Radiotherapy Dose Fractionation Third Edition
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Personal Radiation Monitoring
Personal Radiation Monitoring Tim Finney 2020 Radiation monitoring Curtin staff and students who work with x-ray machines, neutron generators, or radioactive substances are monitored for exposure to ionising radiation. The objective of radiation monitoring is to ensure that existing safety procedures keep radiation exposure As Low As Reasonably Achievable (ALARA). Personal radiation monitoring badges Radiation exposure is measured using personal radiation monitoring badges. Badges contain a substance that registers how much radiation has been received. Here is the process by which a user’s radiation dose is measured: 1. The user is given a badge to wear 2. The user wears the badge for a set time period (usually three months) 3. At the end of the set time, the user returns the badge 4. The badge is sent away to be read 5. A dose report is issued. These steps are repeated until monitoring is no longer required. Badges are supplied by a personal radiation monitoring service provider. Curtin uses a service provider named Landauer. In addition to user badges, the service provider sends control badges that are kept on site in a safe place away from radiation sources. The service provider reads each badge using a process that extracts a signal from the substance contained in the badge to obtain a dose measurement. (Optically stimulated luminescence is one such process.) The dose received by the control badge is subtracted from the user badge reading to obtain the user dose during the monitoring period. Version 1.0 Uncontrolled document when printed Health and Safety Page 1 of 7 A personal radiation monitoring badge Important Radiation monitoring badges do not protect you from radiation exposure. -
Reduced Fractionation in Lung Cancer Patients Treated with Curative-Intent Radiotherapy During the COVID-19 Pandemic
This document was published on 2 April 2020. Please check www.rcr.ac.uk/cancer-treatment-documents to ensure you have the latest version. This document is the collaborative work of oncologists and their teams, and is not a formal RCR guideline or consensus statement. Reduced fractionation in lung cancer patients treated with curative-intent radiotherapy during the COVID-19 pandemic Corinne Faivre-Finn1,2, John D Fenwick3,4, Kevin N Franks5,6, Stephen Harrow7,8, Matthew QF Hatton9, Crispin Hiley10,11, Jonathan J McAleese12, Fiona McDonald13, Jolyne O’Hare12, Clive Peedell14, Ceri Powell15,16, Tony Pope17, Robert Rulach7,8, Elizabeth Toy18 1The Christie NHS Foundation Trust, Manchester 2The University of Manchester 3Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool 4Department of Physics, Clatterbridge Cancer Centre, Liverpool 5Leeds Cancer Centre 6University of Leeds 7Beatson West of Scotland Cancer Centre, Glasgow 8University of Glasgow 9Weston Park Hospital, Sheffield 10CRUK Lung Cancer Centre of Excellence, University College London 11Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London 12Northern Ireland Cancer Centre, Belfast 13The Royal Marsden NHS Foundation Trust, London 14James Cook University Hospital, Middlesbrough 15South West Wales Cancer Centre 16Velindre Cancer Centre 17Clatterbridge Cancer Centre, Liverpool 18Royal Devon and Exeter NHS Foundation Trust 1 This document was published on 2 April 2020. Please check www.rcr.ac.uk/cancer-treatment-documents to ensure you have the latest version. This document is the collaborative work of oncologists and their teams, and is not a formal RCR guideline or consensus statement. Introduction The World Health Organisation (WHO) declared COVID-19, the disease caused by the 2019 novel coronavirus SARS-CoV-2, a pandemic on the 11th of March 2020. -
Hypo-Fractionated FLASH-RT As an Effective Treatment Against Glioblastoma That Reduces Neurocognitive Side Effects in Mice
Author Manuscript Published OnlineFirst on October 15, 2020; DOI: 10.1158/1078-0432.CCR-20-0894 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hypo-fractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice Pierre Montay-Gruel1*, Munjal M. Acharya2*, Patrik Gonçalves Jorge1, 3, Benoit Petit1, Ioannis G. Petridis1, Philippe Fuchs1, Ron Leavitt1, Kristoffer Petersson1, 3, Maude Gondre1, 3, Jonathan Ollivier1, Raphael Moeckli3, François Bochud3, Claude Bailat3, Jean Bourhis1, Jean-François Germond3°, Charles L. Limoli2° and Marie-Catherine Vozenin1° 1 Department of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland. 2 Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA. 3 Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland. *, ° contributed equally to the work Running title Sparing the cognition, not the tumor with FLASH-RT Key words FLASH radiation therapy, glioblastoma, neurocognition Financial support The study was supported by a Synergia grant from the FNS CRS II5_186369 (M-C.V. and F.B.), a grant from lead agency grant FNS/ANR CR32I3L_156924 (M-C.V. and C.B.), ISREC Foundation thank to Biltema donation (JB and MCV) and by NIH program project grant PO1CA244091 (M-C.V. and C.L.L.), NINDS grant NS089575 (C.L.L.), KL2 award KL2TR001416 (M.M.A.). P.M.-G. was supported by Ecole Normale Supérieure de Cachan fellowship (MESR), FNS N°31003A_156892 and ISREC Foundation thank to Biltema donation, K.P. by FNS/ANR CR32I3L_156924 and ISREC Foundation thank to Biltema donation; P.J.G. -
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams Frequently Asked Questions Introduction In August of 2021, the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) jointly released the following position statement advising against using information about a patient’s previous cumulative dose information from medical imaging exams to decide the appropriateness of future imaging exams. This statement was also endorsed by the Radiological Society of North America (RSNA). It is the position of the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) that the decision to perform a medical imaging exam should be based on clinical grounds, including the information available from prior imaging results, and not on the dose from prior imaging-related radiation exposures. AAPM has long advised, as recommended by the International Commission on Radiological Protection (ICRP), that justification of potential patient benefit and subsequent optimization of medical imaging exposures are the most appropriate actions to take to protect patients from unnecessary medical exposures. This is consistent with the foundational principles of radiation protection in medicine, namely that patient radiation dose limits are inappropriate for medical imaging exposures. Therefore, the AAPM recommends against using dose values, including effective dose, from a patient’s prior imaging exams for the purposes of medical decision making. Using quantities such as cumulative effective dose may, unintentionally or by institutional or regulatory policy, negatively impact medical decisions and patient care. This position statement applies to the use of metrics to longitudinally track a patient’s dose from medical radiation exposures and infer potential stochastic risk from them. -
Time, Dose and Fractionation: Accounting for Hypoxia in the Search for Optimal Radiotherapy Treatment Parameters
!"#$ #"%"" &&' ( )(' * % ( + % , , %- .( (, , , % , . . % . %* . , . ( . %- ( . (, , , . . % / , 012( , . % 3 , % / , ( , , ( ( % . % , . ( . % , . + ( . , %%1 % - ( . , . 4 #)-*56 . ( . %1 , . ( + , , . % . , % !"#$ 788 %% 8 9 : 77 7 7 #6);"# <1=>$)>#$$>$";#? <1=>$)>#$$>$";!; ! (#"?># TIME, DOSE AND FRACTIONATION: ACCOUNTING FOR HYPOXIA IN THE SEARCH FOR OPTIMAL RADIOTHERAPY TREATMENT PARAMETERS Emely Kjellsson Lindblom Time, dose and fractionation: accounting for hypoxia in the search for optimal radiotherapy treatment parameters Emely Kjellsson Lindblom ©Emely Kjellsson Lindblom, Stockholm University 2017 ISBN print 978-91-7797-031-6 -
Single-Dose Versus Fractionated Radioimmunotherapy of Human Colon Carcinoma Xenografts Using 131I-Labeled Multivalent CC49 Single-Chain Fvs1
Vol. 7, 175–184, January 2001 Clinical Cancer Research 175 Single-Dose versus Fractionated Radioimmunotherapy of Human Colon Carcinoma Xenografts Using 131I-labeled Multivalent CC49 Single-chain Fvs1 Apollina Goel, Sam Augustine, labeled systemic toxicity was observed in any treatment Janina Baranowska-Kortylewicz, David Colcher, groups. The results show that radioimmunotherapy delivery for sc(Fv) and [sc(Fv) ] in a fractionated schedule clearly Barbara J. M. Booth, Gabriela Pavlinkova, 2 2 2 2 presented a therapeutic advantage over single administration. Margaret Tempero, and Surinder K. Batra The treatment group receiving tetravalent scFv showed a sta- Departments of Biochemistry and Molecular Biology [A. G., tistically significant prolonged survival with both single and S. K. B.], Pathology and Microbiology [S. A., B. J. M. B., G. P., fractionated administrations suggesting a promising prospect S. K. B.], and Radiation Oncology [J. B-K.], College of Pharmacy [S. A.], Eppley Institute for Research in Cancer and Allied Diseases of this reagent for cancer therapy and diagnosis in MAb-based [S. K. B.], University of Nebraska Medical Center, Omaha, Nebraska radiopharmaceuticals. 68198; Coulter Pharmaceutical Incorporated, San Francisco, California 94080 [D. C.]; and University of California San Francisco Cancer Center, San Francisco, California 94115 [M. T.] INTRODUCTION RIT3 is a rapidly developing therapeutic modality for the treatment of a wide variety of carcinomas (1). Numerous anti- ABSTRACT body-radionuclide combinations have been evaluated in clinical The prospects of radiolabeled antibodies in cancer detec- studies (2–9). RIT has yielded complete responses in hemato- tion and therapy remain promising. However, efforts to logical diseases like Hodgkin and non-Hodgkin lymphoma (10, achieve cures, especially of solid tumors, with the systemic 11); however, for solid tumors only a partial clinical response administration of radiolabeled monoclonal antibodies (MAbs) has been observed (12–14). -
Cumulative Radiation Dose in Patients Admitted with Subarachnoid Hemorrhage: a Prospective PATIENT SAFETY Study Using a Self-Developing Film Badge
Cumulative Radiation Dose in Patients Admitted with Subarachnoid Hemorrhage: A Prospective PATIENT SAFETY Study Using a Self-Developing Film Badge A.C. Mamourian BACKGROUND AND PURPOSE: While considerable attention has been directed to reducing the x-ray H. Young dose of individual imaging studies, there is little information available on the cumulative dose during imaging-intensive hospitalizations. We used a radiation-sensitive badge on 12 patients admitted with M.F. Stiefel SAH to determine if this approach was feasible and to measure the extent of their x-ray exposure. MATERIALS AND METHODS: After obtaining informed consent, we assigned a badge to each of 12 patients and used it for all brain imaging studies during their ICU stay. Cumulative dose was deter- mined by quantifying exposure on the badge and correlating it with the number and type of examinations. RESULTS: The average skin dose for the 3 patients who had only diagnostic DSA without endovascular intervention was 0.4 Gy (0.2–0.6 Gy). The average skin dose of the 8 patients who had both diagnostic DSA and interventions (eg, intra-arterial treatment of vasospasm and coiling of aneurysms) was 0.9 Gy (1.8–0.4 Gy). One patient had only CT examinations. There was no effort made to include or exclude the badge in the working view during interventions. CONCLUSIONS: It is feasible to incorporate a film badge that uses a visual scale to monitor the x-ray dose into the care of hospitalized patients. Cumulative skin doses in excess of 1 Gy were not uncommon (3/12) in this group of patients with acute SAH. -
Collection of Recorded Radiotherapy Seminars
IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org WHOLE BODY IRRADIATION Dr. Fuad Ismail Dept. of Radiotherapy & Oncology Universiti Kebangsaan Malaysia Medical Centre WHOLE BODY IRRADIATION (WBI) • WBI may be : – Accidental – Deliberate • Medical – Bone marrow transplant • Non-medical ACCIDENTAL WBI • Usually as a result of radiation disaster or accident – May also be due to medical accidents • Dislodged or stuck sources • Results in WBI by photon and particles eg neutron, heavy ions. Chernobyl ACCIDENTAL WBI • Radiation disasters – Chenobyl – Long Island New York • Radiation accidents – “Stolen” radioactive sources – Malfunction industrial sources ACCIDENTAL WBI • Compared to medical irradiation – Dose is non-uniform – Dose level is not known – Dose may be due to mixed particle and non- particle radiation – Exposure time is not known Acute Radiation Syndrome (ARS) • Acute illness with course over hours to weeks. • Stages – Prodromal symptoms – Latent period – Symptomatic illness – Recovery / sequelae DOSE RANGES FOR ARS • Sequelae of ARS is dependant on dose – < 100 cGy - asymptomatic – 100 - 200 cGy - minor symptoms – 250 – 500 cGy - haematopoietic syndrome – 800 – 3000 cGy - gastro-intestinal syndrome – > 2000 cGy - cerebro-vascular syndrome Prodromal radiation syndrome • Initial reaction to irradiation – – immediate response • Characterized by – Nausea – Vomiting – Diarrhea • Lasts from a few minutes to few days • Happens at low doses but increases with dose Prodromal radiation syndrome -
Radiation Glossary
Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material. -
``Low Dose``And/Or``High Dose``In Radiation Protection: a Need To
IAEA-CN-67/154 "LOW DOSE" AND/OR "HIGH DOSE" IN RADIATION PROTECTION: A NEED TO SETTING CRITERIA FOR DOSE CLASSIFICATION Mehdi Sohrabi National Radiation Protection Department & XA9745670 Center for Research on Elevated Natural Radiation Atomic Energy Organization of Iran, Tehran ABSTRACT The "low dose" and/or "high dose" of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; "What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?". This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. In radiation applications, a "low dose" is commonly associated to applications delivering a dose such as given to a patient in a medical diagnosis and a "high dose" is referred to a dose in applications such as radiotherapy, mutation breeding, control of sprouting, control of insects, delay ripening, and sterilization having a range of doses from 1 to 105 Gy, for which the term "high dose dosimetry" is applied [1]. -
Internal and External Exposure Exposure Routes 2.1
Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body. -
Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury
Mol Neurobiol (2017) 54:1022–1032 DOI 10.1007/s12035-015-9628-x Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury Lianhong Yang1,2 & Jianhua Yang1,2 & Guoqian Li3 & Yi Li 1,2 & Rong Wu1,2 & Jinping Cheng1,2 & Yamei Tang1,2,4 Received: 26 October 2015 /Accepted: 8 December 2015 /Published online: 22 January 2016 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The brain is the major dose-limiting organ in pa- brain injury, especially rat and mouse, as well as radiation tients undergoing radiotherapy for assorted conditions. dosages, dose fractionation, and secondary pathophysiologi- Radiation-induced brain injury is common and mainly occurs cal responses. in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived Keywords Radiation . Brain injury . Pathogenic mechanism . brain metastases. Nevertheless, the underlying mechanisms of Animal model radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individ- uals, the effects remain suboptimal. Accordingly, animal Introduction models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more ef- Radiation-induced brain injury is a continuous and dynamic ficacious therapies. So far, models employing various animal process. Based on the time course of clinical expression, species with different radiation dosages and fractions have radiation-induced brain injury can be classified into the fol- been introduced to investigate the prevention, mechanisms, lowing three phases [1]. (1) Acute reactions, which occur early detection, and management of radiation-induced brain within 2 weeks after the beginning of radiotherapy and some- injury.