: z Is node X independent on node Y given nodes Z,W ? z What is the probability of X=true if (Y=false and Z=true)? z What is the joint distribution of (X,Y) if R=false? z What is the likelihood of some full assignment? z What is the most likely assignment of values to all or a subset the nodes of the network? z General purpose algorithms exist to fully automate such computation z Computational cost depends on the topology of the network z Exact inference: z The junction tree algorithm z Approximate inference; z Loopy belief propagation, variational inference, Monte Carlo sampling 4 Two types of GMs z Directed edges give causality relationships (Bayesian Network or Directed Graphical Model): z Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model): Bayesian Network z Structure: DAG Ancestor z Meaning: a node is conditionally independent Parent Y Y of every other node in the 1 2 network outside its Markov blanket X z Location conditional distributions (CPD) and the Child DAG completely determines Children's co-parent the joint dist. Descendent 5 Local Structures & Independencies z Common parent B z Fixing B decouples A and C "given the level of gene B, the levels of A and C are independent" A C z Cascade z Knowing B decouples A and C A B C "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C" z V-structure z Knowing C couples A and B A B because A can "explain away" B w.r.t. C "If A correlates to C, then chance for B to also correlate to B C will decrease" z The language is compact, the concepts are rich! Why Bayesian Networks? z Sound statistical foundation and intuitive probabilistic semantics z Compact and flexible representation of (in)dependency structure of multivariate distributions and interactions z Natural for modeling global processes with local interactions => good for biology z Natural for statistical confidence analysis of results and answering of queries z Stochastic in nature: models stochastic processes & deals (“sums out”) noise in measurements z General-purpose learning and inference z Capture causal relationships 6 Possible Biological Interpretation Measured expression Random variables level of each gene (node) Gene interaction Probabilistic dependencies (edge) B z Common cause A C z Intermediate gene A B C A B z Common/combinatorial effects C More directed probabilistic networks z Dynamic Bayesian Networks (Ong et. al) gene gene z Temporal series "static" gene 2 gene gene 2 gene 1 3 1 3 gene gene N N z Module network (Segal et al.) z Partition variables into modules that share the same parents and the same CPD. z Probabilistic Relational Models (Segal et al.) z Data fusion: integrating related data from multiple sources 7 Bayesian Network – CPDs Local Probabilities: CPD - conditional probability distribution P(Xi|Pai) z Discrete variables: Multinomial Distribution (can represent any kind of statistical dependency) Earthquake Burglary E B P(A | E,B) e b 0.9 0.1 e b 0.2 0.8 Radio Alarm e b 0.9 0.1 e b 0.01 0.99 Call Bayesian Network – CPDs (cont.) z Continuous variables: e.g. linear Gaussian k 2 P(X |Y1,...,Yk ) ~N(a0 +∑ai yi ,σ ) i =1 P(X | Y) Y X 8 Learning Bayesian Network z The goal: z Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs) E B E B R A R A C C (B,E,A,C,R)=(T,F,F,T,F) E B P(A | E,B) e b 0.9 0.1 (B,E,A,C,R)=(T,F,T,T,F) e b 0.2 0.8 …….. e b 0.9 0.1 (B,E,A,C,R)=(F,T,T,T,F) e b 0.01 0.99 Learning Bayesian Network • Learning of best CPDs given DAG is easy – collect statistics of values of each node given specific assignment to its parents • Learning of the graph topology (structure) is NP-hard – heuristic search must be applied, generally leads to a locally optimal network •Overfitting – It turns out, that richer structures give higher likelihood P(D|G) to the data (adding an edge is always preferable) A B A B C C P(C | A) ≤P(C | A, B) – more parameters to fit => more freedom => always exist more "optimal" CPD(C) • We prefer simpler (more explanatory) networks – Practical scores regularize the likelihood improvement complex networks. 9 BN Learning Algorithms z Structural EM (Friedman 1998) z The original algorithm Expression data z Sparse Candidate Algorithm (Friedman et al.) z Discretizing array signals z Hill-climbing search using local operators: add/delete/swap of a single edge z Feature extraction: Markov relations, order relations z Re-assemble high-confidence sub-networks from features Learning Algorithm z Module network learning (Segal et al.) z Heuristic search of structure in a "module graph" E B z Module assignment z Parameter sharing R A z Prior knowledge: possible regulators (TF genes) C Confidence Estimates Bootstrap approach: E B Learn R A D1 le C mp sa re E B D Learn R A D resample 2 C ... re s am p E B le Estimate “Confidence level”: R A D Learn m m 1 C C (f ) = ∑1{}f ∈ Gi m i =1 10 Results from SCA + feature extraction (Friedman et al.) SST2 KAR4 TEC1 NDJ1 KSS1 FUS1 PRM1 AGA1 YLR343W AGA2 TOM6 FIG1 FUS3 YLR334C MFA1 STE6 YEL059W The initially learned network of The “mating response” substructure ~800 genes A Module Network Nature Genetics 34, 166 - 176 (2003) 11 Gaussian Graphical Models z Why? Sometimes an UNDIRECTED association graph makes more sense and/or is more informative z gene expressions may be influenced by unobserved factor that are post-transcriptionally regulated B B B A C A C A C z The unavailability of the state of B results in a constrain over A and C Covariance Selection z Multivariate Gaussian over all continuous expressions 1 1 r T -1 r p([x1,..., xn ]) = n 1 exp{}- 2 (x - µ) Σ (x - µ) (2π ) 2 | Σ | 2 z The precision matrix K=Σ−1 reveals the topology of the (undirected) network E(xi | x-i ) = ∑(Kij / Kii )x j j z Edge ~ |Kij| > 0 z Learning Algorithm: Covariance selection z Want a sparse matrix z Regression for each node with degree constraint (Dobra et al.) z Regression for each node with hierarchical Bayesian prior (Li, et al) 12 Gene modules from identified using GGM (Li, Yang and Xing) A comparison of BN and GGM: GGM BN 2: Protein-DNA Interaction Network z Expression networks are not necessarily causal z BNs are indefinable only up to Markov equivalence: B B and A C A C can give the same optimal score, but not further distinguishable under a likelihood score unless further experiment from perturbation is performed z GGM have yields functional modules, but no causal semantics z TF-motif interactions provide direct evidence of casual, regulatory dependencies among genes z stronger evidence than expression correlations z indicating presence of binding sites on target gene -- more easily verifiable z disadvantage: often very noisy, only applies to cell-cultures, restricted to known TFs ..
Recommended publications
  • RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
    RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed
    [Show full text]
  • Bonnie Berger Named ISCB 2019 ISCB Accomplishments by a Senior
    F1000Research 2019, 8(ISCB Comm J):721 Last updated: 09 APR 2020 EDITORIAL Bonnie Berger named ISCB 2019 ISCB Accomplishments by a Senior Scientist Award recipient [version 1; peer review: not peer reviewed] Diane Kovats 1, Ron Shamir1,2, Christiana Fogg3 1International Society for Computational Biology, Leesburg, VA, USA 2Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel 3Freelance Writer, Kensington, USA First published: 23 May 2019, 8(ISCB Comm J):721 ( Not Peer Reviewed v1 https://doi.org/10.12688/f1000research.19219.1) Latest published: 23 May 2019, 8(ISCB Comm J):721 ( This article is an Editorial and has not been subject https://doi.org/10.12688/f1000research.19219.1) to external peer review. Abstract Any comments on the article can be found at the The International Society for Computational Biology (ISCB) honors a leader in the fields of computational biology and bioinformatics each year with the end of the article. Accomplishments by a Senior Scientist Award. This award is the highest honor conferred by ISCB to a scientist who is recognized for significant research, education, and service contributions. Bonnie Berger, Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) is the 2019 recipient of the Accomplishments by a Senior Scientist Award. She is receiving her award and presenting a keynote address at the 2019 Joint International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Basel, Switzerland on July 21-25, 2019. Keywords ISCB, Bonnie Berger, Award This article is included in the International Society for Computational Biology Community Journal gateway.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Unsupervised And
    UNIVERSITY OF CALIFORNIA RIVERSIDE Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Muhammad Abu Bakar Siddique June 2021 Dissertation Committee: Dr. Evangelos Christidis, Chairperson Dr. Amr Magdy Ahmed Dr. Samet Oymak Dr. Evangelos Papalexakis Copyright by Muhammad Abu Bakar Siddique 2021 The Dissertation of Muhammad Abu Bakar Siddique is approved: Committee Chairperson University of California, Riverside To my family for their unconditional love and support. i ABSTRACT OF THE DISSERTATION Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing by Muhammad Abu Bakar Siddique Doctor of Philosophy, Graduate Program in Computer Science University of California, Riverside, June 2021 Dr. Evangelos Christidis, Chairperson Natural Language Processing (NLP) has yielded results that were unimaginable only a few years ago on a wide range of real-world tasks, thanks to deep neural networks and the availability of large-scale labeled training datasets. However, existing supervised methods assume an unscalable requirement that labeled training data is available for all classes: the acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or unsupervised) models that can seamlessly adapt to new unseen classes are indispensable for NLP methods to work in real-world applications effectively; such models mitigate (or eliminate) the need for collecting and annotating data for each domain. This dissertation ad- dresses three critical NLP problems in contexts where training data is scarce (or unavailable): intent detection, slot filling, and paraphrasing. Having reliable solutions for the mentioned problems in the open-domain setting pushes the frontiers of NLP a step towards practical conversational AI systems.
    [Show full text]
  • Program Book
    Pacific Symposium on Biocomputing 2016 January 4-8, 2016 Big Island of Hawaii Program Book PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 Welcome to PSB 2016! We have prepared this program book to give you quick access to information you need for PSB 2016. Enclosed you will find • Logistics information • Menus for PSB hosted meals • Full conference schedule • Call for Session and Workshop Proposals for PSB 2017 • Poster/abstract titles and authors • Participant List Conference materials are also available online at http://psb.stanford.edu/conference-materials/. PSB 2016 gratefully acknowledges the support the Institute for Computational Biology, a collaborative effort of Case Western Reserve University, the Cleveland Clinic Foundation, and University Hospitals; the National Institutes of Health (NIH), the National Science Foundation (NSF); and the International Society for Computational Biology (ISCB). If you or your institution are interested in sponsoring, PSB, please contact Tiffany Murray at [email protected] If you have any questions, the PSB registration staff (Tiffany Murray, Georgia Hansen, Brant Hansen, Kasey Miller, and BJ Morrison-McKay) are happy to help you. Aloha! Russ Altman Keith Dunker Larry Hunter Teri Klein Maryln Ritchie The PSB 2016 Organizers PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 SPEAKER INFORMATION Oral presentations of accepted proceedings papers will take place in Salon 2 & 3. Speakers are allotted 10 minutes for presentation and 5 minutes for questions for a total of 15 minutes. Instructions for uploading talks were sent to authors with oral presentations. If you need assistance with this, please see Tiffany Murray or another PSB staff member.
    [Show full text]
  • DREAM: a Dialogue on Reverse Engineering Assessment And
    DREAM:DREAM: aa DialogueDialogue onon ReverseReverse EngineeringEngineering AssessmentAssessment andand MethodsMethods Andrea Califano: MAGNet: Center for the Multiscale Analysis of Genetic and Cellular Networks C2B2: Center for Computational Biology and Bioinformatics ICRC: Irving Cancer RResearchesearch Center Columbia University 1 ReverseReverse EngineeringEngineering • Inference of a predictive (generative) model from data. E.g. argmax[P(Data|Model)] • Assumptions: – Model variables (E.g., DNA, mRNA, Proteins, cellular sub- structures) – Model variable space: At equilibrium, temporal dynamics, spatio- temporal dynamics, etc. – Model variable interactions: probabilistics (linear, non-linear), explicit kinetics, etc. – Model topology: known a-priori, inferred. • Question: – Model ~= Reality? ReverseReverse EngineeringEngineering Data Biological System Expression Proteomics > NFAT ATGATGGATG CTCGCATGAT CGACGATCAG GTGTAGCCTG High-throughput GGCTGGA Structure Sequence Biology … Biochemical Model Validation Control X-Y- Control X+Y+ Y X Z X+Y- X-Y+ Control Control Specific Prediction SomeSome ReverseReverse EngineeringEngineering MethodsMethods • Optimization: High-Dimensional objective function max corresponds to best topology – Liang S, Fuhrman S, Somogyi (REVEAL) – Gat-Viks and R. Shamir (Chain Functions) – Segal E, Shapira M, Regev A, Pe’er D, Botstein D, KolKollerler D, and Friedman N (Prob. Graphical Models) – Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, Erich D. Jarvis (Dynamic Bayesian Networks) – … • Regression: Create a general model of biochemical interactions and fit the parameters – Gardner TS, di Bernardo D, Lorentz D, and Collins JJ (NIR) – Alberto de la Fuente, Paul Brazhnik, Pedro Mendes – Roven C and Bussemaker H (REDUCE) – … • Probabilistic and Information Theoretic: Compute probability of interaction and filter with statistical criteria – Atul Butte et al. (Relevance Networks) – Gustavo Stolovitzky et al. (Co-Expression Networks) – Andrea CaCalifanolifano et al.
    [Show full text]
  • Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006
    MAX PLANCK INSTITUTE FOR MOLECULAR GENETICS Research Report 2006 Max Planck Institute for Molecular Genetics, Berlin Imprint | Research Report 2006 Published by the Max Planck Institute for Molecular Genetics (MPIMG), Berlin, Germany, August 2006 Editorial Board Bernhard Herrmann, Hans Lehrach, H.-Hilger Ropers, Martin Vingron Coordination Claudia Falter, Ingrid Stark Design & Production UNICOM Werbeagentur GmbH, Berlin Number of copies: 1,500 Photos Katrin Ullrich, MPIMG; David Ausserhofer Contact Max Planck Institute for Molecular Genetics Ihnestr. 63–73 14195 Berlin, Germany Phone: +49 (0)30-8413 - 0 Fax: +49 (0)30-8413 - 1207 Email: [email protected] For further information about the MPIMG please see our website: www.molgen.mpg.de MPI for Molecular Genetics Research Report 2006 Table of Contents The Max Planck Institute for Molecular Genetics . 4 • Organisational Structure. 4 • MPIMG – Mission, Development of the Institute, Research Concept. .5 Department of Developmental Genetics (Bernhard Herrmann) . 7 • Transmission ratio distortion (Hermann Bauer) . .11 • Signal Transduction in Embryogenesis and Tumor Progression (Markus Morkel). 14 • Development of Endodermal Organs (Heiner Schrewe) . 16 • Gene Expression and 3D-Reconstruction (Ralf Spörle). 18 • Somitogenesis (Lars Wittler). 21 Department of Vertebrate Genomics (Hans Lehrach) . 25 • Molecular Embryology and Aging (James Adjaye). .31 • Protein Expression and Protein Structure (Konrad Büssow). .34 • Mass Spectrometry (Johan Gobom). 37 • Bioinformatics (Ralf Herwig). .40 • Comparative and Functional Genomics (Heinz Himmelbauer). 44 • Genetic Variation (Margret Hoehe). 48 • Cell Arrays/Oligofingerprinting (Michal Janitz). .52 • Kinetic Modeling (Edda Klipp) . .56 • In Vitro Ligand Screening (Zoltán Konthur). .60 • Neurodegenerative Disorders (Sylvia Krobitsch). .64 • Protein Complexes & Cell Organelle Assembly/ USN (Bodo Lange/Thorsten Mielke). .67 • Automation & Technology Development (Hans Lehrach).
    [Show full text]
  • Modeling and Analysis of RNA-Seq Data: a Review from a Statistical Perspective
    Modeling and analysis of RNA-seq data: a review from a statistical perspective Wei Vivian Li 1 and Jingyi Jessica Li 1;2;∗ Abstract Background: Since the invention of next-generation RNA sequencing (RNA-seq) technolo- gies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit dif- ferent performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development. 1 Introduction RNA sequencing (RNA-seq) uses the next generation sequencing (NGS) technologies to reveal arXiv:1804.06050v3 [q-bio.GN] 1 May 2018 the presence and quantity of RNA molecules in biological samples. Since its invention, RNA- seq has revolutionized transcriptome analysis in biological research. RNA-seq does not require any prior knowledge on RNA sequences, and its high-throughput manner allows for genome-wide profiling of transcriptome landscapes [1,2].
    [Show full text]
  • University of California Santa Cruz Sample
    UNIVERSITY OF CALIFORNIA SANTA CRUZ SAMPLE-SPECIFIC CANCER PATHWAY ANALYSIS USING PARADIGM A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOMOLECULAR ENGINEERING AND BIOINFORMATICS by Stephen C. Benz June 2012 The Dissertation of Stephen C. Benz is approved: Professor David Haussler, Chair Professor Joshua Stuart Professor Nader Pourmand Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Stephen C. Benz 2012 Table of Contents List of Figures v List of Tables xi Abstract xii Dedication xiv Acknowledgments xv 1 Introduction 1 1.1 Identifying Genomic Alterations . 2 1.2 Pathway Analysis . 5 2 Methods to Integrate Cancer Genomics Data 10 2.1 UCSC Cancer Genomics Browser . 11 2.2 BioIntegrator . 16 3 Pathway Analysis Using PARADIGM 20 3.1 Method . 21 3.2 Comparisons . 26 3.2.1 Distinguishing True Networks From Decoys . 27 3.2.2 Tumor versus Normal - Pathways associated with Ovarian Cancer 29 3.2.3 Differentially Regulated Pathways in ER+ve vs ER-ve breast can- cers . 36 3.2.4 Therapy response prediction using pathways (Platinum Free In- terval in Ovarian Cancer) . 38 3.3 Unsupervised Stratification of Cancer Patients by Pathway Activities . 42 4 SuperPathway - A Global Pathway Model for Cancer 51 4.1 SuperPathway in Ovarian Cancer . 55 4.2 SuperPathway in Breast Cancer . 61 iii 4.2.1 Chin-Naderi Cohort . 61 4.2.2 TCGA Breast Cancer . 63 4.3 Cross-Cancer SuperPathway . 67 5 Pathway Analysis of Drug Effects 74 5.1 SuperPathway on Breast Cell Lines .
    [Show full text]
  • 24019 - Probabilistic Graphical Models
    Year : 2019/20 24019 - Probabilistic Graphical Models Syllabus Information Academic Course: 2019/20 Academic Center: 337 - Polytechnic School Study: 3379 - Bachelor's (degree) programme in Telecommunications Network Engineering Subject: 24019 - Probabilistic Graphical Models Credits: 5.0 Course: 3 Teaching languages: Theory: Grup 1: English Practice: Grup 101: English Grup 102: English Seminar: Grup 101: English Grup 102: English Teachers: Vicente Gomez Cerda Teaching Period: Second Quarter Schedule: --- Presentation Probabilistic graphical models (PGMs) are powerful modeling tools for reasoning and decision making under uncertainty. PGMs have many application domains, including computer vision, natural language processing, efficient coding, and computational biology. PGMs connects graph theory and probability theory, and provide a flexible framework for modeling large collections of random variables with complex interactions. This is an introductory course which focuses on two main principles: (1) emphasizing the role of PGMs as a unifying language in machine learning that allows a natural specification of many problem domains with inherent uncertainty, and (2) providing a set of computational tools for probabilistic inference (making predictions that can be used to aid decision making), and learning (estimating the graph structure and their parameters from data). Associated skills Basic Competences That the students can apply their knowledge to their work or vocation of a professional form in a professional way and possess the competences which are usually proved by means of the elaboration and defense of arguments and solving the solution of problems within their study area. That the students have the ability of collecting and interpreting relevant data (normally within their study area) to issue judgements which include a reflection about relevant topics of social, scientific or ethical nature.
    [Show full text]
  • Curriculum Vitae—Nir Friedman
    Nir Friedman Last update: February 14, 2019 Curriculum Vitae|Nir Friedman School of Computer Science and Engineering email: [email protected] Alexander Silberman Institute of Life Sciences Office: +972-73-388-4720 Hebrew University of Jerusalem Cellular: +972-54-882-0432 Jerusalem 91904, ISRAEL Professional History Professor 2009{present Alexander Silberman Institute of Life Sciences The Hebrew University of Jerusalem Professor 2007{present School of Computer Science & Engineering The Hebrew University of Jerusalem Associate Professor 2002{2007 School of Computer Science & Engineering The Hebrew University of Jerusalem Senior Lecturer 1998{2002 School of Computer Science & Engineering The Hebrew University of Jerusalem Postdoctoral Scholar 1996{1998 Division of Computer Science University of California, Berkeley Education Ph.D. Computer Science, Stanford University 1992{1997 M.Sc. Math. & Computer Science, Weizmann Institute of Science 1990{1992 B.Sc. Math. & Computer Science, Tel-Aviv University 1983{1987 Awards Alexander von Humboldt Foundation Research Award 2015 Fellow of the International Society of Computational Biology 2014 European Research Council \Advanced Grant" research award 2014-2018 \Test of Time" Award Research in Computational Molecular Biology (RECOMB) 2012 Most cited paper in 12-year window in RECOMB Michael Bruno Memorial Award 2010 \Israeli scholars and scientists of truly exceptional promise, whose achievements to date sug- gest future breakthroughs in their respective fields” [age < 50] European Research Council \Advanced
    [Show full text]
  • Introduction
    Introduction IJCAI-01 Conference Committee IJCAI-01 Program Committee: Contents: CONFERENCE CHAIR: Elisabeth André, DFKI GmbH (Germany) Introduction 2 Hector J. Levesque, University of Toronto (Canada) Minoru Asada, Osaka University (Japan) Sponsors & Committees 2-3 Franz Baader, RWTH Aachen (Germany) PROGRAM CHAIR: IJCAI-01 Awards 4 Craig Boutilier, University of Toronto (Canada) Bernhard Nebel,Albert-Ludwigs-Universität, Freiburg Didier Dubois, IRIT-CNRS (France) Conference at a Glance 5 (Germany) Maria Fox, University of Durham (United Kingdom) Workshop Program 6-7 LOCAL ARRANGEMENTS CHAIR: Hector Geffner, Universidad Simón Bolívar Doctoral Consortium 8 James Hoard, The Boeing Company, Seattle (USA) (Venezuela) Tutorial Program 8 SECRETARY-TREASURER: Georg Gottlob,Vienna University of Technology (Austria) Conference Program Highlights 9 Ronald J. Brachman,AT&T Labs – Research (USA) Invited Speakers 10 Haym Hirsh, Rutgers University (USA) IAAI-01 Conference 11 Eduard Hovy, Information Sciences Institute (USA) Advisory Committee: Joxan Jaffar, National University of Singapore Technical Program 12-19 Bruce Buchanan, University of Pittsburgh (USA) (Singapore) Exhibit Program 20-23 Silvia Coradeschi, Örebro University (Sweden) Daphne Koller, Stanford University (USA) RoboCup 2001 24 Olivier Faugeras, INRIA (France) Fangzhen Lin, Hong Kong University of Science and Registration Information 25 Cheng Hu, Chinese Academy of Sciences (China) Technolog y (Hong Kong) General Information 25-27 Nicholas Jennings, University of London (England) Heikki Mannila, Nokia Research Center (Finland) Conference Maps 28-30 Henry Kautz, University of Washington (USA) Robert Milne, Intelligent Applications (United Kingdom) IJCAI-03 Conference 31 Robert Mercer, University of Western Ontario (Canada) Daniele Nardi, Università di Roma “La Sapienza” Special Meetings 31 Silvia Miksch,Vienna University of Technology (Italy) (Austria) Dana Nau, University of Maryland (USA) Devika Subramanian, Rice University (USA) Patrick Prosser, University of Glasgow (UK) Welcome to IJCAI-01 L.
    [Show full text]
  • Learning Belief Networks in the Presence of Missing Values and Hidden Variables
    Learning Belief Networks in the Presence of Missing Values and Hidden Variables Nir Friedman Computer Science Division, 387 Soda Hall University of California, Berkeley, CA 94720 [email protected] Abstract sponds to a random variable. This graph represents a set of conditional independence properties of the represented In recent years there has been a ¯urry of works distribution. This component captures the structure of the on learning probabilistic belief networks. Cur- probability distribution, and is exploited for ef®cient infer- rent state of the art methods have been shown to ence and decision making. Thus, while belief networks can be successful for two learning scenarios: learn- represent arbitrary probability distributions, they provide ing both network structure and parameters from computational advantage for those distributions that can be complete data, and learning parameters for a ®xed represented with a simple structure. The second component network from incomplete dataÐthat is, in the is a collection of local interaction models that describe the presence of missing values or hidden variables. conditional probability of each variable given its parents However, no method has yet been demonstrated in the graph. Together, these two components represent a to effectively learn network structure from incom- unique probability distribution [Pearl 1988]. plete data. Eliciting belief networks from experts can be a laborious In this paper, we propose a new method for and expensive process in large applications. Thus, in recent learning network structure from incomplete data. years there has been a growing interest in learning belief This method is based on an extension of the networks from data [Cooper and Herskovits 1992; Lam and Expectation-Maximization (EM) algorithm for Bacchus 1994; Heckerman et al.
    [Show full text]