<<

Persoonia 33, 2014: 1–40 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X681981

Introducing the Consolidated Species Concept to resolve species in the

W. Quaedvlieg1, M. Binder1, J.Z. Groenewald1, B.A. Summerell2, A.J. Carnegie3, T.I. Burgess4, P.W. Crous1,5,6

Key words Abstract The Teratosphaeriaceae represents a recently established family that includes numerous saprobic, extremophilic, human opportunistic, and plant pathogenic fungi. Partial DNA sequence data of the 28S rRNA and Eucalyptus RPB2 genes strongly support a separation of the from the Teratosphaeriaceae, and also pro- multi-locus vide support for the Extremaceae and Neodevriesiaceae, two novel families including many extremophilic fungi that phylogeny occur on a diversity of substrates. In addition, a multi-locus DNA sequence dataset was generated (ITS, LSU, Btub, species concepts Act, RPB2, EF-1α and Cal) to distinguish taxa in and associated with leaf disease of Eucalyptus, leading to the introduction of 23 novel genera, five species and 48 new combinations. Species are distinguished based on a polyphasic approach, combining morphological, ecological and phylogenetic species con- cepts, named here as the Consolidated Species Concept (CSC). From the DNA sequence data generated, we show that each one of the five coding genes tested, reliably identify most of the species present in this dataset (except species of ). The ITS gene serves as a primary barcode locus as it is easily generated and has the most extensive dataset available, while either Btub, EF-1α or RPB2 provide a useful secondary barcode locus.

Article info Received: 30 January 2014; Accepted: 12 March 2014; Published: 15 May 2014.

Introduction the remaining Mycosphaerella-like species were better placed in other genera. The current generic and family concepts of the Mycosphaerel­ The Teratosphaeria was separated from Mycosphaerella laceae and the Teratosphaeriaceae (Capnodiales, Dothideo­ s.l. based on its ascomatal arrangement and periphysate mycetes) can be indirectly attributed to Crous (1998), who used ostioles (Müller & Oehrens 1982). Teratosphaeria was later morphological characteristics of cultures and asexual morphs placed in its own family, based on ascospores that turn brown to show that Mycosphaerella was polyphyletic. Crous (1998) and verruculose while still in their asci, the presence of pseudo­ suggested that the genus warranted subdivision into natural parenchymatal remnants in ascomata, ascospores with mu- groups, defined by their asexual morphs. In contrast to these coid sheaths, distinct asexual morphs and DNA phylogenetic findings, the first phylogenetic trees published for Mycosphae­ data (Crous et al. 2007a). By 2012, 22 asexual extremo- rella (based on ITS nrDNA sequence data), showed it was philic and plant pathogenic genera have been linked to the monophyletic (Crous et al. 1999, 2000, 2001, Stewart et al. Teratosphaeriaceae­ , while 38 asexual genera were included in 1999, Goodwin et al. 2001). As more sequence data became the Mycosphaerellaceae (Hyde et al. 2013). Another 11 genera available (especially of loci such as 28S nrDNA), this view have subsequently been added to the Mycosphaerellaceae gradually changed and Mycosphaerella is now recognised as (Crous et al. 2013, Quaedvlieg et al. 2013). Recent phylogenetic polyphyletic (Braun et al. 2003, Schubert et al. 2007, Crous et studies into extremophilic fungi collected by Friedman (1982) al. 2007b, 2009b, Batzer et al. 2008, Dugan et al. 2008, Bensch and Selbmann (2005, 2008) have shown that several genera of et al. 2012). Although Mycosphaerella s.l. represents a complex slow-growing melanised rock-inhabiting (extremophilic) fungi, (of genera and species) with more than 10 000 species names isolated from harsh climatic conditions (e.g. the South Pole and (Crous et al. 2000, 2001, 2004b, c, 2006, 2007a, 2009c, Crous high mountain peaks) either belong to the Teratosphaeriaceae & Braun 2003), several phylogenetic lineages remain poorly and/or to a closely associated, unclassified, family referred to resolved due to limited sampling (Hunter et al. 2006, Crous et as either Teratosphaeriaceae ‘1’ or ‘2’ in Ruibal et al. (2009, al. 2007a, 2009a–d, Quaedvlieg et al. 2011, 2012). A previous 2011) and Egidi et al. (2014). study by Verkley et al. (2004) showed that Mycosphaerella s.str. was limited to species with asexual morphs, and that The original concept of Mycosphaerella has shifted as it became evident that the mycosphaerella-like morphology has evolved 1 CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, multiple times with taxa clustering in disparate families such The Netherlands; corresponding author e-mail: [email protected]. as the Schizothyriaceae (Batzer et al. 2008), Cladosporiaceae 2 Royal Botanic Gardens and Domain Trust, Mrs. Macquaries Road, Sydney, (Schubert et al. 2007, Dugan et al. 2008, Bensch et al. 2010, NSW 2000, Australia. 2012), Dissoconiaceae, Mycosphaerellaceae and Teratosphae­ 3 Biosecurity NSW, NSW Department of Primary Industries, P.O. Box 100, Beecroft, New South Wales 2119, Australia. riaceae (Crous et al. 2009b, Li et al. 2012). 4 State Centre of Excellence in Climate Change and Woodland and Forest Numerous species are associated with Mycosphaerella leaf Health, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia. disease (MLD) and Teratosphaeria leaf disease (TLD) of Eu­ 5 Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 calyptus and the closely related genus Corymbia. The genus CH Utrecht, The Netherlands. 6 Wageningen University and Research Centre (WUR), Laboratory of Phyto- Eucalyptus (Myrtaceae) is primarily native to Australia and con- pathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands. tains more than 700 species. Some species have exceptionally

© 2014 Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 2 Persoonia – Volume 33, 2014 fast growth rates and relatively short rotation periods, making existing and newly generated LSU and RPB2 sequence data them ideally suited for hardwood timber, firewood, charcoal, in combination with the LSU/RPB2 data of Teratosphaeriaceae essential oils and pulp production (Grattapaglia et al. 2012). For associated extremophilic isolates generated by Ruibal et al. commercial purposes, Eucalyptus spp. have been introduced (2009, 2011) and Egidi et al. (2014). Secondary goals of this and cultivated in many other tropical, sub-tropical and temper- study are to 2) create a multi-locus DNA sequence dataset in ate countries, where these species often prosper and even order to rigorously distinguish the selected MLD- and TLD- dominate a range of habitats, from heathlands to forests (Crous associated fungal species; and 3) determine which loci provide 1998, Turnbull 2000, Wingfield et al. 2001, Boland et al. 2006). the most reliable identification based on PCR efficiency and the Although Eucalyptus spp. exhibit many properties favourable size of the Kimura-2-parameter barcode gaps. Comparing the for commercial forestry production, exotic plantations often obtained results with existing literature, this study 4) describes suffer severe damage caused by the large numbers of native novel species isolated from MLD and TLD symptoms; and (host-shift) and introduced pathogens that may cause serious 5) considers species boundaries of phylogenetically closely and epidemic diseases, often simultaneously on roots, stems related taxa. or leaves (Park et al. 2000, Old et al. 2003, Slippers et al. 2005, Hunter et al. 2011). A good example of host shifting is the stem MATERIALS AND METHODS canker pathogen Teratosphaeria zuluensis, which most likely jumped from a native tree to introduced clones of E. grandis Isolates in South Africa and to E. camaldulensis in Ethiopia, where it is now a major pathogen (Wingfield et al. 1996, Gezahg­ne et Isolates used for this study (Table 1) were obtained from the al. 2003, Cortinas et al. 2010). Host jumping by fungal patho- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Nether­ gens is relatively common and several other examples can be lands (CBS), or from the working collection of Pedro Crous found among fungal species associated with MLD and TLD of (CPC), housed at CBS. Fresh collections were made from eucalypts (Crous & Groenewald 2005, Burgess et al. 2007, leaves of diverse hosts by placing material in damp chambers Crous et al. 2007a, Arzanlou et al. 2008, Hunter et al. 2011, for 1–2 d. Single conidial colonies were grown from sporulating Pérez et al. 2013). conidiomata on Petri dishes containing 2 % malt extract agar (MEA) as described earlier by Crous et al. (1991). Leaf and In total, more than 146 species in the Mycosphaerellaceae and stem tissue bearing ascomata were soaked in water for ± 2 h, Teratosphaeriaceae cultivated from leaf spots of eucalypts are after which they were placed in the bottom of Petri dish lids, with included in this study. Species of this complex are assemblages the top half of the dish containing MEA. Ascospore germination of cryptic taxa that can co-inhabit the same lesions, making patterns were determined after 24 h, and single ascospore and reliable species identification difficult (Crous 1998, Barnes conidial cultures were established according to Crous (1998). et al. 2004, Crous et al. 2004b, c, Groenewald et al. 2005, Colonies were sub-cultured onto potato-dextrose agar (PDA), Cheewangkoon et al. 2008, Stukenbrock et al. 2012). Species oatmeal agar (OA) (see Crous et al. 2009e), MEA, and pine identification has been hampered by conserved sexual mor- needle agar (PNA) (Smith et al. 1996), and incubated at 25 °C phologies throughout the Mycosphaerellaceae and the Terato­ to promote sporulation. sphaeriaceae, turning the taxonomic and systematic focus mostly to asexual morphology (Crous et al. 2000, 2006, Verkley Multi-locus DNA screening et al. 2013). However, similar asexual morphologies have also independently evolved in different taxa, further complicating the Genomic DNA was extracted from mycelium growing on MEA TM taxonomy of these pathogens (Crous et al. 2007a). (Table 1), using the UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc., Solana Beach, CA, USA). All strains The introduction of routine DNA sequencing technology dur- were screened for seven loci (ITS, LSU, Act, Cal, EF-1α, RPB2 ing the last decade has made it possible to mostly identify and and Btub) using the primer sets listed in Table 2. The PCR classify these phytopathogens, although species boundary amplifications were performed in a total volume of 12.5 µL ambiguities still exist between phylogenetically closely related solution containing 10–20 ng of template DNA, 1× PCR buffer, taxa. Several previous studies have used molecular sequencing 0.7 µL DMSO (99.9 %), 2 mM MgCl2, 0.4 µM of each primer, techniques to analyse the diversity of MLD and TLD pathogens 25 µM of each dNTP and 1.0 U BioTaq DNA polymerase (Bioline on Eucalyptus spp. However, these studies generally included GmbH Luckenwalde, Germany). PCR conditions were set as a limited and frequently non-overlapping dataset of species follows: an initial denaturation temperature of 96 °C for 2 min, and DNA loci (with ITS being used predominantly for species followed by 40 cycles of denaturation temperature of 96 °C for identification) (for example, Crous et al. 2006, Hunter et al. 45 s, primer annealing at the temperature stated in Table 2, 2006). primer extension at 72 °C for 90 s and a final extension step We analyse 329 isolates representing 146 species of MLD- and at 72 °C for 2 min. The resulting fragments were sequenced TLD-associated fungi, using seven loci that have individually using the PCR primers and the BigDye Terminator Cycle or in combination been used in the past to successfully identify Sequencing Kit v. 3.1 (Applied Biosystems, Foster City, CA, species belonging to the Mycosphaerellaceae or Teratosphae­ USA). Sequencing reactions were performed as described by riaceae. These loci include partial sequences of the β-tubulin Cheewangkoon et al. (2008). gene (Btub), the internal transcribed spacer regions and inter- vening 5.8S rDNA (ITS), actin (Act), translation elongation factor Phylogenetic analysis 1-alpha (EF-1α), 28S nrDNA (LSU), calmodulin (Cal) and RNA An initial alignment of the obtained sequence data was first polymerase II second largest subunit gene (RPB2) (Crous et al. done using MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/ 2004c, Hunter et al. 2006, Quaedvlieg et al. 2011). An additional index.html; Katoh et al. 2002) and whenever indicated, manually 172 isolates representing 125 species (mostly extremophiles improved in BioEdit v. 7.0.5.2 (Hall 1999). To check the congru- linked to the Teratosphaeriaceae by Ruibal et al. (2009, 2011) ency of the datasets, a 70 % Neighbour-Joining (NJ) recipro- and Egidi et al. (2014) were also investigated based on two cal bootstrap method with maximum likelihood distance was loci, LSU and RPB2. performed on each individual locus (Mason-Gamer & Kellogg The primary goal of this study is to 1) resolve the main lineages 1996) (resulting trees not shown). Bayesian analyses (critical in Teratosphaeriaceae into phylogenetic and morphological units, which can be assigned to single generic names using (text continues on p. 16) W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 3 KF902793 – – – – – KF902801 – – KF902818 KF902819 KF902820 KF902821 Btub – – KF903090 – – – – – – – – – – – – – – – – KF903098 – – – – EF-1α 3 KF902183 KF937251 KF902199 KF902179 KF937255 – KF902193 KF902197 KF902178 KF902184 KF903091 – RPB2 KF901510 – – – – – KF901514 – – ITS GenBank accession no. – – – – – – KF902538 KF902539 KF901741 KF902194 KF903099 KF902802 – – KF902536 KF901740 KF902191 KF903096 KF902799 KF902532 KF901512 KF902185 KF903092 KF902794 KF902529 KF901508 KF902181 KF903088 KF902791 KF902530 KF901509 KF902182 KF903089 KF902792 Cal – KF902195 – KF902180 – – KF252302 – – – KF937253 – KF937266 – – KF902198 – – KF902200 – KF252305 – – KF937252 – – KF310068 – KF902187 – – KF937254 – – KF902196 – KF903539 – – – – KJ564346 – – – KF310081 Act KF901833 KF902102 KF901827 KF251800 EU048580 EU040226 KF937221 KF937229 KJ564333 KF902090 KF902004 KF902046 KF251651 KJ564335 KF937220 KJ564334 KF310014 KF901830 KF901831 KF903398 KF902534 KF901513 KF902189 KF903094 KF902797 KF901985 KF937222 JF770460 KF902173 EU040227 KF901832 KF902088 – KF902104 KF903612 KF902533 KF901750 KF902188 KF903093 KF902796 KJ564332 KJ564331 KF902089 JX069859 KF901837 KF903395 KF902554 KF901516 KF902223 KF903115 KF901824 KF903526 KF902528 KF901507 KF902177 KF903087 KF902790 KF901984 KF902047 KF903480 KF902555 KF901700 KF902224 KF903116 KF902048 KF903589 KF902556 KF901701 KF902225 KF903117 EU167591 KF310005 KF902087 – KF902025 KF903481 KF902535 KF901680 KF902190 KF903095 KF902798 KF901813 KF903460 KF902527 KF901498 KF902186 KF903086 KF902795 KF902049 KF903407 KF902557 KF901702 KF902226 KF903118 KF901828 KF903527 KF902531 KF901511 KF901829 – KF901825 – KF901826 – KF901986 KF903512 KF902537 KF901647 KF902192 KF903097 KF902800 LSU Smith A. Muggia & & Schmidt Crous Crous Crous Crous Hong Barbetti Carnegie Taylor Beever Müller Ozerskaya Swart Swart Butinar Tyler Roets P.W. Crous & B. Summerell P.W. N. Nickerson L. E. M. Ribaldi E.W. E.W. P. P. M.J. S.B. – Hafellner L. A.J. A. Maxwell A. M. Hujslová J.E. P.W. Crous & B.A. Summerell P.W. – S. L. Dugan F.M. F. F. I. Smith L. Mostert L. Phillips A.J.L. P.W. P.W. P.W. P.W. K.L. Crous & P.W. Crous K.L. Crous & P.W. R. P.W. P.W. A. Maxwell A. A.J. Carnegie A.J. M. Hujslová Crous P.W. Crous P.W. Boterenbrood – P.W. Crous P.W. P.W. Crous P.W. P.W. Crous P.W. P.W. Crous P.W. A.J. Carnegie A.J. Carnegie A.J. Summerell B. A.J. Carnegie A.J. A. Gezahgne A.

Collector Queensland

Korea Africa Africa Africa Africa Africa Africa Africa Zealand Netherlands Netherlands

Australia: New South Wales Australia Canada South Switzerland Italy Romania Fiji South Spain Austria South Australia: Australia Western Australia: Czech Republic South Australia Zaire Russia Slovenia USA Australia: Victoria South South Africa South Portugal South Africa South South The New South Australia: Western Australia Western Australia: Wales South New Australia: Czech Republic Africa South Africa South The Spain South Africa South South Africa South Chile South Africa South Wales South Wales New South Wales Australia: New South Australia: New Australia: Wales South New Australia: Ethiopia

Location camal -

Secovlje of field water sp. sample sample sample sp. Protea lepidocarpodendron Trifolium subterraneum Trifolium Heat-treated soil Protea cynaroides Pinus montana salterns Hedysarum coronarium Beta vulgaris – soil of Perilla Rock Rock Leucadendron laureolum Eucalyptus globulus × dulensis Eucalyptus globulus Highly acidic soil Protea repens Persoonia sp. Coffea robusta Carex hypersaline Air sample Eucalyptus globulus Leucadendron tinctum Protea repens Eucalyptus globulus Protea repens Phaenocoma prolifera Protea arborea Hordeum vulgare orientalis Typha Agapanthus africanus Eucalyptus globulus Corymbia henryii Highly acidic soil Eucalyptus viminalis Eucalyptus viminalis Iris Rock Protea repens sp. Eucalyptus sp. Eucalyptus Eucalyptus cladocalyx Eucalyptus dunnii Eucalyptus dunnii Eucalyptus tereticornis Corymbia variegata Eucalyptus globulus

Host

EET ET ET EET ET ET ET ET ET ET EET ET TRN262

=

ET ET ET ET of Mycosphaerella aurantia ET ET ET 1, 2 ET of Mycosphaerella ellipsoidea ET of Mycosphaerella africana ET of Mycosphaerella africana ET 118712 117941 117941 CPC 18701 = CPC 3026 CBS 112119 = CPC 3116 CBS 112224 CBS 120730 = CPC 13119 CBS 118790 = DAOM 232211 CBS 115874 CBS 132689 = CPC 19833 CBS 110696 = CPC 1518 CBS 110696 CBS 655.86 CBS 121621 = CPC 12177 CBS 137.56 CBS 124.31 = CPC 5070 CBS CBS 118854 CBS 125985 = CPC 13864 CBS 111577 = CPC 1838 CBS 111577 CBS 138.40 = CPC 15458 L348 CBS 110503 = CMW 14459 CBS 110503 CBS 110500 CBS 112494 = CPC 3350 CBS 112494 CBS 147.52 CBS 128768 = CPC 18276 CBS 122893 = CPC 14898 CPC 12249 CBS 119414 CBS 125988 = CPC 15458 CBS 125421 = CPC 15370 CBS 117726 CBS 132720 = CBS 116154 CBS 680.95 = CBS 114484 CBS 132721 TRN440 CBS CBS 114761 = CPC 1217 CBS 114761 CBS 116289 = CPC 10935 CBS 116289 CBS 113059 = CPC 4313 CBS 113059 CBS 110843 = CBS 110843 CBS 120732 = CPC 13108 CPC 13113 CPC 13375 CBS 130524 CBS 120731 = CPC 13128 CPC 794 CPC 796 CBS 119901 = CMW 10189 CBS 119901 CBS 120035 = CPC 12730 CPC 850 CBS 122892 = CPC 12421 Isolate no. sp. B. sedgefieldii Austroafricana associata

C. zebrina Devriesia acadiensis D. agapanthi B. proteae Aulographina pinorum Cla. herbarum ariminensis C. beticola C. capsici allicinum Cla. chalastosporoides B. leucadendri Cla. iridis Cystocoleus ebeneus A. parva Amycosphaerella africana Camarosporula persooniae coffeae Catenulostroma

Cla. fusiforme Cla. hillianum hermanusense hermanusense Cat. protearum D. americana Table 1 Collection details and GenBank accession numbers of isolates included in this study. Table Acidiella bohemica Apenidiella strumelloidea

Constantinomyces macerans Con. nebulosus

Austroafricana

A. keanei

Batcheloromyces alistairii

Species 4 Persoonia – Volume 33, 2014 – – – – KF902803 – – – – – – – – – – – – – KF902804 KF902805 – – Btub – – – – – – – – – – – – – – – – – – – KF903100 – – – – – GU349049 – – – – – – – – – – – – KF903102 KF903103 – – – EF-1α 3 – – KF310051 KF310098 KF310086 KF902202 – KF902233 KF902234 KF902206 – – – GU371738 KF310093 KF310104 KF902201 – KF937259 KF310087 – KF902204 KF902205 KF937256 KF310102 RPB2 – – – – KF901802 EU707865 – – – EU707866 EU436763 – – – – – – DQ303056 KF901653 KF901654 – – ITS GenBank accession no. – – – – KF902540 – – – – – – – – – – – – – KF902541 KF902542 Cal – – – JX901979 – – KF310093 – KF310053 – KF310055 – KF902207 – KF310076 – KF310095 – FJ415474 – KF310046 – KF310047 – – KF310048 – KF310049 – KF310050 – – KF310052 – KF252308 – – KF310103 – KF903393 – – – – – – – EU707887 – JN712501 Act – – – – KJ564341 – – KF937257 – – KF937258 – – JX901949 – KF310085 – – – KF903496 KF903497 – KJ564347 – –

JX901855 KJ564326 KF310007 KF310006 JN885563 KF902021 KF310016 GU323967 KF309991 KJ380894 KF309992 KF309996 KF309997 KF309998 KF309999 KF309993 KF310012 KF251807 GU323973 KF310022 KF310020 LSU KF902163 EU707865 KF902149 KF901839 KC005799 KF902125 KJ564328 JN712568 JN712569 GU301810 KF310026 KF310027 GQ852622 KF901963 KF937223 GU214417 EU040229 KF937224 JX901825 GU250360 KF310021 KC315879 – KF901992 KF901993 KC005797 EU040228 KF310029 Yáñez-Morales Yáñez-Morales Jesús Jesús Crous Crous Moura Gams Gams de de Morelet Verkley Ruibal Adams Ruibal Nickerson Zucconi S. Onofri – – – – M. – – – – – – – – C. Ruibal –

D. Borelli P.W. & M. Crous P.W. Crous & M.J. Wingfield P.W. Crous, R.G. Shivas & P.W. W. Crous & K.D. Hyde P.W. M. P.W. & M. Crous P.W. M.F. M.F. P.W. P.W. C. W. Gams & H. Glen W. L. – – W. W. H. Valencia G. W. Gams & H. Glen W. N. Nickerson G. M. – – – M.J. Wingfield M.J. Wingfield M.J. Wingfield C. P.W. P.W. N. Nickerson C. Ruibal Collector N. Africa Africa Africa Netherlands

Antarctica Antarctica Antarctica Antarctica Spain Mexico Antarctica Antarctica Argentina Argentina Antarctica Antarctica India Antarctica Spain Antarctica Venezuela South Africa South USA: Louisiana Australia: Queensland Australia Thailand Mexico South Africa South Portugal South Spain South Africa South Antarctica Italy Italy South Colombia The South Africa South Canada USA France Antarctica Antarctica – Indonesia Indonesia Indonesia Location Spain South Canada Spain: Mallorca Canada soil sp. thallus sp. sp. sp. sample sample sample sample sample sample sample sample sample sample sample sample sample sample sp. Usnea antarctica ) Rock sample Rock Rock Rock Pinus Rock ( Rock Rock Rock Rock Rock Rock Rock sample Rock Avicermia Rock sample Rock sample Man, Tinea nigra Tinea Man, Protea sp. Lagerstroemia indica Scaevola taccada Stirlingia latifolia Syzygium siamense Pinus Protea sp. Protea repens Protea Rock Strelitzia nicolai Rock sample Rock sample Soil sample Amelanchier lamarckii Strelitzia sp. Heat-treated Heat-treated soil Pinus nigra Pinus coulteri Rock Rock sample – Eucalyptus sp. Eucalyptus sp. Eucalyptus sp. Rock Heat-treated soil Aloe Rock sample Host

ET

ET ET ET

ET ET ET ET ET ET ET ET ET ET

ET ET ET TRN126

=

ET ET 1, 2 5199 5283 5328 5474 5490 5505 5506 5525 5526 5547 5551 118764 118764 CBS 119436 = CCFEE 5177 CBS 119436 CCFEE CCFEE CCFEE CBS 125423 = CPC 16651 CPC 18092 CBS 133601 = CPC 18092 CBS 122898 = CPC 14960 CCFEE CCFEE CCFEE CCFEE CCFEE CCFEE CCFEE 5543 CCFEE CBS 106.75 CPC 11876 CBS 122538 = CCFEE 5313 CBS 118300 = TRN137 = CBS 118300 CCFEE 5312 CBS 136103 = CCFEE 451 CBS 118496 = CPC 11167 CBS 118496 CBS 122379 = X1037 CPC 14905 CBS 137182 = CCFEE 5672 CBS 133579 = CPC 19784 A.R. McTaggart CBS CBS 125422 = CPC 14403 CBS 118294 = TRN111 = CBS 118294 CPC 13981 CBS 122480 CBS 129527 = CPC 17306 200934 = ATCC CBS 375.81 = CPC 3687 = CPC 11198 CBS 117873 CBS 133581 = CPC 19948 CBS 115878 = DAOM 225330 CBS 115878 CBS 115879 = DAOM 226677 CBS 115879 CBS 116483 CBS 383.74 Isolate no. CBS 136104 = CCFEE 5207 = CPC 11169 CBS 118497 = CPC 11170 CBS 118498 CBS 118292 = TRN96 = CBS 118292 CBS 115876 = DAOM 232217 CBS 115876 CBS 137183 = CCFEE 5681 CBS 118285 = TRN81 = CBS 118285 CBS 130602 = CPC 18299

sp. sp. CCFEE sp. sp. Table 1 (cont.) Table Friedmanniomyces endolithicus

Hortaea thailandica

Lecanosticta brevispora D. knoxdaviesii

Eupenidiella venezuelensis Elasticomyces elasticus Extremus Ex. antarcticus

Euteratosphaeria D. strelitziae D. shakazului D. modesta Lapidomyces hispanicus D. lagerstroemiae D. compacta

D. strelitziicola D. queenslandica Devriesia D. staurophora

D. stirlingiae D. thermodurans

Dothistroma pini Doth. septosporum

Extremus Extremus verrucosiafricana

Extremus adstrictus D. shelburniensis D. simplex Species D. bulbillosae D. capensis W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 5 KF902825 – – – – – KF902814 KF902815 KF902816 KF902817 – – – – – – – KF902812 – – – – – KF902811 KF902813 KF902822 – – – – KF903122 – – – – – – – – – – – KF903114 – – – – – – – – – – – KF903108 – KF903105 KF902807 KF903109 – – – – KF902232 KF310062 – KF310065 GU371722 JX901986 KF902220 KF902221 KF902222 – KF902208 KF310063 JX901981 JX901982 – KF310100 KF902218 KF903112 – KF937264 – KF937265 KF902214 KF937263 KF901499 – – – – – KF901655 KF901656 KF901657 KF901809 GU214636 GU357768 – – – – – – – AY260097 – KF901688 – KF901804 KF902211 KF901675 – KF902561 – – – – – KF902550 KF902551 KF902552 KF902553 – – – – – – – – – KF902544 – – KF902545 – – KJ564349 – KF902231 – – KF902235 – KF902209 – – – – – JX901987 – – KF902216 KF903498 KF903499 KF903500 KF903514 – – – – – – KF310066 – KF310067 – – KF937262 – – JX500130 – KF903453 – – – KF902228 – – KF310070 – KF937261 KJ564327 KF901989 KF901814 KF901982 KF902094 KF309995 KF309994 GU250398 GU301852 KF902126 KF903542 KF902543 KF901769 KF902213 KF903107 KF902809 JX901863 JX901862 KF902127 KF903541 KF902547 KF901770 KF902217 KF903111 KF901835 KF901994 KF901995 KF901996 KF902171 GU323202 – KF902022 GU214431 GU250389 JX901857 JX901858 KF310013 GU250401 GU214414 KF902128 KF903543 KF902549 KF901771 KF902219 KF903113 KF901838 KF903558 KF902558 KF901517 KF902227 KF903119 GQ852626 KF901997 KF903658 KF902560 KF901658 KF902230 KF903121 KF902824 HQ599606 GU323975 KF901836 KF903535 KF902548 – KF902130 KF903545 KF902559 KF901772 KF902229 KF903120 KF902823 KF901840 KF903534 KF902562 KF901518 KF902236 KF903123 KF902826 EU019255 KF937227 KF902033 KF937228 KF902166 KF903455 KF902564 KF901805 KF902238 KF903125 KF902828 KF902105 KF903456 KF902563 KF901751 KF902237 KF903124 KF902827 KF902165 – KF902017 KF902129 KF937226 KF310019 KF937225 Arnold G. & Aa Summerell der P. P. Evans van & Summerell Castañeda Hill Carnegie Cheewangkoon Kuroczkin Yokota J.E. Taylor & S. Denman Taylor J.E. – – – B. & J. Kohlmeyer R. Cheewangkoon R. H.C. K. Ito R. Cheewangkoon R. A.J. M.J. Wingfield M.J. Wingfield M.J. Wingfield T.I. Burgess T.I. U. Hölker U. J. R.F. M. de Jesús Yáñez-Morales & M. de Jesús – – C. Méndez-Inocencio Yáñez-Morales & M. de Jesús – C. Méndez-Inocencio Yáñez-Morales & M. de Jesús – C. Méndez-Inocencio H.A. P. Suwannawong P. Summerell B.A. B.A. Crous, I. Pascoe & P.W. B.A. & P. Summerell P. & B.A. J. Edwards C. Ruibal A.J. Carnegie A.J. Suwannawong P. Price G. J.E. Taylor & S. Denman Taylor J.E. & S. Denman Taylor J.E. T. T. S. Denman S. Denman Wingfield M.J. Wingfield M.J. Wingfield M.J. S. Denman C.F. C.F. N. Hallenberg – B.A. R. Territory Northern Tasmania Zealand South Africa South Italy Italy Italy USA: North Carolina Thailand Brazil Japan Thailand Australia Indonesia Indonesia Indonesia Vietnam Germany Germany Cuba Mexico – Italy Mexico Argentina Mexico Argentina Spain Thailand Territory Northern Australia: Australia: New Australia Tasmania Australia: Spain: Mallorca Australia Thailand Wales South New Australia: South Africa South Africa South Japan Portugal: Madeira Africa South Venezuela Venezuela Venezuela Portugal: Madeira Australia: Sweden Antarctica Thailand sp. sample sample sample sample Protea cynaroides Rock sample Rock sample Rock sample Juncus roemerianus Eucalyptus globulus mycoparasite of Myriangium Larix leptolepis sp. Eucalyptus Corymbia intermedia Eucalyptus sp. Eucalyptus sp. Eucalyptus sp. Eucalyptus grandis hybrid Lignite rock Lignite Rock Nectandra coriacea Pinus sp. – Rock sample Pinus sp. Rock Pinus sp. Rock Citrus sinensis sp. Eucalyptus Corymbia foelscheana Eucalyptus tenuiramis Macrozamia communis Xanthorrhoea australis Eucalyptus tenuiramis Rock sample Eucalyptus biturbinata Eucalyptus camaldulensis Eucalyptus agglomerata Protea cynaroides Protea cynaroides Eucalyptus globulus Protea repens Acacia mangium Acacia mangium Acacia mangium Larix leptolepis Eucalyptus globulus Corymbia foelscheana Painted outdoor wall Rock Eucalyptus camaldulensis

EET ET ET ET ET ET ET ET ET ET ET ET ET ET ET

ET ET ET ET ET ET ET of sexual morph ET of asexual morph ET ET 5507 5508 5522 ET ET CBS 113389 CBS 101951 = = CPC 2831 CBS 114129 CPC 1960 CCFEE 5394 CCFEE 5492 CCFEE 5499 JK 5586J CBS 123242 = CPC 15408 MAFF 410081 CBS 112301 = CPC 3747 CBS 112301 CBS 123241 = CPC 15410 CPC 11175 CBS 118501= CPC 11178 CBS 118502= CBS 119974 = CMW 23441 CBS 119974 MUCC 66 CBS 734.87 CCFEE 5457 CPC 17940 CCFEE CPC 17941 CCFEE CBS 860.72 CBS 451.66 TH003 CBS 128219 = CPC 17720 CPC 13692

CBS 118302 = TRN142 = CBS 118302 CBS 123243 = CPC 15409 CBS 124769 = CPC 14640 = CBS 110890 = CPC 1848 CBS 111031 CPC 1832 CBS 123187 = CPC 15382 CBS 133602 = CPC 17940 MAFF 410632 CBS 130522 = DAR 77432 CBS 121159 CBS 112895 = CPC 3745 CBS 112895 = CPC 13092 CBS 121102 CMW 14458 TH126 CBS 118499 = CPC 11171 CBS 118499 CPC 14641 CBS 123246 = CPC 15411 CBS 110038 CBS 539.88 CBS 124993 = CPC 13692 CCFEE CBS 112515 = CPC 3837 CBS 112515 CBS 112516 = CPC 3838 CBS 112516 = CPC 3836 CBS 115432 CBS 123245 = CPC 15449 sp. CPC 19594 sp. Neohortaea acidophila Neoc. microsporum Neophaeothecoidea proteae

Monticola elongata

Mucomycosphaerella eurypotamii Mycosphaerella irregulari

My. madeirae My. My. pseudomarksii My.

My. vietnamensis My.

Neopenidiella nectandrae Meristemomyces frigidum

Melanodothis caricis Microxyphium citri

Neodevriesia xanthorrhoeae

Neodevriesia Neodevriesiaceae My. quasiparkii My. Myrtapenidiella corymbia Neodevriesia hilliana L. longispora laricis - leptolepidis My. nootherensis My. pseudovespa My. Neotrimmatostroma

My. sumatrensis My. Neocatenulostroma abietis Neoc. germanicum Myr. tenuiramis Myr. excentricum Oleoguttula mirabilis Pallidocercospora acaciigena

Myr. eucalypti Myr. 6 Persoonia – Volume 33, 2014 KF902855 KF902830 KF902841 – KF902843 KF902844 – KF902840 Btub KF903152 KF903127 KF903138 – KF903140 KF903141 – KF903137 EF-1α 3 KF902265 KF902240 KF902251 KJ380900 KF902253 KF902254 KF902246 KF903133 KF902836 – KF902250 RPB2 KF901522 KF901776 KF902337 KF903221 KF902923 KF901801 KF901515 KF902212 KF903106 KF902808 KF901803 KF902210 KF903104 KF902806 KF901633 KF902295 KF903178 KF902880 KF901500 AY260087 KF901798 KF901799 KF901679 KF902339 KF903223 KF902925 KF901624 KF902340 KF903224 KF902926 DQ267597 KF901659 ITS GenBank accession no. KF902589 – KF902566 – – KF902577 – – – – – – KF902583 KF901707 KF902259 KF903146 KF902849 KF902576 Cal KF903562 KF903400 KF903446 – KF903422 KF903442 – KF903440 Act KF901969 KF903414 KF902612 KF901634 KF902296 KF903179 KF902881 KF901844 KF901843 KF903451 KF902587 KF901521 KF902263 KF903150 KF902853 KF902134 – KF902135 KF903524 KF902648 KF901777 KF902338 KF903222 KF902924 KF902161 KF902050 KF903423 KF902567 KF901703 KF902241 KF903128 KF902831 KF902164 – KF901834 – KF901968 KF903413 KF902611 KF901934 KF903601 KF902565 KF901609 KF902239 KF903126 KF902829 KF901964 KF903593 KF902570 KF901629 KF902244 KF903131 KF902834 KF901815 KJ380896 KF902053 KF903441 KF902578 KF901706 KF902252 KF903139 KF902842 KF901970 KF903415 KF902613 KF901635 KF902297 KF903180 KF902882 KF902158 KF902159 KF902023 – KF901956 – KF902026 KF903466 KF902579 KF901681 KF902255 KF903142 KF902845 KF902051 KF903424 KF902568 KF901704 KF902242 KF903129 KF902832 KF902013 KF903399 KF902575 KF901671 KF902249 KF903136 KF902839 KF901935 KF903600 KF902571 KF901610 KF902245 KF903132 KF902835 KF902027 KF903468 KF902580 KF901682 KF902256 KF903143 KF902846 KF902052 KF903590 KF902569 KF901705 KF902243 KF903130 KF902833 KF901936 KF903602 KF902572 KF901611 KF901937 KF903605 KF902573 KF901612 KF902247 KF903134 KF902837 DQ204758 KF902056 KF903404 KF902586 KF901709 KF902262 KF903149 KF902852 KF902131 KF903607 KF902581 KF901773 KF902257 KF903144 KF902847 KF901842 KF903410 KF902582 KF901520 KF902258 KF903145 KF902848 KF901841 KF903635 KF902574 KF901519 KF902248 KF903135 KF902838 KF902054 KF903411 KF902055 KF903412 KF902584 KF901708 KF902260 KF903147 KF902850 KF901998 KF902103 KF903417 KF902585 KF901749 KF902261 KF903148 KF902851 LSU M.J. Wingfield M.J. I.W. Smith I.W. M.J. Wingfield M.J. K. Pongpanich K. W. Himaman W. P.W. Crous & M.E. Palm P.W. M.J. Wingfield M.J. M.J. Wingfield M.J. M.J. Wingfield M.J. B.A. Summerell B.A. Alfenas A.C. Wingfield M.J. M.J. Wingfield P.W. Crous & M.E. Palm P.W. M.J. Wingfield M.J. P.W. Crous & M.E. Palm P.W. Crous & M.E. Palm P.W. M.J. Wingfield M.J. – – Renney L. M.J. Wingfield M.J. P.W. Crous P.W. Alfenas A.C. L. Renney L. M.J. Wingfield M.J. A.C. Alfenas A.C. A.C. Alfenas A.C. G. Kemp G. Kemp G. W. Himaman W. A.J. Carnegie A.J. A.J. Carnegie A.J. K. Surridge K. K. Surridge K. M.J. Wingfield M.J. Wingfield M.J.

Collector Location Colombia Australia Tasmania Australia: Thailand Thailand USA: Hawaii South Africa South Venezuela Colombia Australia Brazil Colombia Indonesia USA: Hawaii South Africa South USA: Hawaii USA: Hawaii Colombia Brazil Cameroon Zealand New South Africa South Madagascar Brazil New Zealand New South Africa South Brazil Brazil South Africa South South Africa South Thailand Victoria Australia: Australia South Africa South South Africa South Indonesia Tanzania

× ×

saligna saligna

× × Host Eucalyptus urophylla ‘Safari Sunset’ Leucadendron cv. ‘Safari Sunset’ Leucadendron cv. Eucalyptus globulus Eucalyptus nitens Acacia mangium Eucalyptus camaldulensis Leucospermum sp. Leaf litter of Eucalyptus grandis Eucalyptus camaldulensis × Eucalyptus urophylla Eucalyptus urophylla sp. Eucalyptus sp. Eucalyptus sp. Eucalyptus Eucalyptus sp. Leucospermum sp. Eucalyptus saligna Eucalyptus urophylla sp. Musa sp. Musa Eucalyptus saligna Eucalyptus camaldulensis Leaf litter of Eucalyptus grandis sp. Eucalyptus sp. Eucalyptus Eucalyptus saligna Eucalyptus camaldulensis Eucalyptus bicostata – sp. Eucalyptus Eucalyptus grandis Eucalyptus grandis Acacia auriculiformis Eucalyptus globulus Eucalyptus dunnii sp. Musa sp. Musa Eucalyptus sp. sp. Eucalyptus

ET ET ET ET ET ET

ET ET ET ET ET ET 1, 2 ET Isolate no. CBS 111687 = CMW 14780 CBS 111687 CBS 120723 = CPC 13478 CBS 110699 = CPC 2155 CBS 110699 = CPC 2125 CBS 111028 = CPC 1178 CBS 111044 CPC 13350 = = CPC 1104 CBS 110967 CMW 11255 CBS 120740 = CPC 13290 = CPC 1105 CBS 110968 CPC 11453 CPC 10992 = = CPC 1311 CBS 111364 CMW 14776 = CPC 2126 CBS 110698 CBS 111211 = CPC 1362 CBS 111211 CBS 110969 = CPC 1106 = = CPC 1106 CBS 110969 CBS 111261 = CPC 2123 CBS 111261 = CPC 10547 CBS 116367 CPC 1555 CBS 121389 = X882 CIRAD 81 CBS 121390 = X883 CIRAD 1165 = CPC 10902 CBS 114356 = CPC 1179 CBS 111045 CBS 110682 = CPC 760 CBS 110682 CPC 11441 CMW 5223 CMW 4944 NZFS 301 K/1 = CPC 10922 CBS 114415 CBS 681.95 = CPC 802 11716 CPC CMW 4942 CPC 11548 NZFS 301.13 = CPC 823 CBS 110693 CBS 110750 = CPC 822 CBS 110750 CMW 3033 CPC 11926 CMW 14778 = CPC 935 CBS 110920 CPC 13099 CBS 110963 = CPC 4632 CBS 110963 CBS 110964 = CPC 4633 CBS 110964 CBS 111190 = CPC 1312 CBS 111190 CMW 3046 CBS 110981 = CPC 1073 CBS 110981 CBS 124991 = CPC 12400

Table 1 (cont.) Table tasmaniensis Para. tasmaniensis

P. crystallina P. konae P.

colombiensis P.

holualoana P. P. irregulariramosa P.

thailandica P.

Paramycosphaerella

P. heimii P.

intermedia

Pa. marksii

P. heimioides P.

Parapenidiella pseudo - Species W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 7 – – – KF902872 – – – KF902873 – – KF902874 – – – KF903170 – – – KF903171 – – – – KF903172 – –

KF937268 – KF902285 KF902287 KF937267 KF902266 KF902286 KF902271 KF903157 – – KF310101 KF902288 KF937269 KF902278 KF903163 KF902865 KF901614 KF902269 KF903155 KF902858 KF901523 KF902275 – KF901775 KF902294 KF903177 KF902879 – – KF901526 – – – KF901752 – – KF901753 – – – – – – – – KF902606 – KF902614 KF901684 KF902298 KF903181 KF902883 – KF902607 – – KF310091 – – – – – – – – – KF903564 – KF252218 – – – KF903659 – KF902289 – – KF901939 KF903580 – KF310030 KF937232 KF901938 KF903445 KF902590 KF901613 KF902267 KF903153 KF902856 KF902028 KF903428 KF902608 KF901683 KF902291 KF903174 KF902876 KF901845 – KF901965 KF903587 KF902594 KF901630 KF902272 KF903158 KF902860 KF901957 KF937233 KF937234 KF901847 KF903645 KF902604 KF901525 KF902283 KF903168 KF902870 KF901848 KF902107 KF902133 KF903544 – KF937235 KF937230 KF902091 KF901966 KF903493 KF902603 KF901631 KF902282 KF903167 KF902869 KF902106 KF902132 KF903469 KF902588 KF901774 KF902264 KF903151 KF902854 KF902175 KF903458 KF902593 KF901811 KF902174 KF903459 KF902592 KF901810 KF902270 KF903156 KF902859 KF251716 KF901817 KF903472 KF902609 KF901501 KF902292 KF903175 KF902877 KF901942 KF903506 KF902605 KF901617 KF902284 KF903169 KF902871 KF901846 KF903396 KF902597 KF901524 KF902276 KF903161 KF902863 GU214469 KF902029 KF903511 KF937231 KF901940 KF903674 KF902596 KF901615 KF902274 KF903160 KF902862 KF902014 KF903548 KF902591 KF901672 KF902268 KF903154 KF902857 GU323963 KF902061 KF903401 KF902618 KF901714 KF902302 KF903185 KF902887 KF902108 KF901943 KF901941 KF903588 KF902602 KF901616 KF902281 KF903166 KF902868 GQ852628 KF901967 KF903471 KF902610 KF901632 KF902293 KF903176 KF902878 KF902057 KF903433 KF902598 KF901710 KF902277 KF903162 KF902864 KF901816 KF902095 KF903675 KF902595 KF901742 KF902273 KF903159 KF902861 KF902062 KF903402 KF902619 KF901715 KF902303 KF903186 KF902888 KF902058 KF903434 KF902599 KF901711 KF902059 KF903448 KF902600 KF901712 KF902279 KF903164 KF902866 KF902063 KF903405 KF902620 KF901716 KF902304 KF903187 KF902889 KF902060 KF903470 KF902601 KF901713 KF902280 KF903165 KF902867 KF901944 KF903406 KF902621 KF901618 KF902305 KF903188 KF902890

Uden Wood Batista Alfenas Taylor Taylor van Ruibal R. Alfenas & O.L. Pereira R. J.E. P.W. Crous & A.C. Alfenas A.C. & Crous P.W. Wingfield M.J. A.C. Alfenas A.C. W. Gams W. N. P.W. & M. Crous P.W. Crous & L. Mostert P.W. Alfenas, A.C. Crous, P.W. Stone J. & Crous P.W. B.A. Summerell B.A. Summerell, Suwannawong P. P.W. Crous, M.K. P.W. Crous K.L. Crous & P.W. M. Crous & K. Raath M.J. Wingfield M.J. B.A. Summerell, M.J. Wingfield M.J. A.C. T. Coutinho T. Coutinho T. Wingfield M.J. C. A.C. Alfenas A.C. A. Maxwell A. R. Zare & W. Gams R. Zare & W. C.F. Hill C.F. A.R. A. Summerell Summerell & P. J.E. P. Summerell & A. Summerell Summerell & P. A.C. Alfenas A.C. M.J. Wingfield M.J. C. Ruibal P.W. Crous P.W. B.A. Summerell, P. Summerell & A. Summerell Summerell & P. F.A. Ferreira F.A. B.A. Summerell, P. Summerell & A. Summerell Summerell & P. M.J. Wingfield M.J. Wood A.R. A.C. – A.C. Alfenas A.C. P.W. Crous P.W. Wood A.R. P.W. Crous P.W. P.W. Crous P.W. P.W. Crous P.W. P.W. Crous P.W. Republic African Africa Africa Africa

South Brazil Thailand Brazil Colombia Central South Africa South Africa South Brazil Australia Australia: New South Wales Australia: Bruny Island Thailand South Africa South Africa South Colombia Australia: Bruny Island Tasmania Australia: Zambia Zambia Brazil Thailand Spain Brazil Australia Iran New Zealand New South South

Brazil Madagascar Spain South Africa South Australia: Bruny Island Brazil Australia: Bruny Island Colombia South Africa South Brazil – Brazil South Africa South South Africa South South Africa South South Africa South South Africa South South Africa South sp. hair sample Protea eximia Eucalyptus saligna Eucalyptus pellita Eugenia klotzschiana Paepalanthus columbianus Genetta tigrina Protea sp. Protea sp. Eucalyptus leptophlebia sp. Eucalyptus Eucalyptus botryoides Eucalyptus globulus Eucalyptus camaldulensis Encephalartos altensteinii Phaenocoma prolifera Eucalyptus urophylla Eucalyptus globulus Eucalyptus nitens Eucalyptus globulus Eucalyptus globulus serratifolia Tabebuia Eucalyptus pellita Rock sp. Leaf litter of Eucalyptus Eucalyptus globulus Citrus aurantium sp. Eucalyptus Euchaetis meridionalis

Eugenia uniflora Eucalyptus camaldulensis Rock sample Eucalyptus nitens Eucalyptus globulus Leucospermum Eucalyptus globulus Eucalyptus globulus Eucalyptus grandis Eucalyptus cladocalyx Human – Eugenia uniflora Eucalyptus nitens Eucalyptus cladocalyx sp. Eucalyptus Eucalyptus nitens Eucalyptus nitens

ET ET ET ET ET ET ET ET ET ET ET ET

ET ET ET ET EET ET ET ET

ET ET

ET of Ps. eucalyptorum ET ET ET ET of M. endophytica ET 480.64 276.32 ET CBS 112970 = CPC 1228 CBS 112970 CBS 114556 = CMW 14663 CBS 114556 CBS 123539 = CPC 15133 CBS 129524 = CPC 18480 = CPC 10998 CBS 118493 CBS 128774 = CPC 18255 CBS 110501 CBS 116435 CBS 119487 = Lynfield 1260 = Lynfield CBS 119487 CBS 122895 = CPC 13972 CBS 122896 = CPC 14846 CBS 124994 = CPC 13711 STE-U 6389 = CPC 1457 CBS 111318 CBS 111700 = CPC 1821 CBS 111700

CBS 112971 = CPC 1227 CBS 112971 CBS 111072 = CPC 1266 CBS 111072 CPC 15143 CBS 124154 = CPC 15745 = CPC 1267 CBS 114757 CBS 118287 = TRN77 = CBS 118287 CBS 112650 = CPC 3944 CBS 112650 CBS 110722 = CPC 15 CBS 110722 CBS 118909 = CPC 11545 CBS 118909 CPC 13710 CBS 111699 = CPC 1816 CBS 111699 CBS 122899 = CPC 14889 CBS 516.93 = CPC 653 CPC 13711 CPC 1556 CBS 486.80 = CPC 1202 CBS 114664 CBS 120831 = CPC 12918 CBS 111166 = CPC 1224 CBS 111166 CBS 118608 = TRN139b = CBS 118608 CBS 124995 = CPC 13710 CPC 15159 A39 CBS 110723 = CPC 17 CBS 110723 CBS 327.63 CBS 120830 = CPC 13330 CMW 14914 CBS 123244 = CPC 15412 CBS 111167 = CPC 1225 CBS 111167 CPC 2557 = CPC 1191 CBS 111519 CBS 110776 = CPC 12 CBS 110776 sp. = Eucalyptus CBS 114662 CBS 110777 = CPC 16 CBS 110777 CPC 1193 CMW 5228 CBS hortae CBS bellula Pas. zambiae Parateratosphaeria altensteinii Pas. leptophlebiae Pha. scytalidii Pata. karinae Pha. gregaria citri Ps. crousii Pata. persoonii Phaeo. intermedia eucalypti Pata. bellula Pata. cf.

serratifoliae Pseudocercospora Phaeophleospora eugeniae Pas. intermedia basiramifera Petrophila incerta Polyphialoseptoria tabebuiae - Ps. eucalyptorum Pha. stramenti

Pata. marasasii

Penidiella columbiana Ps. basitruncata Phaeothecoidea eucalypti

Piedraia hortae var. var. hortae var. Phaeo. minutispora

paraguayensis Pie. quintanilhae Pha. stonei Ps. chiangmaiensis

Pha. eugeniicola

8 Persoonia – Volume 33, 2014 KF902933 – KF902916 KF902906 KF902918 KF902932 KF902903 KF902901 KF902902 KF902927 KF902885 KF902910 KF902913 Btub KF903229 – – KF903214 KF903204 KF903216 KF903195 KF902897 KF903201 KF903191 KF902893 KF903199 KF903200 KF903225 KF903183 KF903210 KF902912 KF903208 KF903211 EF-1α 3 KF902347 _ KF902330 KF902320 KF902332 – KF902317 – KF902315 KF902316 KF902341 KF902300 KF902324 KF902327 RPB2 KF901627 KF902312 KF903196 KF902898 KF901650 _ KF901673 KF902318 KF903202 KF902904 KF901667 KF902290 KF903173 KF902875 KF901668 KF901665 KF901685 KF901723 KF902319 KF903203 KF902905 KF901619 KF902321 KF903205 KF902907 KF901661 KF901636 KF901660 KF901744 KF902328 KF903212 KF902914 KF901669 KF901676 KF902310 KF903194 KF902896 KF901527 KF901783 KF901782 ITS GenBank accession no. KF902655 _ KF902642 KF901625 KF902331 KF903215 KF902917 KF902641 KF902633 KF902643 KF902632 KF902624 – KF902630 KF902631 – KF902649 KF902616 KF902636 KF902639 Cal KF903494 KF903421 KF902654 KF901755 KF902346 – _ – KF252326 KF903618 KF903531 KF903492 – AF173299 KF903439 KF903594 KF903595 KF903603 KF903615 KF903669 KF903661 Act KF901961 KF903505 – KF901990 KF902069 KF903462 KF902629 KF901722 KF902314 KF903198 KF902900 KF902110 EU041854 KF901854 KF903641 KF902647 KF901532 KF902336 KF903220 KF902922 KF901857 KF903559 KF902652 KF901535 KF902344 KF903227 KF902930 KF251826 KF902015 KF903549 – KF902010 KF902005 KF902009 KF903591 – KF902020 KF903437 KF902640 KF901678 KF902329 KF903213 KF902915 KF901958 – KF902030 KF902070 KF903427 – KF901945 KF903444 – KF901852 KF903565 KF902645 KF901530 KF902334 KF903218 KF902920 KF902064 KF903408 KF902622 KF901717 KF902306 KF903189 KF902891 KF902067 KF903474 KF902627 KF901720 KF902311 KF901946 KF903457 KF902656 KF901620 KF902348 KF903230 KF902934 KF902068 KF903463 KF902628 KF901721 KF902313 KF903197 KF902899 KF901978 KF903425 KF902723 KF901643 KF902433 KF903309 KF903007 KF901853 KF903631 KF902646 KF901531 KF902335 KF903219 KF902921 KF901855 KF903639 KF902650 KF901533 KF902342 KF903226 KF902928 KF901818 KF903443 KF902623 KF901502 KF902307 KF903190 KF902892 KF902065 KF903482 KF902625 KF901718 KF902308 KF903192 KF902894 GU214511 KF902000 KF901960 – KF901971 KF901999 KF901979 KF903430 KF902724 KF901644 KF902434 KF903310 KF903008 KF901851 KF903643 KF902644 KF901529 KF902333 KF903217 KF902919 KF902098 KF903403 KF902653 KF901745 KF902345 KF903228 KF902931 KF902097 – KF902066 KF903483 KF902626 KF901719 KF902309 KF903193 KF902895 KF902011 KF902018 KF903484 – KF902096 KF903604 KF902615 KF901743 KF902299 KF903182 KF902884 KF901849 KF902034 KF903625 KF902634 KF901689 KF902322 KF903206 KF902908 KF901850 KF903630 KF902617 KF901528 KF902301 KF903184 KF902886 KF902035 KF903649 KF902638 KF901690 KJ564342 KF902071 KF903660 KF902635 KF901724 KF902323 KF903207 KF902909 KF902141 KF902140 KF902109 KF903621 KF902637 KF901754 KF902325 KF903209 KF902911 LSU Wingfield Wingfield M.J. Wingfield M.J. W. Gams & M. Arzanlou Gams & M. W. G.C. Hunter G.C. M.J. Wingfield M.J. D. Atilli D. P.W. Crous & B. Summerell B. & Crous P.W. Carnegie A.J. M.J. Wingfield M.J. M.J. Crous P.W. M. Dick M.J. Wingfield M.J. H.D. Shin Gams W. Park M.J. T. Coutinho T. Crous P.W. Carnegie A.J. P.W. Crous P.W. Crous P.W. M.J. Wingfield M.J. J. Roux J. M.J. Wingfield M.J. A.J. Carnegie A.J. Carnegie A.J. P.W. Crous P.W. T. Coutinho T. M.J. M.J. Wingfield A. Aptroot A. M.J. Wingfield M.J. Wingfield M.J. Wingfield M.J. P.W. Crous & B. Summerell B. & Crous P.W. Wingfield M.J. J.P. Mansilla J.P. Crous P.W. H.D. Shin P. Mansilla P. – I.W. Smith I.W. A.J.L. Phillips A.J.L. B.A. Summerell B.A. P.W. Crous P.W. P.W. Crous P.W. S. Denman S. Denman C. Mohammed C.

Collector Africa Thailand India South Africa South Colombia Brazil Australia Australia Malaysia Ecuador Chile New Zealand Madagascar South Korea Italy Korea South South Africa South Brazil Australia South Africa South Africa South South Africa South South Africa South Colombia Australia Australia South Africa South Kenya South Indonesia China Indonesia Indonesia Colombia Australia Colombia Spain Africa South South Korea Spain Spain: Madeira Spain: Australia Portugal Australia Portugal South Africa South USA: California United Kingdom Tasmania Australia:

Location parahybum Eucalyptus camaldulensis Eucalyptus sp. Eucalyptus grandis Eucalyptus globulus Forrest soil Eucalyptus tereticornis Corymbia henryi Eucalyptus robur sp. Eucalyptus Eucalyptus botryoides Eucalyptus camaldulensis Fraxinus rhynchophylla Eucalyptus sp. Pyracantha angustifolia Schizolobium Eucalyptus nitens Eucalyptus nitens Eucalyptus nitens Eucalyptus nitens Eucalyptus nitens Eucalyptus grandis sp. Eucalyptus Eucalyptus grandis Eucalyptus tereticornis Corymbia henryi Eucalyptus nitens Eucalyptus grandis Eucalyptus grandis Eucalyptus urophylla Eucalyptus globulus Eucalyptus sp. Eucalyptus sp. Eucalyptus grandis Eucalyptus tereticornis Eucalyptus globulus Eucalyptus globulus Eucalyptus nitens Vitis vinifera Vitis Eucalyptus globulus sp. Eucalyptus Eucalyptus globulus Eucalyptus globulus Eucalyptus deanei sp. Eucalyptus Eucalyptus punctata Eucalyptus sp. Eucalyptus glaucescens Eucalyptus nitens

Host

ET

ET ET ET ET ET ET ET

ET ET ET ET

ET of Ps. pseudoeucalyptorum ET ET ET ET 1, 2 CBS 113285 = CMW 9095 CBS 113285 CBS 112896 = CPC 1004 CBS 112896 CBS 124775 = CPC 13121 CBS 131582 = CPC 12497 = CPC 1269 CBS 111175 = CPC 4314 CBS 112621 = CPC 10849 CBS 118489 CBS 111069 = CPC 1263 CBS 111069 CMW 14777 = CPC 1459 CBS 111286 CMW 14779 CBS 131589 = CPC 10808 CBS 124996 = CPC 12960 CBS 110903 = CPC 14 CBS 110903 = CPC 11 CBS 114866 CBS 120738 = CPC 13049 CBS 120029 = CPC 12962 CBS 113286 = CMW 9095 CBS 113286 = CPC 1199 CBS 111048 CPC 13008 CPC 13122 CMW 5151 CBS 125214 = CPC 13299 CBS 116303 = CPC 13 CBS 116303 = CPC 1195 CBS 111268 CBS 112973 = CPC 1005 CBS 112973 CBS 111189 = CPC 1315 CBS 111189 CBS 116291 = CPC 10503 CBS 116291 CPC 11144 CPC 11181 CBS 124155 = CPC 14621 CBS 111163 = CPC 1201 CBS 111163 CPC 13315 = CPC 673 CBS 110743 CMW 14908 CBS 114242 = CPC 10390 CBS 114242 = CPC 10 CBS 116304 CBS 118495 = CPC 11138 CBS 118495 CBS 132012 = CPC 11595 = CPC 1109 CBS 111012 CBS 283.92 CBS 132015 = CPC 11713 CBS 116359 = CPC 3751 CBS 116359 CBS 132029 = CPC 12406 CBS 132032 = CPC 12802 CBS 132033 = CPC 12957 CBS 132034 = CPC 13455 CBS 132035 = CPC 13769 CBS 132105 = CPC 13926 CBS 132114 = CPC 13816 CBS 132114 CBS 132309 = CPC 12568 CBS 118824 = CMW 13594 CBS 118824 Isolate no. Ps. fori Pet. ohnowa brasilianum brasilianum Pso. henryi Ps. marginalis Ps. robusta Ps. sphaerulinae Ps. subulata Ps. natalensis Ps. paraguayensis Ps. pyracanthigena Ps. tereticornis Ps. norchiensis Ps. schizolobii

Ps. gracilis

Ps. madagascariensis

Pseudoteratosphaeria

Pet. gamsii Ps. vitis flexuosa Pseudoramichloridium

Ps. flavomarginata Table 1 (cont.) Table Species W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 9 – – – KF902960 KF902942 KF902945 KF902946 – – KF902963 KF902968 – – KF902972 – – – – – – – – – KF903257 KF903238 KF903241 KF903242 – – KF903260 – KF903265 – – – KF310060 KF902384 KJ380904 – KF442602 KF902376 KF902356 KF902359 KF902360 KF937271 KF902375 KF902379 KF902386 KF302397 KJ380902 – – – KF901549 KF901538 KF901666 KF901756 – KF901637 KF902350 KF903232 KF902936 KF901760 KF901504 KF901545 KF902371 KF903253 – KF901651 – – KF901505 KF902390 – – – – KF902680 KF902663 – – – KF902679 KF902683 KF902688 – – – – KF310059 – – KF310072 – – KF902385 – – KJ564337 – AY725577 – KF937270 – KF903569 KF903538 KF903525 KF903566 KF902669 KF901759 KF902364 KF903246 KF902950 KF903567 KF902668 KF901758 KF902363 KF903245 KF902949 KF903599 KF903654 KF902666 KF901757 KF902361 KF903243 KF902947 – – KF903467 – KJ380903 KF903501 – KF252465 – – KF903571 KF902687 KF901761 KF902383 KF903264 KF902967 GU250372 KC315876 KF310018 KF902007 KF902024 KF901821 EU041851 KJ380899 KF901873 KF903628 KF902685 KF901551 KF902381 KF903262 KF902965 – AY725575 KF937236 KF902072 KF903461 KF902665 KF901725 KF902358 KF903240 KF902944 KF442562 KF901871 KF901862 KF903627 KF902670 KF901540 KF902365 KF903247 KF902951 KF902073 KF903671 KF902682 KF901726 KF902378 KF903259 KF902962 KF902167 KF903530 KF902657 KF901806 KF902349 KF903231 KF902935 KF901860 KF902006 KF902114 KF901864 KF903583 KF902673 KF901542 KF902368 KF903250 KF902954 KF901865 KF903623 KF902674 KF901543 KF902369 KF903251 KF902955 KF901866 KF903622 KF902675 KF901544 KF902370 KF903252 KF902956 KF901868 KF903568 KF902676 KF901546 KF902372 KF903254 KF902957 KF901869 KF903582 KF902677 KF901547 KF902373 KF903255 KF902958 KF901870 KF903572 KF902678 KF901548 KF902374 KF903256 KF902959 KF902001 KF903651 KF902684 KF901662 KF902380 KF903261 KF902964 KF901861 KF903570 KF902664 KF901539 KF902357 KF903239 KF902943 KF902074 KF903656 KF902686 KF901727 KF902382 KF903263 KF902966 KF902113 KF902111 KF902112 KF901819 KF903655 KF902667 KF901503 KF902362 KF903244 KF902948 GQ852654 KF901972 KF903491 – KF901858 KF903420 KF902659 KF901536 KF902352 KF903234 KF902938 KF902115 KF901820 KF901872 KF903614 KF902681 KF901550 KF902377 KF903258 KF902961 KJ380898 KF901867 KF903647 – KF901947 KF903503 KF902661 KF901621 KF902354 KF903236 KF902940 KF901948 KF903502 KF902662 KF901622 KF902355 KF903237 KF902941 KF901991 KF251972 KF302409 KF902099 KF903596 KF902689 KF901746 KF902387 KF903266 KF902969 KF901863 KF903652 KF902671 KF901541 KF902366 KF903248 KF902952 KF901859 KF903476 KF902660 KF901537 KF902353 KF903235 KF902939 KF901973 KF903592 KF902658 KF901638 KF902351 KF903233 KF902937 KF902100 KF903597 KF902691 KF901747 KF902389 KF903268 KF902971 KF901974 KF903653 KF902672 KF901639 KF902367 KF903249 KF902953 KJ380897 KF902116 KF902019 KF903454 KF902690 KF901677 KF902388 KF903267 KF902970 KF901988 KF903507 KF902692 KF901649 KF902391 KF903269 KF902973 KF901822 –

Arx Verkley Hunter Wingfield Wingfield von Mansilla Kamal Zucconi – – R. Ciferri J.A. – A.J. Carnegie A.J. G.C. L. Verkley G. B.A. Summerell Smith I.W. B.A. Summerell B.A. Summerell B.A. M.J. Wingfield M.J. Crous & J.K. Stone P.W. Gams W. Summerell B.A. Summerell B.A. Summerell B.A. Mohammed C. Summerell B.A. Summerell B.A. Summerell B.A. Summerell B.A. & P. Summerell B.A. Summerell B.A. B.A. Summerell B.A. A. H.D. Shin Summerell, B.A. P. Summerell & A. Summerell Summerell & P. B.A. Summerell B.A. D. Nowell M.J. Wingfield M.J. M.J. Wingfield M.J. & B.A. Summerell P. M.A. Dick J.P. R. Park R. M.J. M.J. B.A. Summerell B.A. A.C. Alfenas A.C. Alfenas A.C. Arzanlou Gams & M. W. G.J.M. D.F. Parreira D.F. M.J. Wingfield M.J. B.A. Summerell B.A. A.C. Alfenas A.C. M.J. Wingfield M.J. M.J. Wingfield M.J. B.A. Summerell B.A. A.J. Carnegie B.A. Summerell B.A. P.W. Crous P.W. P.W. Crous P.W. C. Mohammed C. Republic Africa Africa Netherlands Italy UK Italy The – Australia South Antarctica Netherlands Australia: New South Wales Australia: Victoria Wales South New Australia: Australia Venezuela Australia: Queensland Italy Tasmania Australia: Wales South Wales New South Australia: New Australia: Tasmania Australia: Wales South Wales New South Wales Australia: New South Australia: New Australia: Tasmania Australia: Australia Tasmania Australia: Tasmania Australia: Pakistan South Korea Tasmania Australia:

Tasmania Australia: South Africa South Colombia Colombia Tasmania Australia: New Zealand Spain Australia South Spain Australia Brazil Brazil India Czech Brazil Spain Wales South New Australia: Brazil Colombia Spain Wales South New Australia: Australia: New South Wales Tasmania Australia: Spain France Tasmania Australia: sp. smithii deanei sample bicolor body sample sample Rock sample Rock – Polygonum sachalinense Aphid sp. Eucalyptus Eucalyptus Sandstone Dead leaf of Quercus robur Eucalyptus sclerophylla Eucalyptus globulus Eucalyptus cannonii Eucalyptus oblonga Eucalyptus urophylla Exudates of bleeding stem Eucalyptus grandiflora Eucalyptus delegatensis Eucalyptus deanei Eucalyptus Eucalyptus nitens Eucalyptus dives sp. Eucalyptus Eucalyptus oblonga Eucalyptus amygdalina Eucalyptus prominula Eucalyptus delegatensis Eucalyptus delegatensis cankers of unidentified trees Soil Rumex crispus Eucalyptus regnans

Eucalyptus delegatensis Sorghum Eucalyptus grandis Eucalyptus eurograndis Eucalyptus delegatensis Eucalyptus botryoides Eucalyptus globulus sp. Eucalyptus Eucalyptus grandis Eucalyptus globulus Eucalyptus miniata sp. litter Eucalyptus leaf sp. Eucalyptus Eucalyptus leaf litter Lysimachia herbacea Tibouchina Eucalyptus globulus Eucalyptus multicaulis Eucalyptus grandis sp. Eucalyptus Eucalyptus globulus Eucalyptus sclerophylla Eucalyptus nitens Eucalyptus delegatensis sp. Eucalyptus Eucalyptus coccifera

ET

ET ET ET ET EET ET ET ET ET ET ET EET ET ET ET ET ET ET ET ET ET EET ET

EET ET of S. provincialis ET 5575 325.33 400.76 CCFEE 5475 CBS 228.57 CBS 486.50 CBS CBS 118505 = CPC 11282 CBS 118505 CBS 113265 CBS 120209 = CPC 12920 CBS 113290 = CMW 9102 CBS 113290 = CPC 10983 CBS 118367 CPC 12841 CPC 14444 CBS 124998 = CPC 13618 CBS CPC 13621

CPC 13630 CBS 110579 = CPC 906 CBS 110579 CBS 124997 = CPC 13608 = CPC 1112 CBS 111002 CBS 125000 = CPC 12370 CBS 124987 = CPC 13602 CPC 12379 CBS 110949 = CPC 1006 CBS 110949 CPC 13401 CBS 124999 = CPC 13026 CBS 123794 CBS 134910 = CPC 19500 CPC 11251 CBS 120726 = CPC 13043 CPC 13605 = CPC 10895 CBS 114357 CBS 121715 = CPC 13333 CBS 120032 = CPC 12709 CBS 120034 = CPC 12636 CBS 120079 = CPC 11184 CBS 134745 = CPC 12727 CBS 125003 = CPC 14447 CBS 134744 = CPC 13611 CBS 125001 = CPC 13599 = CPC 10375 CBS 114240 = CCFEE 5264 CBS 119434 CBS 124986 = CPC 13615 CBS 115608 = CPC 504 CBS 115608 CPC 10989 CBS 120737 = CPC 13373 CPC 11252 CPC 13615 CBS 118507 = CPC 11551 CBS 118507 CBS 120733 = CPC 12820 CBS 125002 CBS 125002 = CPC 13631 CBS 118506 = CPC 11438 CBS 118506 CBS 112502 = CPC 3749 CBS 112502 CBS 134746 = CPC 12715 sp. = Eucalyptus CBS 118910 CBS 120220 = CPC 12553 CPC 12226 pratensis CPC 11294 sp. CCFEE sp.

Recurvomyces Schizothyrium pomi spongiosa eucalyptorum Ramularia endophylla

Pet. perpendicularis Read. nontingens

kurandae Ramichloridium apiculatum Ram. pratensis var.

Ramulispora sorghi Readeriella angustia Pet. secundaria Read. mirabilis Read. patrickii Readeriella sp.

Read. eucalyptigena S. lysimachiae septoria-like sp. Sonderhenia eucalypticola Ram. eucalypti Read. novaezelandiae Queenslandipenidiella Read. dendritica Read. dimorphospora Read. eucalypti Read. limoniforma Read. menaiensis Read. mirabiliaffinis Read. pseudocallista Read. readeriellophora Recurvomyces mirabilis Read. callista

Readeriella

Read. tasmanica

Pet. stramenticola

Read. deanei cercidis S. eucalyptorum

10 Persoonia – Volume 33, 2014 – – KF903000 KF903003 – – – – KF902983 KF902982 KF903009 – – – KF902993 KF902996 KF902997 Btub – – – KF903301 KF903305 – KF903283 KF902981 – KF903275 KF902979 – KF903281 – – KF903304 – KF903286 KF902986 KF903294 KF903297 KF903298 EF-1α 3 KF902405 KF937274 KF902427 – KF937272 KF902416 KF937275 KF902403 KF902393 – KF937273 KF902420 KF902423 KF902424 RPB2 – – KF901574 KF901623 KF902404 KF903282 – KF901728 – KF901557 KF902402 KF903280 KF902980 KF901558 – – KF901786 – – KF901762 KF901553 KF902398 KF903276 – – KF901556 KF902401 KF903279 – – KF901554 KF902399 KF903277 – KF901691 KF902422 KF903296 KF902995 KF901555 KF902400 KF903278 – – KF901763 KF901569 KF902419 KF903293 KF902992 KF901571 KF901572 ITS GenBank accession no. – – KF902716 – – – – – – KF902719 – KF902709 KF902712 KF902713 Cal – KF252256 – – – KF903447 – – – – KF903633 – KF902406 – KF903452 – KF903616 KF903617 KF903667 Act KF251754 KF901880 JN712569 EU019287 KF901898 KF901949 KF903586 – KF902075 KF937238 KF901874 KF903517 KF902693 KF901552 KF902392 KF903270 KF902974 KF901879 KF903584 – KF901881 KF903573 – KF901883 KF903523 KF902699 KF901560 KF902408 – KF901888 KF903518 KF902704 KF901565 KF902413 KF903288 KF902988 KF901890 KF901901 KF903529 KF902720 KF901577 KF902430 KF903306 KF903004 KF901882 KF903646 KF902698 KF901559 KF902407 – KF901884 KF903578 KF902700 KF901561 KF902409 KF903284 KF902984 KF901887 KF903551 KF902703 KF901564 KF902412 KF903287 KF902987 KF901889 KF903557 KF902705 KF901566 KF902414 KF903289 – KF901904 KF903554 KF902725 KF901580 KF902435 KF903311 KF902144 KF903508 – KF901897 KF903416 KF902714 KF901573 KF902425 KF903299 KF902998 KF937240 KF902117 KF901891 KF903632 KF902707 KF901567 KF902417 KF903291 KF902990 KF902036 KF902139 KF903672 KF902706 KF901781 KF902415 KF903290 KF902989 KF901899 KF903546 KF902717 KF901575 KF902428 KF903302 KF903001 KF901875 KF903634 – KF902168 KF901902 KF903533 KF902721 KF901578 KF902431 KF903307 KF903005 KF901885 KF903553 KF902701 KF901562 KF902410 KF903285 KF902985 KF902145 KF903509 KF902726 KF901787 KF902436 KF903312 KF903010 KF901823 KF903449 KF902715 KF901506 KF902426 KF903300 KF902999 KF901878 KF903636 – KF901892 KF903670 KF902708 KF901568 KF902418 KF903292 KF902991 KF902119 KF901876 KF903637 – KF901903 KF903644 KF902722 KF901579 KF902432 KF903308 KF903006 KF901886 KF903579 KF902702 KF901563 KF902411 KF902146 KF903510 KF902727 KF901788 KF902437 KF903313 KF903011 KF902037 KF903450 KF902711 KF901900 KF903619 KF902718 KF901576 KF902429 KF903303 KF903002 KF901877 KF903638 – KF937239 KF902118 KF901893 KF903560 – KF901895 KF901894 KF903620 KF902710 KF901570 KF902421 KF903295 KF902994 KF901896 LSU Crous Crous Tanaka A.J. Carnegie P.W. P.W. M.J. Wingfield M.J. Wingfield M.J. Wingfield M.J. P.W. Crous & L. Mostert P.W. B.A. Summerell B.A. Summerell B.A. Carnegie A.J. Summerell B.A. Carnegie A.J. Summerell B.A. B.A. Summerell Crous P.W. G. Price G. Whyte G. Whyte G. Taylor K. Collins S. K. M.J. Wingfield M.J. A.J. Carnegie A.J. A.J. Carnegie A.J. Carnegie B.A. Summerell B.A. P.W. P.W. B.A. Summerell B.A. B.A. Summerell B.A. A.J. Carnegie A.J. D. Borelli Crous P.W. G.E.St.J. Hardy G.E.St.J. Wingfield M.J. – A.J. Carnegie A.J. B.A. Summerell B.A. M.J. Wingfield A.J. Carnegie A.J. P.W. Crous P.W. V. Andjic V. Wingfield M.J. M.J. Wingfield M.J. C. Mohammed C. A.J. Carnegie A.J. A.J. Carnegie I.W. Smith I.W. A.J. Carnegie A.J. I.W. Smith I.W. C. Mohammed C. I.W. Smith I.W.

Collector Africa

Location Australia: New South Wales South Indonesia Indonesia Brazil South Africa South Australia: New South Wales Australia Queensland Australia: Territory Northern Wales Australia: South New Australia: Wales South New Australia: Territory Australia: Northern Queensland Australia: Wales South New Australia: Queensland Australia: Queensland Australia: Australia Western Australia: Wales South New Australia: Japan Uruguay Victoria Australia: Australia: New South Wales Australia: New South Wales Wales South New Australia: Portugal Territory Northern Australia: Wales South New Australia: Wales South New Australia: Venezuela Queensland Australia: Uruguay Australia: Western Australia Western Australia: – Wales South New Australia: Wales South New Australia: New Zealand Wales South New Australia: Australia Australia Uruguay Tasmania Australia: Tasmania Australia: Wales South New Australia: Australia: New South Wales Australia: Victoria Wales South New Australia: Australia: Victoria Tasmania Australia: Australia sp. Host Protea Eucalyptus bridgesiana Eucalyptus grandis Eucalyptus grandis Eucalyptus dunnii Protea sp. Eucalyptus consideniana Eucalyptus robusta Eucalyptus molucana Eucalyptus miniata Angophora floribunda Eucalyptus blakelyi Eucalyptus miniata leaf litter sp. Corymbia Corymbia variegata Eucalyptus grandis Eucalyptus globulus sp. Corymbia Eucalyptus globulus Quercus dentata sp. Eucalyptus Eucalyptus globulus Eucalyptus nitens Eucalyptus agglomerata sp. Eucalyptus Agapanthus umbellatus leaf litter leaf Eucalyptus miniata Eucalyptus caesia Eucalyptus dunnii Man, tinea nigra sp. Corymbia Eucalyptus grandis sp. Corymbia – Eucalyptus dunnii Eucalyptus stellulata Eucalyptus sp. Eucalyptus argophloia sp. Corymbia Eucalyptus ficifolia Eucalyptus grandis Eucalyptus nitens Eucalyptus nitens Eucalyptus dunnii Corymbia maculata Eucalyptus globulus Corymbia henryi Eucalyptus globulus Eucalyptus nitens Eucalyptus globulus

ET ET ET ET ET ET EET ET ET EET ET ET ET ET ET

ET ET ET

ET ET 1, 2 ET CBS 124646 = JCM 15565 = CPC 12085 CBS 118911 CBS 120061 = CPC 13055 CBS 125216 = CPC 14535 = CMW 3279 CBS 110975 CBS 111370 = CPC 1368 CBS 111370 CBS 120085 = CPC 12798 CPC 13090 CBS 120736 = CPC 13324 CPC 13032 CBS 129064 = CPC 18332 CBS 121100 = CPC 13384 CBS 121100 CPC 14535 CBS 436.92 = CPC 515 CBS 124051 = CPC 14132 CPC 13091 CBS 125004 = CPC 14598 CBS 125243 = MUCC 668 CBS 105.75 = ATCC 24788 = ATCC CBS 105.75 = CBS 124584 = MUCC 700 CBS 120893 = CPC 13321 CBS 120493 = DAR 77452 = CMW 17545 CBS 119465 CBS 124580 = MUCC 695 CBS 120089 = CPC 12837 CBS 130602 CBS 111663 = CPC 1558 CPC = CPC 936 111663 CBS CPC 13104 CPC 14057 FMC 245 CBS 120087 = CPC 12840 CBS 111692 = CMW 14910 CBS 111692 CPC 13106 CPC 13321 CBS 125244 = MUCC 731 = CMW 17558 CBS 119468 CBS 111679 = CPC 1576 CBS 111679 CPC 1582 CPC 12552 CPC 13111 CBS 120496 = DAR 77446 CPC 12415 CBS 134747 = CPC 13093 CBS 124988 = CPC 13125 CBS 124581 = MUCC 670 CBS 124578 = MUCC 693 CPC 12424 CBS 121707 = CPC 13960 CBS 130523 CPC 12559 CPC 13839 CBS 111369 = CPC 1366 CBS 111369 Isolate no. Sph. myriadea Suberoteratosphaeria Staninwardia suttonii Ter. complicata Ter. cryptica Ter. dimorpha Ter.

Ter. fimbriata Ter.

Teratosphaeria agapanthi Teratosphaeria Ter. alcornii Ter.

pseudosuberosa Sub. suberosa

Ter. alboconidia Ter. aurantia Ter. araguata callophylla Ter. Ter. angophorae Ter. gauchensis Ter. Ter. australiensis Ter. blakelyi Ter. capensis Ter.

Ter. considenianae Ter. Ter. eucalypti Ter.

Ter. corymbiae Ter.

Sub. xenosuberosa

Ter. foliensis Ter. Ter. biformis Ter. Table 1 (cont.) Table

Ter. fibrillosa Ter. Ter. crispata Ter.

Ter. destructans Ter. Species W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 11 – – KF903047 KF903048 – – – KF902929 KF903039 KF903040 KF903032 KF903041 – – – – KF903350 KF903351 – – – KF903342 KF903343 KF903335 KF903344 KF937276 KF937281 KF902474 KF902475 KF937277 KF937279 KF902466 KF902467 KF902459 KF902468 – – – KF901583 KF902446 KF903322 KF903019 KF901594 KF901595 KF901730 – – – KF901588 KF901589 KF901807 KF901590 KF901591 KF902469 KF903345 KF903042 – KF902759 KF901592 KF902471 KF903347 KF903044 – KF902761 KF901593 KF902473 KF903349 KF903046 KF902762 KF902763 – – KF902752 KF901696 KF902463 KF903339 KF903036 KF902755 KF902756 KF902748 KF902757 – KF937278 – KF903537 KF902747 KF901587 KF902458 KF903334 KF903031 – KF937280 – KF903664 KF903665 – – – – KF903662 KF903663 KF903666 KF903668 KF937243 KF902176 KF903397 KF902735 KF901812 KF902445 KF903321 – KF937241 KF902016 KF903550 KF902730 KF901674 KF902440 KF903316 KF903014 KF901905 KF903516 KF902733 KF901581 KF902443 KF903319 KF903017 KF901906 KF903581 KF902734 KF901582 KF902444 KF903320 KF903018 KF901908 KF903574 KF902736 KF901584 KF902447 KF903323 KF903020 KF901911 KF901916 – KF937245 KF902031 KF903479 KF902749 KF901686 KF902460 KF903336 KF903033 KF937246 KF901907 KF903555 – KF901917 – KF901918 KF901919 KF901920 KF903552 KF902764 KF901596 KF902476 KF903352 KF903049 KF902148 KF903521 KF902729 KF901790 KF902439 KF903315 KF903013 KF902147 KF903522 KF902728 KF901789 KF902438 KF903314 KF903012 KF902101 KF903504 KF902758 KF901748 KF902470 KF903346 KF903043 KF902032 KF903598 KF902760 KF901687 KF902472 KF903348 KF903045 KF902012 KF903429 KF902731 KF901670 KF902441 KF903317 KF903015 KF902038 KF903431 KF902737 KF901692 KF902448 KF903324 KF903021 KF901959 KF903540 KF902741 KF901626 KF902452 KF903328 KF903025 KF901909 KF903609 KF902742 KF901585 KF902453 KF903329 KF903026 KF902079 KF903561 KF902767 KF901732 KF902486 KF903355 KF903052 EU707865 KF902039 KF903432 KF902738 KF901693 KF902449 KF903325 KF903022 KF902077 KF903409 – KF937242 KF937244 KF902040 KF903606 KF902750 KF901694 KF902461 KF903337 KF903034 KF901910 KF903394 KF902743 KF901586 KF902454 KF903330 KF903027 KF901856 KF903640 KF902651 KF901534 KF902343 – KF902076 KF903485 KF902732 KF901729 KF902442 KF903318 KF903016 KF902078 KF903486 KF902739 KF901731 KF902450 KF903326 KF903023 KF902041 KF903610 KF902751 KF901695 KF902462 KF903338 KF903035 EU707866 KF902121 KF903487 KF902744 KF901765 KF902455 KF903331 KF903028 KF902042 KF903611 KF902043 KF903626 KF902753 KF901697 KF902464 KF903340 KF903037 KF902122 KF903488 KF902745 KF901766 KF902456 KF903332 KF903029 KF902044 KF903648 KF902754 KF901698 KF902465 KF903341 KF903038 KF902123 KF903489 KF902746 KF901767 KF902457 KF903333 KF903030 KF901912 KF901913 KF902169 KF901914 KF901915 KF903547 – KF902120 KF903490 KF902740 KF901764 KF902451 KF903327 KF903024 – EF394844 Phillips A.J.L. & Crous P.W. P.W. Crous Crous Crous Carnegie & A. Maxwell A. P.W. Crous & L. Mostert P.W. M. M.J. Wingfield M.J. Shivas R.G. Summerell & B.A. Crous P.W. Summerell B.A. Carnegie A.J. Carnegie A.J. A.J. Carnegie A.J. A.J. & M. Crous P.W. G. Whyte G. G.S. Pegg G.S. I.W. Smith I.W. I.W. Smith I.W. P.A. Barber P.A. M.J. Wingfield M.J. Wingfield M.J. J.P. Mansilla J.P. Stalpers J.A. P.W. Crous P.W. McCrae S. Wingfield M.J. Phillips A.J.L. Crous P.W. P.W. P.W. S. McCrae S. P.W. Crous P.W. Crous & B. Summerell P.W. B.A. Summerell A.J.L. Phillips A.J.L. A. Maxwell A. A.J. Carnegie A.J. P.W. Crous P.W. – A.J.L. Phillips A.J.L. P.W. P.W. – A.J.L. Phillips A.J.L. A.J.L. Phillips A.J.L. – P.W. Crous P.W. – I.W. Smith I.W. I.W. Smith I.W. I.W. Smith I.W. I.W. Smith I.W. B.A. Summerell B.A. – P.W. P.W. Africa Africa Africa Australia: Western Australia Western Australia: South Africa South Madagascar Wales South New Australia: Queensland Australia: South Territory Northern Australia: Wales South New Australia: Australia Victoria Australia: Australia Africa South Australia: Queensland Australia: Australia: Queensland Australia: Australia Australia Australia: Western Australia Western Australia: Uruguay Uruguay Spain Zealand New South Africa South Portugal Chile Portugal Africa South South Portugal South Africa South Australia: New South Wales Territory Australia: Northern Portugal Australia: Western Australia Western Australia: Australia South Africa South Tasmania Australia: Portugal South Australia Portugal Portugal Australia Portugal Tasmania Australia: Australia Australia Australia Australia Territory Northern Australia: Tasmania Australia: Portugal E. ca - cladocalyx sp. sp. sp. Eucalyptus globulus Protea nitida Eucalyptus camaldulensis Eucalyptus botryoides Eucalyptus alba Protea repens litter leaf Eucalyptus miniata Angophora subvelutia Eucalyptus nitens Eucalyptus globulus Eucalyptus nitens Protea sp. Eucalyptus globulus Eucalyptus grandis × maldulensis Eucalyptus globulus Eucalyptus globulus Corymbia calophylla Eucalyptus grandis Eucalyptus grandis Eucalyptus globulus sp. Eucalyptus Eucalyptus cladocalyx Eucalyptus globulus sp. Eucalyptus Eucalyptus globulus Eucalyptus punctata Protea Eucalyptus globulus Eucalyptus cladocalyx Protea sp. Eucalyptus miniata leaf litter sp. Eucalyptus Eucalyptus globulus Corymbia henryi Eucalyptus Eucalyptus globulus Eucalyptus globulus Protea Eucalyptus globulus Eucalyptus globulus Eucalyptus globulus Eucalyptus globulus sp. Eucalyptus Eucalyptus globulus Eucalyptus globulus Eucalyptus globulus Eucalyptus globulus Eucalyptus globulus Eucalyptus phoenicea Eucalyptus globulus Eucalyptus

ET ET ET ET EET ET ET ET ET ET ET

ET ET ET ET ET ET of Mycosphaerella ambiphylla ET T. molleriana of T. EET T. rubidae of T. ET ET of M. molleriana ET T. xenocryptica of T. ET ET CBS 110502 = CMW 14461 CBS 110502 CBS 120040 = CPC 12712 CBS 124582 = MUCC 647 CBS 116005 = CMW 3282 CBS 116005 CPC 12821 CPC 14963 CBS 118504 = CPC 11267 CBS 118504 CBS 125006 = CPC 14514 CPC 13831 CPC 13833 CBS 124579 = CBS 120303 = CMW 17331 = CPC 23 CBS 111149 = CMW 4940 CBS 111164 = CPC 1215 CBS 111165 CBS 122905 = CMW 2732 CPC 12232 CBS 124989 = CPC 13767 CBS 122901 = CPC 13899 CBS 110906 = CMW 13347 CBS 110906 CBS 129529 = CPC 17272 = CPC 3322 CBS 112496 CPC 14514 CPC 40 CPC 937 CPC 11879 CBS 120137 = CPC 12805 = CBS 110499 MUCC 658 CBS 120304 = CMW 17332 CBS 124156 = CPC 15716 CBS 125007 = CPC 12821 CPC 11264 CBS 116427 = CPC 10941 CBS 116427 CPC 1214 CPC 355 CBS 121312 = DAR 77438 = CMW 11588 CBS 117924 CPC 12235 CMW 14180 CBS 124577 = MUCC 607 CBS 122898 = CPC 14960 CPC 14905 = CMW 11559 CBS 117925 CPC 12243 CPC 12830 = CMW 11563 CBS 117926 CPC 13452 = CMW 11564 CBS 117927 CPC 13825 CPC 13828 CPC 13835 CPC 13844 CBS 124052 = CPC 14632 = CPC 11697 CBS 118508 = CMW 11560 CBS 118359 CPC 13398 CBS 120746 = Ter. mexicana Ter. Ter. majorizuluensis Ter. Ter. micromaculata Ter. Ter. nubilosa Ter. proteae - arboreae Ter. Ter. pseudocryptica Ter. Ter. miniata Ter. pseudonubilosa Ter.

Ter. rubidae Ter. stellenboschiana Ter. Ter. macowanii Ter. Ter. juvenalis Ter. mareebensis Ter. maxii Ter.

molleriana Ter.

hortaea Ter. Ter. profusa Ter. multiseptata Ter.

Ter. pseudoeucalypti Ter.

Ter. knoxdaviesii Ter.

Ter. ovata Ter. pluritubularis Ter.

12 Persoonia – Volume 33, 2014 – – – – KF903057 KF903056 KF903054 – – KF903063 KF903051 KF903055 KF902810 – – – – – – – – Btub – – – – – – – – KF903360 – KF903357 KF903358 KF903367 KF903366 – KF903354 – KF903359 – KF903363 KF903060 – – – – – – – – – EF-1α 3 KJ380901 KJ564343 KF310084 KJ564345 KF902491 KF902490 KF902488 – – KF902496 KF902485 KF902489 KF902478 KF902479 KF902480 KF902481 KF902482 KF902483 KF902484 KF310071 RPB2 – – – – KF901599 KF901598 KF901664 – – KF901602 KF901646 KF901784 – – – – – – – – ITS GenBank accession no. – – – – KF902773 KF902772 KF902769 KF902770 – KF902779 KF902766 KF902771 – – – – – – – – Cal – KF902502 – – – – KJ564344 – KJ564338 – KF903556 KF903536 – KF937282 KF903608 – – KF903563 – KF937284 KF903613 – KF937283 KF903513 – KF310038 – – – – – – – – – – KF310079 Act KF902008 KJ380895 GU323974 GU323961 HQ599587 FJ790305 KF902081 KF903464 KF902774 KF901734 KF902492 KF903361 KF903058 KF901980 KF903465 KF902778 KF901645 KF902495 KF903365 KF903062 JF499868 KF901923 KF902083 KF903520 KF902781 KF901736 KF902498 KF903369 KF903065 KF901922 KF902082 KF903519 KF902780 KF901735 KF902497 KF903368 KF903064 KF937247 KF902080 KF903577 KF902768 KF901733 KF902487 KF903356 KF903053 KF902003 KF902162 KF901927 KF901926 KF902084 KF903473 KF902783 KF901737 KF902500 KF903371 KF903067 KF901924 KF903475 KF902775 KF901600 KF902493 KF903362 KF903059 KF902124 KF903629 KF902777 KF901768 KF902494 KF903364 KF903061 KF937249 KF901925 KF903673 KF902776 KF901601 – KF902045 KF903435 KF902782 KF901699 KF902499 KF903370 KF903066 KF901981 KF937248 KF902142 KF902085 KF903436 KF902784 KF901738 KF902501 KF903372 KF903068 GU323978 KF902160 KF903532 KF902546 KF901800 KF902215 KF903110 KF937237 KF902172 KF901950 KF901951 KF901952 KF901953 KF901954 KF901955 KF310015 KF901921 KF903657 KF902765 KF901597 KF902477 KF903353 KF903050 KF310011 LSU Emden Wingfield Crous Crous Summerell van J. Roets Tesei D. C. Ruibal C. Ruibal J.H. P.W. Crous & G. Bills G. & Crous P.W. P.W. Crous P.W. K. L. & P.W. Crous K. L. & P.W. F. F. M. T.I. Burgess T.I. M.J. Wingfield M.J. A.J. Carnegie & Wingfield M.J. M.J. Wingfield P.W. P.W. Crous P.W. M.J. Wingfield W. Gams W. T.I. Burgess, G.E.St.J Hardy, Burgess, G.E.St.J Hardy, T.I. A.J. Carnegie & G. Pegg B.A. Summerell & P.W. Crous B.A. Summerell & P.W. T. Coutinho T. P.W. Crous & G. Bills G. & Crous P.W. P.W. Crous P.W. B.A. B.A. Summerell B.A. T. Coutinho T. J. Dijksterhuis P.W. P.W. T.I. Burgess T.I. P.W. Crous P.W. – W. Gams W. – A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de A.P.M. Duarte, N.C. Baron & A.P.M. D.A. de Angelis D.A. de – B.A. Summerell B.A. –

Collector Territory Northern Africa Africa Africa France Spain Spain Java Spain South Africa South South Africa South Australia: South Madagascar Australia: Queensland South Africa South Australia: New South Wales Africa South South Africa South South Indonesia USA: Hawaii Australia: Queensland

Australia: Queensland Zambia Spain South Africa South Territory Northern Australia: Zambia France: Corsica South Vietnam South Africa South Spain USA: Hawaii USA: Spain Brazil Brazil Brazil Brazil Brazil Brazil Brazil Italy Australia Spain

Location sp. sample sample sample Rock sample Rock sample Rock sample Citrus sp. Eucalyptus Eucalyptus cladocalyx Phaenocoma prolifera Eucalyptus miniata Protea burchellii Eucalyptus camaldulensis Corymbia sp. Eucalyptus grandis Syncarpia glomulifera Eucalyptus grandis Eucalyptus punctata Eucalyptus punctata Eucalyptus sp. Eucalyptus sp. Eucalyptus grandis

Eucalyptus sp. Eucalyptus globulus sp. Eucalyptus sp. Eucalyptus Eucalyptus miniata Eucalyptus globulus Eucalyptus sp. Eucalyptus grandis Eucalyptus pellita sp. Eucalyptus Rock sp. Eucalyptus Rock Ant body Ant body Ant body Ant body Ant body Ant body Ant body Rock sample Eucalyptus placita Rock

Host

EET EET ET

ET ET ET ET ET ET ET ET

ET TRN211 =

ET of Mycosphaerella obscuris ET 1, 2 117937 117937 CBS 124158 = CPC 15735 CBS 437.68 CBS 126499 = CPC 15254 CBS 113313 = CMW 14457 CBS 113313 CBS 124583 = MUCC 666 CBS 125215 CBS 125215 = CPC 13764 CPC 12218 CPC 12352 CBS 121160 = DAR 77433 CBS 121160

CBS 124992 = CPC 13306 CBS 120301 = CMW 17321 CBS 115513 = CPC 10840 CBS 115513 CPC 12949 CPC 14600 CBS 111168 = CPC 1231 CBS 111168 CBS 120302 = CMW 17322 CPC 12283 CBS 110907 = CPC 63 CBS 110907 = CBS 119973 CMW 23439 CBS 111171 = CPC 1261 CBS 111171 CBS 128777 = CPC 18471 CBS 124061 = CPC 14602 CBS 121157 = MUCC 453 CBS 121157 CBS 113621 = CPC 42 CBS 113621 CBS 114782 = CPC 1230 CBS 114782 Isolate no. sp. CBS sp. sp. TRN450 sp. sp. TRN232 sp. Table 1 (cont.) Table Undescribed species CCFEE 5772 Undescribed species TRN138 = CBS 118301 Undescribed species TRN62 = CBS 118305 Tox. rubrigenum Tox. myrti Tripospermum Tox. protearum Tox. Ter. toledana Ter. tinara Ter.

Ter. syncarpiae Ter.

Ter. zuluensis Ter.

Teratosphaericola Teratosphaericola

Ter. suttonii Ter.

Teratosphaeriopsis Teratosphaeriopsis sp. Teratosphaeriaceae CBS 120744 = CPC 12349 Toxicocladosporium irritans Toxicocladosporium Ter. veloci Ter. Ter. viscidus Ter. Ter. verrucosa Ter. pseudoafricana pseudoafricana Teratosphaeriaceae sp. Teratosphaeriaceae CBS 131961 sp. Teratosphaeriaceae CBS 131960 sp. Teratosphaeriaceae CBS 131962 sp. Teratosphaeriaceae CBS 131963 sp. Teratosphaeriaceae CBS 131976 sp. Teratosphaeriaceae CBS 131977 sp. Teratosphaeriaceae CBS 131979 sp. Teratosphaeriaceae CCFEE 5569 sp. Teratosphaeriaceae CPC 13680 Teratosphaeriaceae Teratosphaeriaceae Species W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 13 – – – – KF902978 – – KF903072 – – – – KF903070 – – KF903378 KF903074 KF903377 – – KF903101 – KF903274 – – – – KF903375 – – – – – – – – KF903392 – KF310089 KF902510 KF902203 KF310096 KF902397 KF902507 KF937285 KF902506 KF902523 – KF310088 – – KF901780 KF902519 KF903386 KF903080 KF901648 KF902520 KF903387 KF903081 KF901797 KF902521 KF903388 KF903082 KF901778 KF902511 KF901779 KF902512 KF903379 KF903075 KF901791 KF902513 KF903380 KF903076 KF901792 KF902514 KF903381 – KF901793 KF902515 KF903382 KF903077 KF901794 KF902516 KF903383 – KF901795 KF902517 KF903384 KF903078 KF901796 KF902518 KF903385 KF903079 KF901739 KF901652 – KF901663 – – KF901608 KF902525 KF903391 KF903085 KF901607 KF902524 KF903390 KF903084 KF901628 – KF901606 KF902522 KF903389 KF903083 – – – KF901604 KF902504 – – – – – – – – – – – – – – KF902697 – – KF902787 – – – – – – – KF252287 – – KJ564348 – KF902508 KF903495 – KF903438 – – – KJ564339 – KF902526 KF903515 – – KJ564351 – KJ564350 – – KJ564340 – – – KF310089 – GU323971 KJ564325 FJ839662 KF902138 – KF901987 – KF902156 – KF902136 – KF902137 KF903650 – KF902150 – KF902151 – KF902152 KF903676 – KF902153 – KF902154 – KF902155 – KF902086 KC005802 KF902092 KF902170 KF903528 KF902786 KF901808 KF902505 KF903374 KF903071 KF902143 KF903585 KF902789 KF901785 – – KF310024 KF901928 KF903477 KF902785 KF901603 KF902503 KF903373 KF903069 KF902002 KF901983 KF937250 GQ852588 KF901933 KF903575 – KF901932 KF903624 – KF902157 KF901962 KF902093 KF901930 KF903576 KF902788 KF901605 KF902509 KF903376 KF903073 KF901931 KF903642 – KJ564336 KJ564329 KJ564330 GQ852593 KF310028 GU250390 KJ564324 GU250395 KF901977 KF903419 KF902696 KF901642 KF902396 KF903273 KF902977 KF901975 KF903418 KF902694 KF901640 KF902394 KF903271 KF902975 KF901929 KF903478 – KF901976 KF903426 KF902695 KF901641 KF902395 KF903272 KF902976 Crous P.W. P.W. Crous Crous Crous Summerell & Hill Quaedvlieg Quaedvlieg Ruibal Videira C. Ruibal K. Pongpanich K. Cavaletto J. Ploetz R.C. Pongpanich K. W. Himaman W. – – – – – – – M.J. Wingfield M.J. C. M.J. Wingfield M.J. M.J. Wingfield C.F. C.F. C. Ruibal V. & R. Beilharz R. & V. M.J. Wingfield S. R.F. Castañeda R.F. P.W. Crous & L. Mostert P.W. K.L. Carnegie A.J. P.W. P.W. Carnegie A.J. P.W. B. Dell H.D. Shin B.A. Summerell B.A. Crous P.W. W. W. P.W. B.A. W. W. – – – – M.J. Wingfield M.J. M.J. Wingfield M.J. V. Beilharz V. M.J. Wingfield M.J. Africa Africa Virginia Netherlands Netherlands Netherlands Spain Thailand Florida USA: Florida USA: Thailand Thailand Florida USA: USA: Florida USA: Florida USA: Florida USA: Florida USA: Florida USA: Indonesia Venezuela Spain Brazil Indonesia Thailand Spain Australia Indonesia The Cuba South Africa South Australia Australia South Australia USA: China South Korea Australia Queensland Australia: Australia The South The Italy Italy Antarctica Antarctica Colombia Colombia Australia Colombia

sp. sp. sp. sp. sp. sp. sp. sp. sp. sample sample debris Rock sample Acacia mangium sp. Musa Citrus Acacia mangium sp. Eucalyptus Citrus Citrus Citrus Citrus Citrus Citrus Citrus Rock Eucalyptus grandis Eucalyptus sp. Anthurium Rock sample Daviesia mimosoides Eucalyptus grandis Poa annua Smilax sp. leaf litter Protea sp. sp. Eucalyptus Eucalyptus platyphylla Eucalyptus camaldulensis × Phaenocoma prolifera sp. Eucalyptus Twig urophylla Eucalyptus urophylla Lonicera japonica Eucalyptus tectifica Eucalyptus tereticornis Eucalyptus molucana Pinus koraiensis Eucalyptus nitens Pinus koraiensis Rock sample Rock sample Rock Rock sample Eucalyptus grandis Eucalyptus grandis mimosoides ) (≡ D. cormybosa var. sp. Grevillea Eucalyptus grandis

ET ET

ET

ET ET ET EET ET ET

ET ET EET ET

ET

ET

ET ET ET ET

ET ET CBS 118284 = TRN104 = CBS 118284 CBS 118296 = TRN114 = CBS 118296 CBS 116366 = CPC 10522 CBS 116366 CMW 11730 CBS 116426 CBS 122455 CPC 10522 CPC 13467 CPC 15285 CPC 15289 CPC 15291 CPC 15293 CPC 15294 CPC 15296 CPC 15300 CBS 121101 = CPC 13302 CBS 121101 CBS 122897 = CPC 13984 CBS 125008 = CPC 11671 CBS 116002 = VPRI31767 CBS 116002 CBS 133618 CBS 128776 = CPC 18472 CBS 125011 = CPC 14636 CBS 125011 CPC 12748 CBS 125009 = CPC 14044 CBS 110809 = CPC 830 CBS 110809 CBS 387.92 = CPC 353 = CMW 23443 CBS 119975 MUCC 410 = PAB 05.05 B2 MUCC 410 = PAB CBS 125010 = CPC 12748 CBS 118500 = CPC 11174 CBS 118500 CPC 13264 CBS 314.95 CBS 136106 = CCFEE 5459 CBS 120729 = CPC 13282 CBS 136108 = CCFEE 5489 CBS 136107 = CCFEE 5488 CBS 118283 = TRN124 = CBS 118283 CBS 110988 = CPC 1090 CBS 110988 CBS 120735 = CPC 13378 CBS 116003 = VPRI31812 CBS 116003 CBS 118742 CBS 111049 = CPC 1089 CBS 111049 CBS 110999 = CPC 1087 CBS 110999 CBS 111185 = CPC 1300 CBS 111185 ATCC: American Type Culture Collection, Virginia, USA; CBS: CBS Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CCFEE: Culture collection from extreme environments of the Dipartimento di Scienze Ambientali, University of Tuscia, Tuscia, of University Ambientali, Scienze di Dipartimento the of environments extreme from collection Culture CCFEE: Netherlands; The Utrecht, Schimmelcultures, voor Centraalbureau Centre, Biodiversity Fungal CBS CBS: USA; Virginia, Collection, Culture Type American ATCC: Viterbo, Italy; CIRAD: Centre de Coopération Internationale Agronomique en pour Recherche le Développement, France; UMR-BGPI, CMW: Culture Montpellier, collection of the Agricultural Forestry Biotechnology of and Institute the (FABI) University of Pretoria, Pretoria, South Africa; CPC: Collection Ruibal Pedro Crous, housed at CBS; T. DAOM: Plant TRN: Research Institute, Africa; Agriculture Department of (Mycology), Ottawa, South Canada; Stellenbosch, DAR: of Plant University Pathology Herbarium, Agricultural Institute, Orange Forest Pathology, Road, Plant Orange. of Australia; NSW Department MAFF: 2800, STE-U: NIAS Zealand; Genebank, New Rotorua, 3020, Bag Private Collection, Culture Research Forest NZFS: Australia; Murdoch, Collection, Culture University Murdoch MUCC: Japan; Section, Microorganism Arzanlou. collection of Mahdi Australia; X: Working Department of Primary Industries, Knoxfield, private collection; VPRI: Victorian ex-type. ex-epitype; ET: EET: polymerase II second largest subunit. gene; RPB2: RNA operon; LSU: 28S large subunit of the nrRNA elongation factor 1-alpha; ITS: internal transcribed spacer regions of the nrDNA Translation Actin; Btub: β-tubulin; Cal: Calmodulin; EF-1α: Act:

Z. citri

Z. eucalypti pseudocatenata Xenoteratosphaeria Z. lonicericola Verrucisporota daviesiae Verrucisporota Zymoseptoria verkleyi Xenophacidiella jonkershoekensis Zasmidium Z. nocoxi Uwe. commune Z. parkii elongata Xenom. yunnanensis

Z. nabiacense Z. eucalyptorum Uwe. dekkeri Undescribed species CPC 16833 Xenopenidiella rigidophora 1 2 3 Undescribed species Undescribed species CPC 16832 = CCFEE 5764 CBS 136110 foris Vermiconia Uwebraunia australiensis

Von. antarctica Von. Von. flagrans Von. Z. pseudoparkii Xenomycosphaerella proteacearum Verr. aerohyalinosporum Z. anthuriicola

Z. xenoparkii 14 Persoonia – Volume 33, 2014

Staninwardia suttonii CBS 120061 4x Teratosphaeriaceae sp. CPC 13123 2x 4x Teratosphaeria suttonii CPC 12218 1 Teratosphaeria suttonii CBS 119973 Teratosphaeria suttonii CPC 12352 1 1 Teratosphaeria juvenalis CBS 116427 1 Teratosphaeria juvenalis CBS 110906 1 Teratosphaeria juvenalis CBS 111149 1 Teratosphaeria verrucosa CBS 113621 Teratosphaeria verrucosa CPC 12949 Teratosphaeria molleriana CPC 12232 1 Teratosphaeria molleriana CBS 111164 Teratosphaeria molleriana CBS 111165 Teratosphaeria molleriana CBS 122905 Teratosphaeria molleriana CBS 118359 0.68 Teratosphaeria molleriana CBS 117924 Teratosphaeria molleriana CBS 117927 1 Teratosphaeria molleriana CBS 117926 1 Teratosphaeria molleriana CBS 117925 Teratosphaeria molleriana CBS 110499 Teratosphaeria blakelyi CBS 120089 0.83 1 Teratosphaeria toledana CBS 115513 Teratosphaeria toledana CBS 113313 Teratosphaeria nubilosa CPC 13844 0.75 1 Teratosphaeria nubilosa CPC 13825 Teratosphaeria nubilosa CBS 116005 Teratosphaeria nubilosa CPC 13835 0.99 Teratosphaeria nubilosa CPC 13828 Teratosphaeria nubilosa CPC 13452 0.96 Teratosphaeria nubilosa CPC 12235 Teratosphaeria nubilosa CPC 11879 A 1 Teratosphaeria nubilosa CPC 12243 Teratosphaeria nubilosa CPC 12830 Teratosphaeria pseudonubilosa CPC 13831 0.99 0.99 Teratosphaeria pseudonubilosa CPC 13833 1 Teratosphaeria destructans CBS 111370 1 Teratosphaeria viscidus CBS 124992 2x 1 Teratosphaeria viscidus CBS 121157 B 1 Teratosphaeria eucalypti CPC 12552 Teratosphaeria eucalypti CBS 111692 0.72 0.76 Teratosphaeria pseudoeucalypti CBS 124577 Teratosphaeria aurantia CBS 125243 0.68 1 Teratosphaeria corymbiae CBS 124988 Teratosphaeria callophylla CBS 124584 Teratosphaeria majorizuluensis CBS 120040 Teratosphaeria stellenboschiana CPC 13764 1 Teratosphaeria stellenboschiana CBS 124989 0.58 1 Teratosphaeria stellenboschiana CPC 12283 1 Teratosphaeria gauchensis CBS 120304 1 Teratosphaeria gauchensis CPC 120303 1 1 C Teratosphaeria Teratosphaeria gauchensis CBS 119468 0.86 1 Teratosphaeria gauchensis CBS 119465 Teratosphaeria foliensis CBS 124581 1 1 Teratosphaeria zuluensis CBS 120301 Teratosphaeria zuluensis CBS 120302 1 Teratosphaeria considenianae CPC 13032 1 1 Teratosphaeria considenianae CPC 14057 Teratosphaeriaceae sp. CPC 13680 Teratosphaeriaceae Teratosphaeria ovata CBS 124052 Teratosphaeria miniata CBS 125006 1 Teratosphaeria mareebensis CBS 129529 1 Teratosphaeria micromaculata CBS 124582 0.82 1 Teratosphaeria biformis CBS 124578 1 Teratosphaeria complicata CPC 14535 0.99 Teratosphaeria hortaea CBS 124156 1 Teratosphaeria dimorpha CBS 124051 1 Teratosphaeria pluritubularis CBS 118508 0.6 Teratosphaeria profusa CBS 125007 Teratosphaeria cryptica CPC 13839 D Teratosphaeria cryptica CPC 13839 Teratosphaeria cryptica CBS 111663 1 Teratosphaeria cryptica CBS 111679 Teratosphaeria cryptica CPC 12559 0.96 Teratosphaeria cryptica CBS 110975 4x Teratosphaeria cryptica CPC 12424 0.99 Teratosphaeria cryptica CPC 12415 Teratosphaeria alboconidia CBS 125004 Teratosphaeria veloci CPC 14600 1 2x Teratosphaeria syncarpiae CBS 121160 Teratosphaeria fibrillosa CBS 121707 1 Teratosphaeria fimbriata CBS 120736 1 1 Teratosphaeria fimbriata CBS 120893 2x Teratosphaeria fimbriata CPC 13321 0.59 1 Teratosphaeria angophorae CBS 120493 Teratosphaeria alcornii CPC 13384 1 0.74 Teratosphaeria multiseptata CBS 121312 2x 1 Teratosphaeria australiensis CBS 124580 1 Teratosphaeria australiensis CBS 125244 1 Teratosphaeria tinara CBS 124583 1 Teratosphaeria pseudocryptica CPC 11267 Teratosphaeria rubidae CBS 124579 Austroafricana parva CBS 119901 1 Austroafricana parva CBS 116289 1 Austroafricana parva CPC 12249 1 Austroafricana parva CBS 122892 0.55 1 Austroafricana parva CBS 122893 E 4x Austroafricana parva CBS 114761 1 Austroafricana parva CBS 110503 Austroafricana sp. CBS 113059 Austroafricana 4x 1 2x Austroafricana associata CPC 13375 1 1 Austroafricana associata CBS 112224 0.69 Austroafricana associata CPC 13113 2x 1 4x 1 1 Austroafricana associata CBS 120730 Austroafricana associata CBS 120732 F 0.97 4x Austroafricana associata CBS 120731 4x Neocatenulostroma microspora CBS 101951 Neocatenulostroma 0.91 Eupenidiella venezuelensis CBS 106.75 Eupenidiella 0.98 Euteratosphaeria verrucosiafricana CBS 118496 4x 1 Euteratosphaeria verrucosiafricana CBS 118497 Euteratosphaeria Euteratosphaeria verrucosiafricana CBS 118498 1 Teratosphaeriaceae sp. CBS 120744 2x 1 Teratosphaeriaceae sp. CPC 12349 Teratosphaeria mexicana CBS 110502 Suberoteratosphaeria suberosa CPC 13111 0.78 Suberoteratosphaeria suberosa CPC 13106 Suberoteratosphaeria suberosa CBS 436.92 4x 1 Suberoteratosphaeria suberosa CPC 13090 1 1 1 Suberoteratosphaeria suberosa CPC 13091 Suberoteratosphaeria 2x Suberoteratosphaeria suberosa CPC 13104 2x 1 Suberoteratosphaeria xenosuberosa CBS 134747 1 2x Suberoteratosphaeria pseudosuberosa CBS 118911 0.88 Neotrimmatostroma excentricum CBS 121102 Neotrimmatostroma 4x 1 1 Phaeothecoidea intermedia CBS 124994 4x Phaeothecoidea minutispora CPC 13710 Phaeothecoidea eucalypti CBS 120831 Phaeothecoidea 0.99 1 Readeriella tasmanica CPC 13631 0.94 Readeriella tasmanica CBS 125002 0.8 Readeriella dendritica CPC 12709 1 Readeriella patrickii CPC 13602 Readeriella novaezelandiae CBS 114357 Readeriella eucalyptigena CBS 124999 1 0.94 Readeriella mirabilis CBS 125000 0.99 4x 1 1 1 Readeriella menaiensis CBS 125003 Readeriella sp. CPC 12379 Readeriella mirabiliaffinis CBS 134744 1 Readeriella angustia CBS 124998 1 Readeriella angustia CBS 124997 Readeriella Readeriella angustia CPC 13621 1 1 0.55 1 Readeriella angustia CPC 13630 Readeriella nontingens CPC 14444 Readeriella dimorphospora CPC 12636 0.92 Readeriella callista CPC 13615 1 1 Readeriella callista CPC 12841 1 Readeriella callista CPC 13605 0.8 Readeriella pseudocallista CBS 125001 1 Readeriella deanei CBS 134746 1 Readeriella limoniforma CBS 134745 0.92 Readeriella readeriellophora CPC 12920 Readeriella eucalypti CPC 13401 2x Pseudoteratosphaeria gamsii CBS 118495 1 1 Pseudoteratosphaeria stramenticola CBS 120737 Pseudoteratosphaeria stramenticola CBS 118506 0.75 Pseudoteratosphaeria perpendicularis CBS 118367 G 0.89 Pseudoteratosphaeria secundaria CBS 111002 4x 1 1 Pseudoteratosphaeria secundaria CBS 118507 Pseudoteratosphaeria secundaria CPC 10989 1 Pseudoteratosphaeria secundaria CBS 115608 Pseudoteratosphaeria Pseudoteratosphaeria flexuosa CBS 111048 4x 1 1 1 Pseudoteratosphaeria flexuosa CBS 110743 1 Pseudoteratosphaeria flexuosa CBS 111012 Pseudoteratosphaeria flexuosa CBS 111163 Pseudoteratosphaeria ohnowa CBS 112896 1 Penidiella columbiana CBS 486.80 Penidiella 2x 1 Teratosphaericola pseudoafricana CBS 114782 Teratosphaericola 4x Teratosphaericola pseudoafricana CBS 111168 Teratosphaeriopsis pseudoafricana CBS 111171 Teratosphaeriopsis 1 Myrtapenidiella eucalypti CBS 123246 4x 1 Myrtapenidiella eucalypti CBS 123245 Myrtapenidiella 1 Myrtapenidiella corymbia CBS 124769 Myrtapenidiella tenuiramis CPC 13692 4x 0.98 Parapenidiella tasmaniensis CBS 114556 1 Parapenidiella tasmaniensis CBS 111687 4x Parapenidiella pseudotasmaniensis CBS 124991 Parapenidiella Queenslandipenidiella kurandae CBS 121715 Queenslandipenidiella 0.1

Fig. 1 A Bayesian 50 % majority rule consensus tree based on a combined ITS, LSU, RPB2, EF-1α and Btub alignment, containing all isolates associated with Teratosphaeria leaf disease of Eucalyptus available at the CBS. Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. The tree was rooted to Staninwardia suttonii. The scale bar indicates 0.1 expected changes per site. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 15

1 Staninwardia suttonii CBS 120061 1 Pseudoramichloridium henryi CBS 124775 Extremaceae Pseudoramichloridium henryi CPC 13122 Paramycosphaerella marksii CBS 110920 Pseudoramichloridium Paramycosphaerella marksii CBS 110981 1 Paramycosphaerella marksii CBS 110750 1 Paramycosphaerella marksii CBS 110964 1 Paramycosphaerella marksii CBS 110963 Paramycosphaerella Paramycosphaerella intermedia CBS 114356 1 Paramycosphaerella intermedia CBS 114415 1 Passalora intermedia CBS 124154 1 Mycosphaerella irregulari CBS 123242 3x 1 0.97 Mycosphaerella pseudomarksii CBS 123241 1 Mycosphaerella madeirae CBS 112301 0.89 Mycosphaerella madeirae CBS 112895 0.7 3x Zasmidium nabiacense CBS 125010 Zasmidium nabiacense CPC 12748 0.64 1 Mycosphaerella vietnamensis CBS 119974 Zasmidium parkii CBS 387.92 1 Zasmidium aerohyalinosporum CBS 125011 1 Xenomycosphaerella yunnanensis CBS 119975 0.99 Xenomycosphaerella elongata CBS 120735 Xenomycosphaerella 3x Mycosphaerella sumatrensis CBS 118499 Mycosphaerella 1 sumatrensis CBS 118501 Mycosphaerella sumatrensis CBS 118502 1 Phaeophleospora eugeniae CPC 15143 Phaeophleospora eugeniae CPC 15159 Phaeophleospora gregaria CBS 111519 Phaeophleospora gregaria CBS 114662 3x 1 1 Phaeophleospora gregaria CBS 110501 0.93 Phaeophleospora gregaria CBS 111167 Phaeophleospora gregaria CBS 111166 Phaeophleospora 0.55 Phaeophleospora stramenti CBS 118909 0.73 1 1 Phaeophleospora scytalidii CBS 516.93 Phaeophleospora scytalidii CBS 118493 Phaeophleospora eugeniicola CPC 2557 Amycosphaerella africana CBS 680.95 1 Amycosphaerella africana CBS 116154 Amycosphaerella africana CBS 110843 Amycosphaerella africana CBS 110500 Amycosphaerella Pallidocercospora acaciigena CBS 112516 Pallidocercospora acaciigena CBS 112515 Pallidocercospora acaciigena CPC 13350 0.93 Pallidocercospora acaciigena CBS 120740 Pallidocercospora acaciigena CBS 115432

Pallidocercospora heimioides CBS 111190 Mycosphaerellaceae Pallidocercospora heimioides CBS 111364 0.97 Pallidocercospora crystallina CBS 110699 Pallidocercospora crystallina CBS 681.95 Pallidocercospora crystallina CBS 111044 Pallidocercospora crystallina CBS 111045 1 1 Pallidocercospora crystallina CPC 11453 Pallidocercospora irregulariramosa CBS 111211 Pallidocercospora heimii CBS 110682 Pallidocercospora heimii CPC 11926 Pallidocercospora 1 Pallidocercospora heimii CPC 13099 Pallidocercospora heimii CPC 11548 Pallidocercospora heimii CPC 11716 1 Pallidocercospora heimii CPC 11441 Pallidocercospora heimii CPC 10992 Pallidocercospora holualoana CBS 110698 Pallidocercospora konae CBS 111028 Pallidocercospora konae CBS 111261 Pallidocercospora thailandica CBS 120723 Pallidocercospora thailandica CBS 121389 1 Pallidocercospora thailandica CBS 121390 1 Pallidocercospora thailandica CPC 10547 Pallidocercospora colombiensis CBS 110968 H Pallidocercospora colombiensis CBS 110967 Pallidocercospora colombiensis CBS 110969 0.76 Sonderhenia eucalypticola CBS 112502 0.58 3x Sonderhenia eucalypticola CPC 11252 1 Sonderhenia eucalypticola CPC 11251 Sonderhenia 3x Sonderhenia eucalyptorum CBS 120220 0.79 Phaeophleospora stonei CPC 13330 Mycosphaerella quasiparkii CBS 123243 Pseudocercospora tereticornis CBS 124996 1 Pseudocercospora tereticornis CPC 13008 0.52 Pseudocercospora tereticornis CPC 13315 Pseudocercospora tereticornis CPC 13299 0.52 Pseudocercospora flavomarginata CBS 118824 Pseudocercospora chiangmaiensis CBS 123244 Pseudocercospora madagascarienis CBS 124155 1 0.79 1 Pseudocercospora basiramifera CBS 114757 Pseudocercospora basiramifera CBS 111072 1 Pseudocercospora paraguayensis CBS 111286 1 Pseudocercospora pyracanthigena CPC 10808 Pseudocercospora marginalis CPC 12497 1 Pseudocercospora basitruncata CBS 114664 Pseudocercospora sphaerulinae CBS 112621 0.96 0.76 Pseudocercospora crousii CBS 119487 Pseudocercospora subulata CBS 118489 1 Pseudocercospora fori CBS 113286 1 Pseudocercospora fori CBS 113285 Pseudocercospora natalensis CBS 111069 I 3x Pseudocercospora gracilis CBS 111189 1 0.63 Pseudocercospora gracilis CPC 11144 0.89 Pseudocercospora gracilis CPC 11181 1 Pseudocercospora gracilis CBS 116291 Pseudocercospora eucalyptorum CPC 12957 Pseudocercospora 1 Pseudocercospora eucalyptorum CPC 12406 1 Pseudocercospora eucalyptorum CPC 12568 Pseudocercospora eucalyptorum CBS 110722 3x Pseudocercospora eucalyptorum CBS 114866 1 Pseudocercospora eucalyptorum CBS 116359 1 Pseudocercospora eucalyptorum CBS 116304 0.58 Pseudocercospora eucalyptorum CPC 12802 J 3x 1 Pseudocercospora eucalyptorum CBS 111268 Pseudocercospora eucalyptorum CPC 11713 1 Pseudocercospora eucalyptorum CPC 13769 1 Pseudocercospora eucalyptorum CBS 110777 Pseudocercospora eucalyptorum CBS 110723 Pseudocercospora eucalyptorum CBS 110776 Pseudocercospora eucalyptorum CBS 116303 0.93 Pseudocercospora eucalyptorum CBS 114242 Pseudocercospora eucalyptorum CPC 13926 1 Pseudocercospora eucalyptorum CBS 110903 Pseudocercospora eucalyptorum CPC 13816 Pseudocercospora eucalyptorum CPC 13455 Pseudocercospora robusta CBS 111175 CPC 11595 Pseudocercospora norchiensis CBS 120738 1 Passalora eucalypti CBS 111318 Passalora leptophlebiae CBS 129524 1 Septoria eucalyptorum CBS 118505 Septoria Sphaerulina cercidis CBS 118910 Sphaerulina 12x 1 Ramularia pratensis var. pratensis CPC 11294 1 3x 1 Ramularia eucalypti CBS 120726 Ramularia endophylla CBS 113265 Ramularia 1 Verrucisporota daviesiae CBS 116002 Mycosphaerella pseudovespa CBS 121159 Zasmidium eucalyptorum CBS 118500 1 Zasmidium pseudoparkii CBS 110999 1 1 Zasmidium pseudoparkii CBS 111049 Zasmidium pseudoparkii CBS 110988 Zasmidium xenoparkii CBS 111185 1 Zasmidium citri CPC 15300 0.99 Zasmidium citri CPC 15291 Zasmidium citri CPC 15293 Zasmidium citri CPC 15289 1 Zasmidium citri CPC 15296 Zasmidium 1 Zasmidium citri CPC 10522 Zasmidium citri CBS 116366 K 0.63 Zasmidium citri CBS 116426 Zasmidium citri CPC 13467 0.78 Zasmidium citri CBS 122455 Zasmidium citri CPC 15294 Zasmidium citri CPC 15285 Verrucisporota proteacearum CBS 116003 Verrucisporota 3x 1 Passalora zambiae CBS 112971 incertae- Passalora zambiae CBS 112970 sedis 0.1 Fig. 2 A Bayesian 50 % majority rule consensus tree based on a combined ITS, LSU, RPB2, EF-1α and Act alignment, containing all isolates associated with Mycosphaerella leaf disease of Eucalyptus available at the CBS. Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. The tree was rooted to Staninwardia suttonii. The scale bar indicates 0.1 expected changes per site. 16 Persoonia – Volume 33, 2014

3x 1 Aulographina pinorum CBS 655.86

Undiscribed species CCFEE 5772 devriesiaceae Neo- ‘Devriesia' bulbillosae TRN81 0.59 ‘Devriesia' modesta CCFEE 5672 1 Neodevriesia hilliana CBS 123187 1 1 Neodevriesiaceae sp. CBS 118302 Neodevriesia 0.96 ‘Devriesia' queenslandica CBS 129527 ’Devriesia' lagerstroemiae CBS 125422 0.76 1 Tripospermum sp. CPC 13123 Tripospermum myrti CBS 437.68 Tripospermum 1 CBS 118712 Mycosphaerellaceae 2x 1 CBS 124.31 Cercospora Cercospora ariminensis CBS 137.56 1 0.85 CBS 118790 Ramulispora 2x 1 0.77 Ramulispora sorghi CBS 110579 Sphaerulina myriadea CBS 124646 Sphaerulina 2x 0.72 Pallidocercospora acaciigena CBS 112516 Pallidocercospora 0.94 2x 1 Pseudocercospora basiramifera CBS 111072 Pseudocercospora eucalyptorum CBS 110777 Pseudocercospora 0.97 3x 1 Ramularia endophylla CBS 113265 1 Ramularia eucalypti CBS 120726 0.91 Ramularia pratensis var. pratensis CPC 11294 Ramularia 0.74 Zasmidium anthuriicola CBS 118742 1 Zasmidium citri CPC 15300 1 Zasmidium lonicericola CBS 125008 Zasmidium 0.6 1 Zasmidium nocoxi CBS 125009 Neopenidiella nectandrae CBS 734.87 Neopenidiella 1 Lecanosticta brevispora CPC 18092 Lecanosticta 2x 2x 1 Lecanosticta longispora CPC 17940 0.96 Lecanosticta longispora CPC 17941 1 Phaeophleospora eugeniae CPC 15159 Phaeophleospora 2x 1 0.98 2x Mycosphaerella nootherensis CBS 130522 1 0.74 2x Polyphialoseptoria tabebuiae-serratifoliae CBS 112650 Polyphialoseptoria 1 Xenomycosphaerella yunnanensis CBS 119975 Xenomycosphaerella 0.92 Xenomycosphaerella elongata CBS 120735 1 Schizothyrium pomi CBS 228.57 Schizo- 2x Schizothyrium pomi CBS 486.50 thyriaceae Mucomycosphaerella eurypotami JK 5586J Mucomycosphaerella incertae sedis 1 Recurvomyces sp. CCFEE 5575 1 Recurvomyces mirabilis CBS 119434 Recurvomyces 3x 0.8 Recurvomyces mirabilis CCFEE 5475 1 Catenulostroma protearum CBS 125421 0.64 Catenulostroma hermanusense CBS 128768 Catenulostroma Constantinomyces macerans TRN440 3x 1 Friedmanniomyces endolithicus CCFEE 5199 Friedmanniomyces endolithicus CCFEE 5283 Friedmanniomyces 1 Friedmanniomyces endolithicus CCFEE 5328 2x 1 Monticola elongata CCFEE 5492 0.96 Monticola elongata CCFEE 5499 Monticola 2x Montincola elongata CCFEE 5394

0.92 Teratosphaeriaceae 0.98 1 Elasticomyces elasticus CCFEE 5474 Elasticomyces elasticus CCFEE 5490 0.95 Elasticomyces elasticus CCFEE 5526 Elasticomyces elasticus CCFEE 5525 0.61 2x 0.98 Elasticomyces elasticus CCFEE 5505 Elasticomyces 1 0.81 Elasticomyces elasticus CCFEE 5506 2x Elasticomyces elasticus CBS 122538 1 Elasticomyces elasticus CCFEE 5547 0.94 Elasticomyces elasticus CCFEE 5543 Teratosphaeriaceae sp. CBS 117937 Xenoteratosphaeria jonkershoekensis CBS 122897 Xenoteratosphaeria 1 Acidiella bohemica CBS 132720 0.71 Acidiella bohemica CBS 132721 Acidiella 1 Neocatenulostroma abietis CBS 110038 0.77 Neocatenulostroma germanicum CBS 539.88 1 Neocatenulostroma microsporum CBS 111031 Neocatenulostroma 0.74 Neocatenulostroma microsporum CBS 101951 1 Austroafricana associata CBS 120730 1 Austroafricana keanei CBS 130524 1 Austroafricana parva CPC 12249 Austroafricana 0.57 Austroafricana parva CBS 116289 Xenopenidiella rigidophora CBS 314.95 Xenopenidiella 2x Teratosphaeriaceae sp. CBS 131290 1 Teratosphaeriaceae sp. CBS 131963 1 Teratosphaeriaceae sp. CBS 131977 2x 1 0.97 Teratosphaeriaceae sp. CBS 131979 1 Teratosphaeriaceae sp. CBS 131976 1 Teratosphaeriaceae sp. CBS 131960 0.67 Teratosphaeriaceae sp. CBS 131962 1 Euteratosphaeria verrucosiafricana CBS 118497 0.57 Euteratosphaeria verrucosiafricana CBS 118498 Euteratosphaeria 0.91 Parateratosphaeria altensteinii CBS 123539 1 1 Parateratosphaeria bellula CBS 111700 0.85 Parateratosphaeria cf. bellula CBS 111699 0.61 Parateratosphaeria karinae CBS 128774 Parateratosphaeria 1 Parateratosphaeria marasasii CBS 122899 1 Parateratosphaeria persoonii CBS 122895 Parateratosphaeria persoonii CBS 122896 0.9 2x Hortaea thailandica CBS 125423 Hortaea 0.99 CBS 105.75 Stenella 0.83 Eupenidiella venezuelensis CBS 106.75 Eupenidiella Teratosphaeriopsis pseudoafricana CBS 111171 Teratosphaeriopsis 0.92 Batcheloromyces proteae CBS 110696 2x 1 Batcheloromyces alistairii CBS 120035 1 Batcheloromyces leucadendri CBS 111577 Batcheloromyces Batcheloromyces sedgefieldii CBS 112119 0.99 Pseudoteratosphaeria gamsii CBS 118495 0.55 1 Pseudoteratosphaeria perpendicularis CBS 118367 1 Pseudoteratosphaeria stramenticola CBS 120737 Pseudoteratosphaeria stramenticola CBS 118506 2x 1 1 Pseudoteratosphaeria flexuosa CBS 110743 1 Pseudoteratosphaeria flexuosa CBS 111012 Pseudo- Pseudoteratosphaeria secundaria CBS 111002 0.98 0.97 Pseudoteratosphaeria secundaria CBS 115608 0.9 Pseudoteratosphaeria secundaria CBS 118507 teratosphaeria 1 Pseudoteratosphaeria ohnowa CBS 113290 Pseudoteratosphaeria ohnowa CBS 112896 1 Teratosphaericola pseudoafricana CBS 111168 Teratosphaericola pseudoafricana CBS 114782 Teratosphaericola Penidiella columbiana CBS 486.80 0.56 3x Penidiella 1 Piedraia quintanilhae CBS 327.63 incertae 4x 4x 1 var. paraguayensis CBS 276.32 Piedraia 2x Piedraia hortae var. hortae CBS 480.64 sedis Parapenidiella tasmaniensis CBS 114556 3x 0.63 0.72 3x 1 0.95 Parapenidiella tasmaniensis CBS 111687 Parapenidiella 0.71 2x Parapenidiella pseudotasmaniensis CBS 124991 Constantinomyces nebulosus CBS 117941 Constantinomyces Teratosphaeriaceae sp. TRN232 Neotrimmatostroma excentricum CBS 121102 Neotrimmatostroma 0.54 1 Phaeothecoidea intermedia CPC 13711 2x 0.9 Phaeothecoidea intermedia CBS 124994 1 1 Phaeothecoidea minutispora CPC 13710 Phaeothecoidea 2x Phaeothecoidea minutispora CBS 124995 1 1 Suberoteratosphaeria suberosa CPC 13090 Suberoteratosphaeria suberosa CBS 436.92 Suberoteratosphaeria 1 Teratosphaeria mexicana CBS 110502 0.75 1 Myrtapenidiella corymbia CPC 14641 0.99 Myrtapenidiella corymbia CBS 124769 3x 1 Myrtapenidiella tenuiramis CBS 124993 1 Myrtapenidiella tenuiramis CPC 13692 Myrtapenidiella 1 Myrtapenidiella eucalypti CBS 123245 Myrtapenidiella eucalypti CBS 123246

0.1

Fig. 3 A Bayesian 50 % majority rule consensus tree based on the LSU/RPB2 alignment and containing all isolates associated with the Teratosphaeriaceae available at the CBS. Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. The tree was rooted to Aulographina pinorum. The scale bar indicates 0.1 expected changes per site. value for the topological convergence diagnostic set to 0.01) 2004) and applied to each gene partition. The substitution were performed on the five-locus (ITS, LSU, RPB2, EF-1α and models for each locus are listed in Table 3. Staninwardia sut­ Btub) TLD (Fig. 1) and MLD (Fig. 2) trees, as well as on the tonii (CBS 120061) served as an outgroup for both MLD and two-locus, Teratosphaeriaceae and families LSU/RPB2 (Fig. TLD five-locus multigene phylogenetic analyses; Aulographina 3, 4) concatenated datasets using MrBayes v. 3.2.1 (Ronquist pinorum (CBS 655.86) was used as outgroup for the LSU/RPB2 et al. 2011) as described by Crous et al. (2006). Appropriate Teratosphaeriaceae tree and Parastagonospora nodorum (CBS gene models were selected using MrModeltest v. 2.3 (Nylander 110109) was used as an outgroup for the families tree. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 17

Readeriella pseudocallista CPC 13599 Readeriella pseudocallista CBS 125001 0.7 0.86 Readeriella callista CBS 124986 3x Readeriella callista CPC 13615 0.79 1 Readeriella callista CPC 13605 Readeriella callista CPC 12841 Readeriella readeriellophora CBS 114240 0.98 Readeriella readeriellophora CBS 120209 1 Readeriella readeriellophora CPC 12920 1 Readeriella eucalypti CBS 120079 Readeriella eucalypti CPC 13401 1 Readeriella angustia CPC 13630 0.75 Readeriella angustia CPC 13608 Readeriella Readeriella nontingens CPC 14444 Readeriella dimorphospora CPC 12636 2x 1 0.72 1 Readeriella dendritica CBS 120032 0.55 Readeriella dendritica CPC 12709 Readeriella tasmanica CPC 13631 1 Readeriella sp. CBS 120733 1 1 Readeriella patrickii CBS 124987 Readeriella patrickii CPC 13602 0.62 Readeriella novaezelandiae CBS 114357 0.93 Readeriella eucalyptigena CPC 13026 1 Readeriella eucalyptigena CBS 124999 1 Readeriella menaiensis CBS 125003 Readeriella mirabilis CBS 125000 Teratosphaeriaceae 2x 1 Meristemomyces frigidum CCFEE 5457 1 Meristemomyces frigidum CCFEE 5507 Meristemomyces frigidum CCFEE 5508 Meristemomyces 0.98 Teratosphaeria macowanii CBS 122901 1 Teratosphaeria maxii CBS 112496 0.85 Teratosphaeria maxii CBS 120137 3x 1 1 Teratosphaeria fibrillosa CBS 121707 Teratosphaeria proteae-arboreae CPC 14963 Teratosphaeria syncarpiae CBS 121160 Teratosphaeria pseudocryptica CPC 11264 1 1 Teratosphaeria australiensis CBS 124580 0.67 0.58 Teratosphaeria australiensis CBS 125244 1 Teratosphaeria multiseptata CBS 121312 1 Teratosphaeria tinara CBS 124583 Teratosphaeria tinara CBS 124583 1 Teratosphaeria angophorae CBS 120493 1 Teratosphaeria fimbriata CBS 120736 1 Teratosphaeria fimbriata CBS 120893 Teratosphaeria alcornii CPC 13384 Teratosphaeria aurantia CBS 125243 1 Teratosphaeria juvenalis CBS 111149 0.54 Teratosphaeria juvenalis CBS 116427 1 Teratosphaeria verrucosa CPC 12949 0.82 Teratosphaeria verrucosa CBS 113621 0.55 2x Teratosphaeria suttonii CBS 110907 Teratosphaeria suttonii CBS 119973 1 Teratosphaeria considenianae CBS 120087 0.99 Teratosphaeria considenianae CPC 13032 0.7 1 Teratosphaeria zuluensis CBS 120301 Teratosphaeria zuluensis CBS 120302 0.92 Teratosphaeria gauchensis CBS 119468 0.83 Teratosphaeria gauchensis CBS 120304 1 Teratosphaeria stellenboschiana CBS 124989 0.99 Teratosphaeria stellenboschiana CPC 13764 Teratosphaeria majorizuluensis CBS 120040 0.97 Teratosphaeria majorizuluensis CPC 12712 0.78 Teratosphaeria ovata CBS 124052 1 Teratosphaeria callophylla CBS 124584 Teratosphaeria corymbiae CBS 120496 Teratosphaeria corymbiae CBS 124988 Teratosphaeria 0.65 1 Teratosphaeria molleriana CBS 117924 0.65 Teratosphaeria molleriana CBS 118359 0.82 Teratosphaeria blakelyi CBS 120089 0.85 Teratospaeria crispata CBS 130523 1 Teratosphaeria toledana CBS 115513 Teratosphaeria toledana CBS 113313 1 Teratosphaeria nubilosa CPC 13835 Teratosphaeria nubilosa CBS 116005 1 Teratosphaeria destructans CBS 111369 0.57 1 Teratosphaeria destructans CBS 111370 Teratosphaeria viscidus CBS 124992 1 Teratosphaeria eucalypti CPC 12552 0.95 0.9 Teratosphaeria eucalypti CBS 111692 2x Teratosphaeria pseudoeucalypti CBS 124577 Teratosphaeria veloci CBS 124061 1 Teratosphaeria dimorpha CBS 120085 Teratosphaeria profusa CBS 125007 1 Teratosphaeria profusa CPC 12821 Teratosphaeria cryptica CPC 12415 0.51 1 Teratosphaeria cryptica CPC 12559 0.93 Teratosphaeria cryptica CBS 111679 Teratosphaeria agapanthi CBS 129064 1 Teratosphaeria complicata CPC 14535 2x 1 1 Teratosphaeria complicata CBS 125216 Teratosphaeria hortaea CBS 124156 1 Teratosphaeria miniata CPC 14514 Teratosphaeria miniata CBS 125006 Teratosphaeria mareebensis CBS 129529 Teratosphaeria biformis CBS 124578 Teratosphaeria micromaculata CBS 124582 0.75 0.62 Camarosporula persooniae CBS 112494 Camarosporula 0.64 Xenophacidiella pseudocatenata CBS 128776 Xenophacidiella 0.96 1 Lapidomyces hispanicus CBS 118764 Lapidomyces Teratosphaeriaceae sp. CCFEE 5569 3x Neophaeothecoidea proteae CBS 114129 Neophaeothecoidea 1 3x Oleoguttula mirabilis CCFEE 5522 Oleoguttula Apenidiella strumelloidea CBS 114484 Apenidiella 1 Devriesia acadiensis CBS 115874 1 Devriesia staurophora CBS 375.81 1 Devriesia staurophora CBS 117873 0.64 1 Devriesia shelburniensis CBS 115876 Devriesia 3x 1 1 Devriesia thermodurans CBS 115878 3x Devriesia thermodurans CBS 115879 Queenslandipenidiella kurandae CBS 121715 Queenslandipenidiella CBS 325.33 0.56 2x 1 Capnodium coffeae CBS 147.52 Capno- 3x Microxyphium citri CBS 451.66 1 Polychaeton citri CBS 116435 diaceae Teratosphaeriaceae sp. TRN450 0.1 Fig. 3 (cont.)

Table 2 Primer combinations used during this study for generic amplification and sequencing.

Locus Primer Primer sequence 5’ to 3’ Annealing Orientation Reference temperature (°C)

Translation elongation factor-1α EF1-728F CATCGAGAAGTTCGAGAAGG 52 Forward Carbone & Kohn (1999) EF-2 GGARGTACCAGTSATCATGTT 52 Reverse O’Donnell et al. (1998) β-tubulin T1 AACATGCGTGAGATTGTAAGT 52 Forward O’Donnell & Cigelnik (1997) β-Sandy-R GCRCGNGGVACRTACTTGTT 52 Reverse Stukenbrock et al. (2012) RNA polymerase II second largest subunit fRPB2-5F GAYGAYMGWGATCAYTTYGG 49 Forward Liu et al. (1999) fRPB2-414R ACMANNCCCCARTGNGWRTTRTG 49 Reverse Quaedvlieg et al. (2011) LSU LSU1Fd GRATCAGGTAGGRATACCCG 52 Forward Crous et al. (2009a) LR5 TCCTGAGGGAAACTTCG 52 Reverse Vilgalys & Hester (1990) ITS ITS5 GGAAGTAAAAGTCGTAACAAGG 52 Forward White et al. (1990) ITS4 TCCTCCGCTTATTGATATGC 52 Reverse White et al. (1990) Actin ACT-512F ATGTGCAAGGCCGGTTTCGC 52 Forward Carbone & Kohn (1999) ACT2Rd ARRTCRCGDCCRGCCATGTC 52 Reverse Groenewald et al. (2013) Calmodulin CAL-235F TTCAAGGAGGCCTTCTCCCTCTT 50 Forward Quaedvlieg et al. (2012) CAL2Rd TGRTCNGCCTCDCGGATCATCTC 50 Reverse Groenewald et al. (2013) 18 Persoonia – Volume 33, 2014

Parastagonospora nodorum CBS 110109 4x Devriesia strelitziicola CBS 122480 incertae sedis 1 Cercospora capsici CBS 118712 Septoria lysimachiae CBS 123794 1 1 Pallidocercospora heimii CPC 11441 0.99 Pallidocercospora thailandica CPC 10547 1 Pseudocercospora eucalyptorum CPC 13455 Pseudocercospora schizolobii CBS 120029 0.94 1 pini CBS 116483 0.6 CBS 383.74 Mycosphaerellaceae 0.99 Ramularia endophylla CBS 113265 Zymoseptoria verkleyi CBS 133618 1 Mycosphaerella laricis-leptolepidis MAFF 410081 1 Mycosphaerella laricis-leptolepidis MAFF 410632 0.98 Mycosphaerella sumatrensis CBS 118502 Mycosphaerella sumatrensis CBS 118499 Ramichloridium apiculatum CBS 400.76 1 1 1 Uwebraunia australiensis CBS 120729 1 Uwebraunia commune CBS 110809 Dissoconiaceae Uwebraunia dekkeri CPC 13264 1 Passalora zambiae CBS 112971 Passalora zambiae CBS 112970 incertae sedis 0.6 Polyphialoseptoria tabebuiae-serratifoliae CBS 112650 1 Schizothyrium pomi CBS 228.57 Schizothyrium pomi CBS 486.50 Schizothyriaceae 0.95 Cladosporium allicinum CBS 118854 1 Cladosporium iridis CBS 138.40 1 Cladosporium hillianum CBS 125988 1 Cladosporium fusiforme CBS 119414 1 1 Cladosporium chalastosporoides CBS 125985 Cladosporiaceae 0.76 2x Melanodothis caricis CBS 860.72 1 CBS 121621 CBS 128777 1 Toxicocladosporium irritans Toxicocladosporium rubrigenum CBS 124158 Toxicocladosporium protearum CBS 126499 0.68 Neodevriesia hilliana CBS 123187 1 Neodevriesia xanthorrhoeae CBS 128219 Neodevriesia sp. CBS 118302 Neodevriesia 0.61 ‘Devriesia’ simplex CBS 137183 0.7 Undescribed species CBS 136110 0.69 ‘Teratosphaeria’ capensis CBS 130602 ‘Devriesia’ queenslandica CBS 129527 ‘Devriesia’ sp. CPC 11876 0.54 ‘Devriesia’ shakazului CPC 19784 0.64 ‘Devriesia’ agapanthi CBS 132689 ‘Devriesia’ lagerstroemiae CBS 125422 1 0.61 ‘Devriesia’ strelitziae CBS 122379 Neodevriesiaceae 1 Tripospermum sp. CPC 13123 1 Tripospermum myrti CBS 437.68 incertae sedis septoria-like sp. CBS 134910 1 Undescribed species CPC 16832 0.99 Undescribed species CPC 16833 0.95 0.69 ‘Devriesia’ stirlingiae CPC 19948 0.97 ‘Teratosphaeria’ knoxdaviesii CBS 122898 ‘Teratosphaeria’ knoxdaviesii CPC 14905 1 0.7 ‘Devriesia’ bulbillosae CBS 118285 ‘Devriesia’ modesta CCFEE 5672 0.99 Neodevriesiaceae sp. CPC 19594 Cystocoleus ebeneus L348 incertae sedis 0.99 Extremus sp. CBS 119436 0.59 Extremus antarcticus CCFEE 5312 1 Extremus antarcticus CBS 136104 0.86 Extremus antarcticus CBS 136103 Extremus 1 0.87 Extremus adstrictus CBS 118292 1 0.9 Extremus sp. CBS 118300 1 Extremus sp. CCFEE 5551 ‘Devriesia’ americana CBS 117726 1 0.96 ‘Devriesia’ compacta CBS 118294 incertae sedis Staninwardia suttonii CBS 120061 Staninwardia 0.94 Pseudoramichloridium brasilianum CBS 283.92 Pseudoramichloridium henryii CBS 124775 Extremaceae 0.86 Pseudoramichloridium Vermiconia antarctica CCFEE 5488 Vermiconia antarctica CCFEE 5489 0.7 0.53 Vermiconia flagrans CBS 118296 1 1 Vermiconia flagrans CBS 118283 Vermiconia 0.55 Vermiconia flagrans CBS 118284 Vermiconia foris CBS 136106 1 Petrophila incerta CBS 118608 1 Petrophila incerta CBS 118287 Petrophila 1 Undescribed species CBS 118305 Undescribed species CBS 118301 incertae sedis 0.62 1 Acidiella bohemica CBS 132720 0.63 Acidiella bohemica CBS 132721 1 Xenopenidiella rigidophora CBS 314.95 0.63 1 Catenulostroma protearum CBS 125421 1 Recurvomyces mirabilis CBS 117957 0.73 1 Elasticomyces elasticus CBS 122538 Friedmanniomyces endolithicus CCFEE 5199 Xenoconiothyrium catenata CBS 128994 1 Batcheloromyces leucadendri CBS 119344 1 Batcheloromyces proteae CBS 110696 Batcheloromyces sedgefieldii CBS 112119 0.9 Hortaea thailandica CBS 125423 0.66 CBS 123045 1 Myrtapenidiella corymbia CPC 14641 0.78 Myrtapenidiella tenuiramis CPC 13692 1 Suberoteratosphaeria suberosa CPC 13090 0.99 Suberoteratosphaeria pseudosuberosa CBS 118911 0.63 Raederiella pseudocallista CPC 13599 0.76 1 Readeriella angustia CBS 124998 1 Readeriella dendritica CPC 12709 1 1 Meristemomyces frigidum CCFEE 5457 1 Meristemomyces frigidum CCFEE 5508 Teratosphaeriaceae Meristemomyces frigidum CCFEE 5507 Teratosphaeria mareebensis CBS 129529 0.98 Teratosphaeria tinara CBS 124583 1 0.73 Teratosphaeria molleriana CBS 118359 1 Teratosphaeria toledana CBS 113313 1 Teratosphaeria destructans CBS 111370 0.57 Teratosphaeria viscidus CBS 121157 1 1 Teratosphaeria fimbriata CBS 120736 0.53 Teratosphaeria fibrillosa CBS 121707 1 Pseudoteratosphaeria flexuosa CBS 111048 0.57 Pseudoteratosphaeria flexuosa CBS 111012 1 Pseudoteratosphaeria ohnowa CBS 112896 Pseudoteratosphaeria secundaria CBS 118507 1 Devriesia tardicrescens CBS 128770 1 0.8 Devriesia staurophora CBS 375.81 Devriesia shelburniensis CBS 115876 Devriesia thermodurans CBS 115878

0.2 Fig. 4 A Bayesian 50 % majority rule consensus tree based on a LSU/RPB2 alignment and containing isolates that where previously associated with ‘Ter­ atosphaeria 1’ and ‘2’, plus representatives of closely related families, available at the CBS. Bayesian posterior probabilities support values for the respective nodes are displayed in the tree. The tree was rooted to Parastagonospora nodorum. The scale bar indicates 0.2 expected changes per site.

Kimura-2-parameter values bin was subsequently plotted against the Kimura-2-parameter The available sequence data from the seven individual loci with­ distance of each bin (Fig. 5). in the two Teratosphaeriaceae and single Mycosphaerellaceae datasets were individually pooled together and realigned using Genealogical concordance phylogenetic species MAFFT to generate seven single locus alignments. MEGA v. 4.0 recognition analysis (Tamura et al. 2007) was then used to generate both inter- and Phylogenetically related but ambiguous species were analysed intra-specific Kimura-2-parameter distance values for these separately using the Genealogical Concordance Phylogenetic seven datasets using the pair-wise deletion model. Microsoft Species Recognition (GCPSR) model (as described by Taylor

Excel 2007 was then used to sort these distance values into et al. 2000) by performing a pairwise homoplasy index (Φw) distribution bins (from distance 0–1 with intervals of 0.05 be- test. GCPSR is a pragmatic tool for the assessment of species tween bins) and the frequency of entries for each individual limits, as the concordance of gene genealogies is a valuable

W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 19

^ ^ RPB2 Actin 2500 4500 * 4000 * 2000 intra 3500 intra 3000

y 1500 inter y 2500 inter c c

n 1000 n 2000 e e 1500 u u

q 500 q 1000 e e

r r 500

F 0 F 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 1 1 .1 .2 .3 .4 .5 .6 .7 .8 .9 .9 .6 .1 .2 .3 .4 .7 .8 .5 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 . 0 . 1 . 2 . 3 . 4 . 6 . 7 . 8 . 9 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Distance Distance

^ β-tubulin ^ LSU 1400 7000 1200 * 6000 * 1000 intra 5000 intra y y 800 inter c 4000 inter c n n 600 3000 e e u u 400 2000 q q e

e 200 1000 r r F F 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 0 0 1 .3 .5 .6 .9 .1 .2 .4 .7 .8 .1 .2 .3 .4 .5 .6 .7 .8 .9 . 5 . 9 . 1 . 2 . 3 . 4 . 6 . 7 . 8 . 0 0 0 0 0 0 0 0 0 0 . 6 . 7 . 8 . 9 . 0 . 1 . 2 . 3 . 4 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Distance Distance

^ ^ ITS Calmodulin 3500 2000 * 1800 * 3000 1600 2500 intra 1400 intra 1200 y y 2000 inter inter c c 1000 n n 1500 800 e e

u 600 u 1000 q q 400 e

e 500

r 200 r F F 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 0 0 1 .1 .2 .3 .4 .5 .6 .7 .8 .9 .3 .5 .6 .9 .1 .2 .4 .7 .8 . 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Distance Distance ^ TEF1-alpha 900 800 * 700 intra 600

y 500 inter c

n 400 e 300 u

q 200 e

r 100

F 0 5 5 5 5 5 5 5 5 5 5 1 0 .3 .5 .6 .9 .1 .2 .4 .7 .8 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Distance

Fig. 5 The frequency distribution graphs of the Kimura-2-parameter distances (barcoding gaps) for the seven individual gene loci. The grey asterix (*) marks the average interspecific variation per locus while red inverted chevrons (V) mark the average intraspecific variation per locus.

method for evaluating the significance of gene flow between Morphology groups within an evolutionary timescale (Koufopanou et al. Morphological descriptions were made on slide preparations 1997, Geiser et al. 1998, Taylor et al. 2000, Starkey et al. 2007). mounted in clear lactic acid from colonies sporulating on MEA, A Pairwise homoplasy index (PHI) test (Philippe & Bryant 2006) PDA and OA (noted in taxonomic descriptions). Observations was performed in SplitsTree4 (Huson 1998, Huson & Bryant were made with a Zeiss V20 Discovery stereo-microscope and 2006) (www.splitstree.org) in order to determine the recombina- with a Zeiss Axio Imager 2 light microscope using differential tion level within phylogenetically closely related species using interference contrast (DIC) illumination and a MRc5 camera a five-locus concatenated dataset of closely related species and ZEN imaging software. Colony characters and pigment (Fig. 1 and 2, clade A–K). If the pairwise homoplasy index production were noted after 1 mo of growth on MEA, PDA and results were below a 0.05 threshold (Φw < 0.05), it was indica- OA incubated at 25 °C. Colony colours (surface and reverse) tive for significant recombination present in the dataset. The were rated according to the colour charts of Rayner (1970). relationships between these eleven, closely related, species Sequences derived in this study were lodged at GenBank, groups were visualised by constructing splits graphs (Fig. 6) the alignment in TreeBASE (www.treebase.org) and taxo- from the five-locus concatenated datasets, using both the Log- nomic novelties in MycoBank (www.MycoBank.org; Crous et Det transformation and splits decomposition options. al. 2004a). 20 Persoonia – Volume 33, 2014

T. pseudonubilosa CPC 13833 T. pseudonubilosa CPC 13831

T. gauchensis T. nubilosa T. viscidus CBS 120303 CPC 13452 T. nubilosa T. nubilosa CBS 124992 T. stellenboschiana CPC 12235 CPC 13825 CPC 12283 T. nubilosa T. nubilosa T. gauchensis T. viscidus CBS 119468 CPC 12830 CPC 13844 T. destructans CBS 121157 T. stellenboschiana T. nubilosa CBS 111370 T. nubilosa CPC 13764 CPC 13835 CPC 12243 T. nubilosa T. stellenboschiana CPC 13828 T. gauchensis T. nubilosa T. eucalypti T. gauchensis CBS 124989 T. nubilosa CBS 119465 CPC 11879 CPC 12552 CBS 120304 CBS 116005 0.001 0.01 0.001 a Φw = 0.7 b Φw = 1 c Φw = 0.1

A. parva CBS 110503 A. associata T. complicata A. associata CBS 120730 CPC 14535 CBS 120732 A. sp. CBS 113059 A. parva A. associata A. parva CBS 122892 CPC 13375 A. associata T. profusa T. caesia CBS 114761 CBS 125007 CBS 124051 A. parva CBS 120731 CBS 119901

A. parva A. parva A. associata A. associata

T. pluritubularis CBS 122893 A. parva CBS 116289 CBS 112224 CPC 13113 CBS 118508 CPC 12249 0.1 0.01 0.01 d Φw = <0.001 e Φw = <0.001 f Φw = <0.001

Ps. fori Ps. colombiensis CBS 113285 CBS 110967 Pet. perpendicularis Ps. colombiensis Ps. colombiensis CBS 118367 CBS 110968 CBS 110969

Ps. fori CBS 113286 Ps. thailandica Ps. subulata Pet. stramenticola Pet. gamsii CPC 10547 Ps. thailandica CBS 118489 CBS 118506 CBS 118495 CBS 121389

Ps. thailandica Ps. natalensis Pet. stramenticola Ps. thailandica CBS 120723 CBS 120737 CBS 121390 CBS 111069 0.01 1.0E-4 0.01 g Φw = 0.03 h Φw = 1.0 i Φw = 0.11

Ps. gracilis CPC 11144 Ps. gracilis Ps. gracilis CBS 111189 CPC 11181

Z.citri Z.citri Z.citri CPC 15285 CPC 15293 CPC 15296 CBS 116291 CPC Z.citri Z.citri 13769 CPC 12406 CBS 116426 CPC 15289 CBS 116359 CBS 116304 CPC 12957 Z.citri Z.citri CBS 110777 CPC 12568 CPC 10522 CPC 15300 CBS 110722 CBS 113455 Z.citri CBS 114866 CBS 110903 Z.citri CPC 15291 CBS 116366 CBS 116303 CBS 113769 CBS 110776 CPC 11713 Z.citri Z.citri CBS 110723 CBS 111268 CBS 122455 CPC 15294 CBS 112802 Z.citri CBS 116303 CPC 13467 Ps. eucalyptorum CBS 113816 0.001 0.01 j Φw = 0.8 k Φw = <0.001 Fig. 6 The results of the pairwise homoplasy index (PHI) test of closely related species using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 21

Table 3 Amplification success, phylogenetic data and the substitution models used in the phylogenetic analyses, per locus.

Locus Act Cal EF1 RPB2 Btub ITS LSU

Amplification succes (%) 90 84 98 95 97 100 100 Number of characters 558 593 490 340 306 594 758 Unique site patterns 334 386 388 195 211 334 174 Substitution model used GTR-I-gamma HKY-I-gamma HKY-I-gamma GTR-I-gamma HKY-I-gamma GTR-I-gamma GTR-I-gamma

RESULTS After topological convergence of the Bayesian runs at 0.01, the following numbers of trees where generated and subsequently Amplification rate of test loci sampled (using a burn in fraction of 0.25 and indicated after The amplification success scores of the seven test loci varied the slash) in order to generate the three Bayesian phylogenies, from 100 % for LSU and ITS to 84 % for Cal. The remaining four 960/720 for TLD, 1102/828 for MLD, 76126/57096 for Terato­ test loci (Act, RPB2, Btub and EF-1α) produced PCR success sphaeriaceae and 9172/6879 for the families tree. The resulting scores of 90, 95, 97 and 98 %, respectively (Table 3). phylogenetic trees of all three individual combined datasets showed consistent clustering of all MLD and TLD taxa over Congruency testing all four trees, and these results are treated below. There were The results of the congruency test (trees not shown) showed some problems with the clustering position of the Piedraiaceae, that the seven gene regions were incongruent in both the MLD and this issue is addressed in the Discussion. and TLD trees. In the TLD Teratosphaeriaceae tree (Fig. 1), the Act and Cal loci were incongruent with the other five loci, while Taxonomy in the MLD Mycosphaerellaceae tree (Fig. 2), the Btub and Cal loci were incongruent with the other five loci. In both these Extremaceae datasets, the terminal clades representing genera were the same for all gene regions, however the higher order clustering Extremaceae Quaedvlieg & Crous, fam. nov. — MycoBank deviated for the incongruent loci. For this reason, the conflicting MB808049 loci were not included in the published trees. Type genus. Extremus Quaedvlieg & Crous. Kimura-2-parameter values Asexual morphs variable, filamentous, lichenicolous or yeast- The Kimura-2-parameter (K2P) distribution graphs (Fig. 5) like. Conidiophores pigmented, solitary to sporodochial, pro- visualise the inter- and intraspecific distances per locus cor- liferating sympodially, or with a terminal rachis that can be responding to the barcoding gap (Hebert et al. 2003). A useful subdenticulate. Conidia brown, solitary or in short mostly un- barcoding locus should have no overlap between inter- and branched chains, subcylindrical to narrowly fusoid-ellipsoidal intraspecific K2P distances. The individual test loci showed or obclavate, rarely with 1–2 transverse septa, frequently with varying degrees of overlap in their K2P distribution graphs. mucoid sheath; hila not to slightly darkened, somewhat thick- In this dataset, both ITS and LSU have a higher K2P overlap ened and refractive or not. than the other five test loci suggesting they are more conserved Notes — Members of Extremaceae occur in extreme habi- making them less suitable to serve as a reliable identification tats, and are ecologically highly diverse, ranging from licheno- locus for MLD and TLD pathogens across the whole scale of colous to epiphyllous, acidophilic, rock inhabiting, endophytic, tested sequences. Of the remaining five loci (Btub, Act, RPB2, saprobic or plant pathogenic, representing part of ‘Teratosphae­ EF-1α and Cal), Btub, EF-1α and RPB2 have the lowest K2P riaceae 2’ (now Neodevriesiaceae and Extremaceae) sensu overlap. Although these latter loci are less conserved, they Ruibal et al. (2009). show greater natural variation between different species than the other four loci. Extremus Quaedvlieg & Crous, gen. nov. — MycoBank Phylogenetic results MB808050 Based on the phylogenetic data (Fig. 1–4) generated during this Type species. Extremus adstrictus (Egidi & Onofri) Quaedvlieg & Crous. study, we were able to make a start at delineating the Terato­ Etymology. Named after its ecologically extreme, rock-inhabiting habitat. sphaeriaceae. Recognised clades, as well as novel species, genera and families are described and discussed in the Taxon­ Hyphomycetous, rock-inhabiting. Colonies with brown, branch- omy section below. ed, thick-walled, septate hyphae. Conidiogenous cells inte- The four datasets consisted of 2 468 characters for the TLD grated in hyphal chains, brown, subcylindrical to ellipsoid, tree (753 characters for LSU, 485 for EF-1α, 589 for ITS, 301 smooth to rough, proliferating sympodially. Conidia medium for Btub and 340 for RPB2), 2 950 characters for the MLD tree brown, smooth to rough, subcylindrical to ellipsoid, thick- (563 characters for Act, 752 for LSU, 573 for EF-1α, 728 for ITS walled, in chains, with or without darkened median septa, at and 334 for RPB2), 1 129 characters for the Teratosphaeria­ times with oblique septa; hila not to slightly darkened. Sexual ceae tree (817 characters for LSU and 312 for RPB2) and 956 morph unknown. characters for the families tree (688 for LSU and 268 for RPB2). Notes — Extremus is introduced as novel genus to accom­ The respective alignments included 1 361 parsimony-informa­ modate fungal species isolated from rocks. Presently its mor- tive characters for the TLD tree (223 for LSU, 388 for EF-1α, phology is only known from culture, where it appears to be 334 for ITS, 221 for Btub and 195 for RPB2), 1 398 parsimony- extremely slow-growing, forming brown hyphae with disar- informative characters for the MLD tree (293 for Act, 179 for ticulating conidial chains. It clusters as a sister clade that are LSU, 382 for EF-1α, 355 for ITS and 189 for RPB2), 647 par- devriesia-like in morphology, namely D. americana (isolated simony-informative characters for the Teratosphaeriaceae tree from air, USA) and D. compacta (isolated from rocks, Spain), (457 for LSU and 190 for RPB2) and 511 parsimony-informative suggesting that these rock-inhabiting species could be aeri- characters for the families tree (287 for LSU and 224 for RPB2). ally dispersed. 22 Persoonia – Volume 33, 2014

Extremus adstrictus (Egidi & Onofri) Quaedvlieg & Crous, the extent of morphological variation before a formal family comb. nov. — MycoBank MB808051 can be introduced.

Basionym. Devriesia adstricta Egidi & Onofri, Fung. Diversity 65: 150. 2014. Mycosphaerellaceae

Specimen examined. Spain, Mallorca, from rock, holotype CBS 118292 = TRN96, preserved in liquid nitrogen and in dried condition. Neopenidiella Quaedvlieg & Crous, gen. nov. — MycoBank MB807778

Extremus antarcticus (Selbmann & de Hoog) Quaedvlieg & Type species. Neopenidiella nectandrae (Crous, U. Braun & R.F. Casta­ Crous, comb. nov. — MycoBank MB808052 ñeda) Quaedvlieg & Crous. Etymology. Named after its morphological similarity to the genus Peni­ Basionym. Devriesia antarctica Selbmann & de Hoog, Fung. Diversity diella. 65: 150. 2014. Foliicolous. Conidiophores erect, straight, filiform, pluriseptate Specimen examined. Antarctica, Linnaeus Terrace, from rock, holotype CBS 136103 = CCFEE 451, preserved in liquid nitrogen and in dried condi- throughout, brown, darker below and paler above, thin-walled, tion. smooth, apex penicillate, terminal cell of the conidiophore with short denticle-like loci giving rise to sets of conidiogenous cells or ramoconidia that then form a sequence of new sets of Incertae sedis (Capnodiales) ramoconidia at different levels. Conidiogenous loci terminal or subterminal, usually 1–3(–4), subdenticulate, conical, apically Mucomycosphaerella Quaedvlieg & Crous, gen. nov. — Myco­ truncate, mostly unthickened, slightly darkened-refractive. Ra­ Bank MB807791 moconidia with truncate base, barely or distinctly attenuated at Type species. Mucomycosphaerella eurypotami (Kohlm., Volkm.-Kohlm. the truncate base, aseptate, with 2–3(–4) subdenticulate hila at & O.E. Erikss.) Quaedvlieg & Crous. the apex, subcylindrical, pale olivaceous to olivaceous-brown Etymology. Resembling the genus Mycosphaerella, except ascospores or brown, thin-walled, smooth to faintly verruculose. Conidia in have mucoid sheaths. long acropetal chains, narrowly ellipsoid-ovoid, fusiform to cylin- drical aseptate, pale olivaceous to olivaceous-brown or brown, Foliicolous. Ascomata pseudothecial, depressed ellipsoidal, thin-walled, smooth to faintly rough-walled; hila unthickened or immersed becoming erumpent, with central ostiole lacking almost so, slightly darkened-refractive. periphyses, brown, dark brown at the ostiole, solitary or in clusters of two or more joined together; wall of textura angularis, Neopenidiella nectandrae (Crous, U. Braun & R.F. Castañeda) consisting of 4–6 layers at the top, but only 2–3 layers at the Quaedvlieg & Crous, comb. nov. — MycoBank MB807779 sides and bottom. Hamathecium sparse, composed of branched and anastomosing septate pseudoparaphyses embedded in a Basionym. Penidiella nectandrae Crous, U. Braun & R.F. Castañeda, gelatinous matrix. Asci ellipsoidal to ovoid, 8-spored, indistinctly Stud. Mycol. 58: 20. 2007. pedicellate, bitunicate, fissitunicate, thick-walled, with a thin, Specimen examined. Cuba, Matanzas, San Miguel de los Baños, isolated tough ectotunica and a thick gelatinous, expanding endotunica. from living leaves of Nectandra coriacea (Lauraceae), 24 Jan. 1987, R.F. Ascospores bi- to triseriate, elongate ellipsoidal, sometimes Castañeda & G. Arnold, holotype INIFAT C87/45, culture ex-type CBS 734.87, inequilateral, 1-septate, with one additional pseudoseptum in and HAL 2018F. each cell, slightly constricted at the septum, hyaline, guttulate, Notes — Similar to Penidiella, but distinct in that conidio- surrounded by a gelatinous sheath that is constricted around phores are long and filiform, ending in a subdenticulate apical the septum. cell that gives rise to sets of penicillate conidiogenous cells or ramoconidia. Ramoconidia and conidia are aseptate, pale Mucomycosphaerella eurypotami (Kohlm., Volkm.-Kohlm. & olivaceous and consistently narrow. Penidiella has penicillate O.E. Erikss.) Quaedvlieg & Crous, comb. nov. — MycoBank conidiophores with well-developed apical branches, and wider, MB807792 0–1-septate ramoconidia and conidia.

Basionym. Mycosphaerella eurypotami Kohlm., Volkm.-Kohlm. & O.E. Erikss., Bot. Mar. 42, 6: 505. 1999. Amycosphaerella Quaedvlieg & Crous, gen. nov. — Myco- Bank MB807780 Specimen examined. USA, North Carolina, Virginia, Carteret County, Broad Creek, N34°43', W76°55'07", on senescent leaves of Juncus roeme­ Type species. Amycosphaerella africana (Crous & M.J. Wingf.) Quaed- rianus, 21 May 1996, B. & J. Kohlmeyer (holotype JK5586 in IMS, culture vlieg & Crous. ex-type JK5586J). Etymology. Named after the genus Mycosphaerella, to which it is mor- phologically similar. Notes — Mucomycosphaerella is distinguished from Myco­ sphaerella s.str. by having well developed, persistent mucoid Foliicolous, plant pathogenic. Ascomata pseudothecial, am- sheaths around its ascospores, and the absence of Ramu­ phigenous, solitary, black, subepidermal, globose, with central laria asexual states. Its ascomata are depressed, and have apical ostioles, becoming papillate; walls of 2–3 layers of a pale, thin-walled lower half, and a hamathecium of loosely medium brown textura angularis, subhymenium of 1–2 layers branched, anastomosing hyphae in a hymenial gel, with hyaline of hyaline cells. Asci obovoid to broadly ellipsoidal, straight or ascospores (Kohlmeyer et al. 1999). Mucomycosphaerella incurved, 8-spored. Ascospores bi- to triseriate, overlapping, eurypotami was included in Mycosphaerella as a temporary hyaline, guttulate, straight, fusoid-ellipsoidal with obtuse ends, measure, until a formal revision of the genus (Kohlmeyer et widest in middle of apical cells, medianly 1-septate, tapering al. 1999), which has been ongoing since the epitypification of toward both ends, but more prominently toward base. the type species (Verkley et al. 2004), and the segregation of Notes — Similar to species of Mycosphaerella based on various allied genera and families (Crous et al. 2007b, 2009b). morphology, distinct in that it does not produce a Ramularia The genus Mucomycosphaerella appears to represent a dis- asexual morph. Amycosphaerella is reliably distinguished from tinct family in the Capnodiales, sister to the Schizothyriaceae. other genera in the family based on its DNA phylogeny, and More collections of additional taxa are needed to determine either ITS or LSU sequence data differentiates these genera. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 23

Amycosphaerella africana (Crous & M.J. Wingf.) Quaedvlieg are homothallic, and have failed to produce an asexual morph & Crous, comb. nov. — MycoBank MB807781 in culture, despite incubation on numerous media and under a range of growth conditions. The cultures associated with the Basionym. Mycosphaerella africana Crous & M.J. Wingf., Mycologia 88, 3: 450. 1996. type of Pseudocercospora epispermogonia were generated ≡ Teratosphaeria africana (Crous & M.J. Wingf.) Crous & U. Braun, Stud. from ascospores of M. marksii. The synonymy proposed by Mycol. 58: 8. 2007. Hunter et al. (2006) is premature, as it appears that there are = Mycosphaerella ellipsoidea Crous & M.J. Wingf., Mycologia 88: 452. no ex-type cultures of Pseudocercospora epispermogonia. 1996. = Mycosphaerella aurantia A. Maxwell, Mycol. Res. 107: 353. 2003. Phaeophleospora Rangel, Arq. Mus. Nac. Rio de Janeiro 18: Specimens examined. Australia, Western Australia, Bunbury, Summerlea 162. 1916 plantation of Western Australian Chip and Pulp (WACAP), E115°37', S33°40', on E. globulus, 1 May 2000, A. Maxwell (holotype of M. aurantia, PERTH Notes — The genus Phaeophleospora is based on P. eu- 05849543, culture ex-type CBS 110500). – South Africa, Western Cape geniae, which occurs on leaf spots of Eugenia uniflora (Myrta­ Province, Stellenbosch, Stellenbosch Mountain, leaves of E. viminalis, Oct. ceae) in Brazil (Crous et al. 1997). For several years this 1994, P.W. Crous (holotype of M. africana, PREM 51917, cultures ex type genus represented species that are presently accommodated CPC 794–796 = CBS 116154, 116155, 680.95); Western Cape Province, Pampoenvlei, on leaves of E. cladocalyx, Nov. 1994, P.W. Crous (holotype in Teratosphaeria (= Kirramyces) (Andjic et al. 2007, Crous et of M. ellipsoidea, PREM 51924, cultures ex-type CPC 849–851, 850 = CBS al. 2007a). The taxa allocated to Phaeophleospora here are 110843). sexual, and lack any asexual state, but are placed in Phaeo­ phleospora based on phylogenetic inference. Notes — Mycosphaerella ellipsoidea and M. aurantia are morphologically identical, and synonymous with Amycosphae­ rella africana. Amycosphaerella africana was originally de­ Phaeophleospora gregaria (Carnegie & Keane) Quaedvlieg scribed from small, 1–2 mm diam, pale brown leaf spots. & Crous, comb. nov. — MycoBank MB807784 Subsequent collections have shown that leaf spots can be Basionym. Mycosphaerella gregaria Carnegie & Keane, Mycol. Res. 101: 2–10 mm diam. Furthermore, ascospores were described as 843. 1997. fusoid-ellipsoidal, constricted at its septum, (7–)8–10(–11) × ≡ Mycosphaerella aggregata Carnegie & Keane, Mycol. Res. 98: 415. (2–)2.5–3 µm, germinating at angles to the long axis of the 1994. Nom. illegit (Art. 53.1). spore, and turn brown and distorted upon germination (Crous & Specimen examined. Australia, Victoria, Nowa Nowa, on leaves of Wingfield 1996), though the latter observation appears to have E. grandis, 11 Nov. 1990, A.J. Carnegie (holotype IMI 353729b, isotype VPRI been incorrect. Additional collections have shown ascospores to 20739a, culture ex-type DAR 72368). also be up to 15 µm in length, not always constricted at septa, and in some cases germinate from polar ends with germ tubes Phaeophleospora scytalidii (Crous & M.J. Wingf.) Quaedvlieg parallel to the long axis, remain hyaline, and develop lateral & Crous, comb. nov. — MycoBank MB807785 branches (Maxwell et al. 2003). Basionym. Mycosphaerella scytalidii Crous & M.J. Wingf., Stud. Mycol. 55: 120. 2006. Paramycosphaerella Crous, Persoonia 31: 245. 2013. Specimen examined. Colombia, Angela Maria, on leaves of E. urophylla, Jan. 2004, M.J. Wingfield (holotype CBS H-19696, culture ex-type CBS Paramycosphaerella intermedia (M.A. Dick & K. Dobbie) 118493 = CPC 10998). Quaedvlieg & Crous, comb. nov. — MycoBank MB807782

Basionym. Mycosphaerella intermedia M.A. Dick & K. Dobbie, New Zea­ Phaeophleospora stramenti (Crous & Alfenas) Quaedvlieg & land J. Bot. 39: 272. 2001. Crous, comb. nov. — MycoBank MB807786 Specimen examined. New Zealand, Bay of Plenty, Rotoehu Forest, Kohe- Basionym. Mycosphaerella stramenti Crous & Alfenas, Stud. Mycol. 55: kohe Road, on living leaves of E. saligna, 30 June 1998, L. Renney (holotype 123. 2006. NZFR1-M 3831, cultures ex-type NZFS 301.10 = CBS 114356, 114415). Specimen examined. Brazil, Minas Gerais, Belo Oriente, on leaf litter of Notes — The synonymy of M. intermedia with M. marksii, Eucalyptus sp., 24 Jan. 2004, A.C. Alfenas (holotype CBS H-19698, culture as proposed by Hunter et al. (2006), is not supported. Although ex-type CBS 118909 = CPC 11545–11547). morphologically similar, these two species are phylogenetically distinct, and better accommodated as two separate species in Pseudocercospora eucalyptorum Crous, M.J. Wingf., Mara- the genus Paramycosphaerella (Crous et al. 2013). sas & B. Sutton, Mycol. Res. 93: 394. 1989

Paramycosphaerella marksii (Carnegie & Keane) Quaedvlieg = Pseudocercospora pseudoeucalyptorum Crous, Stud. Mycol. 50: 210. & Crous, comb. nov. — MycoBank MB807783 2004. Specimens examined. South Africa, Western Cape Province, Stellen- Basionym. Mycosphaerella marksii Carnegie & Keane, Mycol. Res. 98: bosch, Stellenbosch Mountain, on leaves of E. nitens, 21 Dec. 1987, P.W. 414. 1994. Crous (holotype of P. eucalyptorum, PREM 49112, cultures ex-type CPC Specimens examined. Australia, Victoria, Briagolong, on leaves of E. glo­ 16 = CBS 110777). – Spain, Pontevedra, Lourizán, Areeiro, on leaves of bulus, 14 Oct. 1994, A. Carnegie, culture CPC 935 = CBS 110920. – South E. globulus, 2003, J.P. Mansilla (holotype of P. pseudoeucalyptorum, CBS Africa, Northern Province, Tzaneen, Magoebaskloof, on leaves of E. grandis H-9893, culture ex-type CPC 10390 = CBS 114242). × saligna hybrid, Oct. 1994, G. Kemp (holotype of P. epispermogonia, PREM 51936, cultures of a Paramycosphaerella sp. possibly related to the asexual Notes — The synonymy of P. pseudoeucalyptorum under morph are CPC 822 = CBS 110750, CPC 823 = CBS 110693). P. eucalyptorum was discussed by Crous et al. (2013), and is again confirmed in the present study, which incorporates yet Notes — Paramycosphaerella marksii is a common patho- more gene loci. gen of eucalypts. However, Pseudocercospora epispermogonia was found only once, sporulating on the outside of spermatogo- nia associated with leaf spots of Paramycosphaerella marksii on eucalypts (Crous & Wingfield 1996). Cultures of P. marksii 24 Persoonia – Volume 33, 2014

Xenomycosphaerella Quaedvlieg & Crous, gen. nov. — Myco­ curved, 8-spored. Ascospores tri- to multiseriate, overlapping, Bank MB807787 hyaline, non-guttulate, thick-walled, straight, fusoid-ellipsoidal with obtuse ends, medianly 1-septate; germinating ascospores Type species. Xenomycosphaerella elongata (Crous & M.J. Wingf.) Quaedvlieg & Crous. on MEA become brown and verruculose. Asexual morphs vari- able, filamentous. Conidiophores pigmented, proliferating sym- Etymology. Resembling Mycosphaerella, but phylogenetically distinct. podially. Conidia brown, solitary or in short mostly unbranched Foliicolous, plant pathogenic. Ascomata pseudothecial, dark chains, subcylindrical to narrowly fusoid-ellipsoidal or obclavate, brown, subepidermal to erumpent, globose, with an apical rarely septate, solitary conidia composed of a central stalk and ostiole; wall of 2–3 layers of medium brown textura angularis. two lateral arms with 1–2 transverse septa. Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid Notes — Members of Neodevriesiaceae are foliicolous, sa­ to broadly ellipsoidal, straight to slightly curved, 8-spored. Asco­ probic or plant pathogenic, and form part of which Ruibal et al. spores bi- to multiseriate, overlapping, hyaline, thin- or thick- (2009) referred to as ‘Teratosphaeriaceae 2’ (now Neodevrie­ walled, straight to slightly curved, fusoid-ellipsoidal with obtuse siaceae), in their DNA phylogenies. Several genera await to be ends, widest in middle of the apical cell, medianly or unequally described in this family, pending further collections. Morphologi- 1-septate, tapering towards both ends, but more prominently cally, Neodevriesiaceae is similar to Teratosphaeriaceae, but towards the lower end. The genus Xenomycosphaerella is only further sampling is needed to highlight the ecological differences distinguishable from Mycosphaerella based on DNA sequence between the two families. data. Either ITS or LSU sequence data can easily differentiate between these genera. Neodevriesia Quaedvlieg & Crous, gen. nov. — MycoBank Notes — Xenomycosphaerella is morphologically a typical MB807768 species of Mycosphaerella s.l., but is phylogenetically distinct. Type species. Neodevriesia hilliana (Crous & U. Braun) Quaedvlieg & Presently no asexual morphs are known, and the only distin- Crous. guishing characters from Mycosphaerella are to be found in its Etymology. Named after its morphological similarity to Devriesia. DNA sequences. Hyphomycetous, foliicolous. Conidiophores dimorphic or not, Xenomycosphaerella elongata (Crous & M.J. Wingf.) Quaed­ solitary, medium brown, unbranched, smooth- and thick-walled, vlieg & Crous, comb. nov. — MycoBank MB807788 flexuous, septate. Conidiogenous cells terminal, medium brown, subcylindrical, smooth, proliferating sympodially; hila flattened, Basionym. Mycosphaerella elongata Crous & M.J. Wingf., Fung. Diversity unthickened, somewhat darkened. Ramoconidia 0(–1)-septate 26: 163. 2007. if present, guttulate, subcylindrical, smooth, pale brown; hila Specimen examined. Venezuela, El Piñal Lotes farm near Acarigua, on somewhat thickened and darkened. Conidia medium brown, leaves of Eucalyptus camaldulensis × urophylla, Oct. 2006, M.J. Wingfield smooth, subcylindrical to narrowly fusoid-ellipsoidal or obcla- (holotype CBS-H 19824, cultures ex-type CPC 13378 = CBS 120735, CPC vate, apical conidium with obtuse apex, additional conidia with 13379–13380). truncate ends, conidia straight to irregularly bent, mostly in unbranched chains; hila slightly darkened. Xenomycosphaerella yunnanensis (Barber & T.I. Burgess) Notes — The genus Devriesia was introduced for a group Quaedvlieg & Crous, comb. nov. — MycoBank MB807789 of cladosporium-like heat tolerant hyphomycetes that are soil- Basionym. Mycosphaerella yunnanensis Barber & T.I. Burgess, Fung. inhabiting, with slightly darkened, planate, unthickened conidial Diversity 24: 150. 2007. scars, forming chlamydospores in culture (Seifert et al. 2004). Since then, several devriesia-like species were isolated from Specimen examined. China, Yunnan, Lancang, leaves of Eucalyptus urophylla, May 2005, B. Dell (holotype MURU 407, culture ex-type CBS leaf litter or leaf spots, and placed in this genus based on mo- 119975 = CMW 23443). lecular phylogenies, pending the sampling of more taxa, that would allow resolution of this generic complex.

Zasmidium Fr., Summa Veg. Scand., section Post. (Stock- Ecologically, the devriesia-like species do not exhibit heat holm): 407. 1849 resistance and also do not form chlamydospores (other than odd hyphal swellings in older cultures), which differs from Devriesia. Neodevriesia is also distinct from Devriesia s.str. in Zasmidium eucalyptorum (Crous & M.J. Wingf.) Quaedvlieg that conidiophores are medium brown and unbranched (pale & Crous, comb. nov. — MycoBank MB807790 brown and branched in Devriesia), conidia are thick-walled, Basionym. Mycosphaerella eucalyptorum Crous & M.J. Wingf., Stud. medium brown, rarely septate, and conidial chains are short Mycol. 55: 112. 2006. and mostly unbranched.

Specimen examined. Indonesia, on leaves of Eucalyptus sp., Mar. 2004, M.J. Wingfield (holotype CBS H-19689, culture ex-type CBS Neodevriesia hilliana (Crous & U. Braun) Quaedvlieg & Crous, 118496 = CPC 11174). comb. nov. — MycoBank MB807771

Basionym. Devriesia hilliana Crous & U. Braun, Stud. Mycol. 64: 37. 2009. Neodevriesiaceae Specimen examined. New Zealand, Auckland, Auckland University Cam- pus, Princes Street, on Macrozamia communis, 20 Apr. 2008, C.F. Hill, holo- Quaedvlieg & Crous, fam. nov. — Myco- Neodevriesiaceae type CBS H-20340, culture ex-type CPC 15382 = CBS 123187. Bank MB807766

Type genus. Neodevriesia Quaedvlieg & Crous. Neodevriesia xanthorrhoeae (Crous, Pascoe & Jacq. Ed- Ascomata when present pseudothecial, black, immersed, sub- wards) Quaedvlieg & Crous, comb. nov. — MycoBank stomatal on leaves; wall with 2–3 layers of medium brown MB808061 textura angularis. Asci aparaphysate, fasciculate, bitunicate, Basionym. Devriesia xanthorrhoeae Crous, Pascoe & Jacq. Edwards, subsessile, obovoid to broadly ellipsoid, straight to slightly Persoonia 25: 155. 2010. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 25

Specimen examined. Australia, Victoria, Grampians, S37°37'7.5" E142° Eupenidiella Quaedvlieg & Crous, gen. nov. — MycoBank 19'32.3" on leaves of Xanthorrhoea australis (Xanthorrhoeaceae), 21 Oct. MB807797 2009, P.W. Crous, I.G. Pascoe & J. Edwards, holotype CBS-H 20500, cultures ex-type CPC 17721, 17720 = CBS 128219. Type species. Eupenidiella venezuelensis (Crous & U. Braun) Quaedvlieg & Crous.

Teratosphaeriaceae Etymology. Named after its similarity to the genus Penidiella. Hyphomycetous, associated with opportunistic human infec- Austroafricana Quaedvlieg & Crous, gen. nov. — MycoBank tions. Mycelium consisting of branched, septate, smooth to finely MB807793 verruculose, thin-walled, subhyaline, pale olivaceous to medium brown hyphae. Conidiophores solitary, erect, subcylindrical, Type species. Austroafricana associata (Crous & Carnegie) Quaedvlieg & Crous. straight to flexuous to once geniculate, septate, pale to medium olivaceous-brown or brown, thin-walled, terminally penicillate, Etymology. Named after its occurrence in the Southern Hemisphere. branched portion composed of true branchlets and/or a single Foliicolous, plant pathogenic. Ascomata pseudothecial, black, set or several sets of ramoconidia, branchlets; occasionally subepidermal to erumpent, globose, with central apical osti- with a few additional conidiophores reduced to conidiogenous ole; wall consisting of 2–3 layers of medium brown textura cells. Conidiogenous cells terminal and intercalary, unbranched, angularis. Asci aparaphysate, but with remains of hamathe- subcylindrical, medium brown, smooth to finely verruculose, cium visible, fasciculate, bitunicate, subsessile, obovoid to el- with 1–3(–4) flat-tipped, loci slightly thickened and darkened- lipsoidal, straight to slightly curved, 8-spored. Ascospores tri- refractive loci, often subdenticulate. Conidia ellipsoid-ovoid, to multiseriate, overlapping, hyaline, guttulate, thick-walled, subcylindrical, pale to medium olivaceous-brown or brown, straight, fusoid-ellipsoidal with obtuse ends, medianly 1-septate, finely verruculose, in branched chains; ramoconidia 0–1(–3)- tapering towards both ends, but more prominently towards the septate, with 1–3 subdenticulate apical hila; secondary conidia lower end; ascospores with or without persistent mucus sheath. 0(–1)-septate, ellipsoid, obovoid to irregular, hila sometimes Germinating ascospores become either verruculose, brown and slightly thickened and darkened-refractive. distorted, or remain hyaline and undistorted. Notes — Eupenidiella is similar to Penidiella, but differs in Notes — Morphologically, Austroafricana resembles spe- having dimorphic conidiophores, and conidiogenous loci that cies of Teratosphaeria, and we have been unable to find are subdenticulate, and slightly darkened-refractive. In contrast, characters to separate them. An ecological distinction is that they are barely darkened-refractive in Penidiella, and not sub- species of Austroafricana co-colonise lesions of hosts with denticulate. other ascomycetes, and have a wide host range. Austroafri­ cana parva, for example, has been well documented as a Eupenidiella venezuelensis (Crous & U. Braun) Quaedvlieg pathogen of Eucalyptus and Proteaceae (Crous et al. 2008). & Crous, comb. nov. — MycoBank MB807798 Either ITS or LSU sequence data differentiate Austroafricana and Teratosphaeria. Basionym. Penidiella venezuelensis Crous & U. Braun, Stud. Mycol. 58: 24. 2007.

Austroafricana associata (Crous & Carnegie) Quaedvlieg & Specimen examined. Venezuela, isolated from man with tinea nigra, Jan. Crous, comb. nov. — MycoBank MB807794 1975, D. Borelli (holotype CBS H-19934, culture ex-type CBS 106.75).

Basionym. Mycosphaerella associata Crous & Carnegie, Fung. Diversity 26: 159. 2007. Euteratosphaeria Quaedvlieg & Crous, gen. nov. — Myco- ≡ Teratosphaeria associata (Crous & Carnegie) Crous & U. Braun, Stud. Bank MB807799 Mycol. 58: 9. 2007. Type species. Euteratosphaeria verrucosiafricana (Crous & M.J. Wingf.) Specimen examined. Australia, New South Wales, South Grafton, Graf- Quaedvlieg & Crous. ton City Council Landfill Plantation, E152°54'38", S29°46'21", on leaves of Etymology. Named after the genus Teratosphaeria. Corymbia henryii, 16 Feb. 2006, A.J. Carnegie (holotype CBS-H 19833, isotype DAR 78031, cultures ex-type CPC 13119 = CBS 120730, CPC 13120, Foliicolous, plant pathogenic. Ascomata pseudothecial, solitary, occurring with Lembosina sp.). black, immersed becoming erumpent, globose; ostiole apical, central; wall of 2–3 layers of medium brown textura angularis. Austroafricana keanei (Carnegie & G.S. Pegg) Quaedvlieg & Asci aparaphysate, fasciculate, bitunicate, subsessile, obovoid Crous, comb. nov. — MycoBank MB807795 to narrowly ellipsoid, straight or slightly incurved, 8-spored. Basionym. Teratosphaeria keanei Carnegie & G.S. Pegg, Australas.Pl. Ascospores tri- to multiseriate, overlapping, hyaline, guttulate, Pathol. 40: 368. 2011. thin-walled, straight, ellipsoid with obtuse ends, medianly 1-septate, tapering towards both ends, but more prominently Specimen examined. Australia, Queensland, Kingaroy, Berry’s Planta- towards the lower end. tion, on living leaves of E. globulus × E. camaldulensis, 14 Feb. 2004, A.J. Carnegie (holotype BRIP 52593b, culture ex-type CBS 130524). Notes — Euteratosphaeria is morphologically similar to species of Teratosphaeria. The type species, E. verruco­ Austroafricana parva (R.F. Park & Keane) Quaedvlieg & siafricana, is distinct from species in Teratosphaeria in that Crous, comb. nov. — MycoBank MB807796 ascospores turn brown and verruculose upon germination, but germinate with more than two germ tubes (which remain Basionym. Mycosphaerella parva R.F. Park & Keane, Trans. Brit. Mycol. Soc. 79: 99. 1982. hyaline), and grow irregular to the long axis of the spore. More ≡ Teratosphaeria parva (R.F. Park & Keane) Crous & U. Braun, Stud. taxa need to be collected to determine if this is a feature of Mycol. 58: 10. 2007. value at species or generic level. Colonies in culture remain = Mycosphaerella grandis Carnegie & Keane, Mycol. Res. 98: 414. 1994. sterile, have sparse aerial mycelium, and form chains of dark

Specimen examined. South Africa, Western Cape Province, Stellen­ brown, thick-walled chlamydospores that aggregate into small bosch, on leaves of Eucalyptus sp., Dec. 2003, P.W. Crous, CPC 10935 = microsclerotia. CBS 116289. 26 Persoonia – Volume 33, 2014

Euteratosphaeria verrucosiafricana (Crous & M.J. Wingf.) Myrtapenidiella tenuiramis (Crous & Summerell) Quaedvlieg Quaedvlieg & Crous, comb. nov. — MycoBank MB807800 & Crous, comb. nov. — MycoBank MB807804

Basionym. Mycosphaerella verrucosiafricana Crous & M.J. Wingf., Stud. Basionym. Penidiella tenuiramis Crous & Summerell, Persoonia 23: 127. Mycol. 55: 125. 2006. 2009.

Specimen examined. Indonesia, Northern Sumatra, on leaves of Eucalyp­ Specimen examined. Australia, Tasmania, Tasman Peninsula, Brown tus sp., Feb. 2004, M.J. Wingfield (holotype CBS H-19705, culture ex-type Mountain walk, S43°11'13.9" E147°51'00.8", on leaves of E. tenuiramis, 14 CBS 118496 = CPC 11167, CBS 118497 = CPC 11169, CBS 118498 = CPC Oct. 2006, coll. B.A. Summerell & P. Summerell (holotype CBS H-20253, 11170). isol. P.W. Crous, cultures ex-type CPC 13692 = CBS 124993, CPC 12693, 13694). Myrtapenidiella Quaedvlieg & Crous, gen. nov. — MycoBank MB807801 Neocatenulostroma Quaedvlieg & Crous, gen. nov. — Myco­ Type species. Myrtapenidiella tenuiramis (Crous & Summerell) Quaed- Bank MB807805 vlieg & Crous. Type species. Neocatenulostroma microsporum (Joanne E. Taylor & Crous) Etymology. Named after its similarity to the genus Penidiella and the host Quaedvlieg & Crous. plant family, Myrtaceae. Etymology. Named after the genus Catenulostroma. Hyphomycetous, foliicolous, saprobic. Mycelium consisting of Plant pathogenic (foliicolous) and saprobic. Mycelium immers­ branched, septate, smooth to slightly verruculose or warty, pale ed, pale brown, septate, smooth. Ascomata amphigenous, to dark brown hyphae. Conidiophores dimorphic. Microconidio­ immersed, substomatal, subepidermal, with small or no pa- phores reduced to conidiogenous cells, lateral on hyphae, with pilla, globose to slightly subglobose, with periphysate central or without a basal septum. Macroconidiophores erect, arising as ostiole. Peridium comprising two strata, the outer stratum of lateral branches from superficial hyphae, or as terminal ends of thick-walled, medium brown small-celled textura angularis, creeping hyphae, variable in length, pale to dark brown, smooth becoming thinner-walled and hyaline in the inner stratum. to finely verruculose. Conidiogenous cells terminal, rarely Asci obclavate to globose, bitunicate, sessile, narrowing to a intercalary, cylindrical, tapering to a flattened apical region, rounded apex, 8-spored. Ascospores broadly fusiform, medi- finely verruculose, medium brown, paler toward the apex, with anly 1-septate, hyaline to pale brown, smooth, eguttulate, with up to two conidiogenous loci, often apical, sometimes situated obtuse apices, with or without a mucilaginous sheath. Colonies on small lateral shoulders, loci truncate, not denticulate; scars sporodochial, pulvinate, dry, dark brown to black. Conidiophores slightly thickened, darkened, visible as small dark circles when macronematous, mainly straight, caespitose, closely packed, viewed directly from above. Ramoconidia subcylindrical or ob- emerging through stomata forming the sporodochia, short, ovoid, 0–3-septate, base subtruncate to slightly rounded, but smooth, olivaceous-brown. Conidiogenous cells irregularly not coronate, pale to medium brown, finely verruculose, slightly cylindrical, terminal, holoblastic, delimitation of conidium by a thick-walled; hila thickened and darkened. Conidia in branched single septum, with retrogressive delimitation of next conidium, acropetal chains, broadly fusiform to obovoid or subcylindrical, giving an unconnected chain of conidia, secession schizolytic. 0–1-septate, pale to medium brown; wing-like mucoid sheaths present in some species. Chlamydospores globose to subovoid, Conidia variously shaped, cylindrical, Y-shaped, ellipsoidal, dark brown, thin-walled, terminal or intercalary, mostly 1-celled, straight or curved, with rounded or truncated apices, catenate rarely septate, produced from narrow hyphae. in branched basipetal chains, which are schizogenous, oliva- ceous to red-brown, multiseptate, with transverse and often Notes — Myrtapenidiella is distinguished from Penidiella longitudinal or oblique septa. by having dimorphic conidiophores with irregular branching patterns, septate ramoconidia, with hila that are slightly thick- Notes — Species of Trimmatostroma s.str. are genetically ened and darkened. Some species of Myrtapenidiella form distinct from Catenulostroma. Furthermore, they are also eco- chlamydospores, or have wing-like mucoid sheaths on conidia, logically different, in that Trimmatostroma includes taxa that although these do not appear to be generic features shared by are saprobic, and occur on dead twigs and branches, and all taxa. All species presently known occur on members of the not associated with leaf spots (Crous et al. 2007a). Catenulo­ Myrtaceae. stroma presently contains several undescribed genera in the Teratosphaeriaceae. They share colonies that are sporodochial, pulvinate, dry, dark brown to black, giving rise to chains of Myrtapenidiella corymbia (Cheew. & Crous) Quaedvlieg & multiseptate, brown conidia. Crous, comb. nov. — MycoBank MB807802 Neocatenulostroma includes species that are plant pathogenic Basionym. Penidiella corymbia Cheew. & Crous, Persoonia 23: 72. 2009. (N. abietis, N. microsporum) or occur on rocks (N. germanicum). Specimen examined. Australia, Northern Territory, Emerald Springs, Although N. abietis and N. microsporum were considered S13°37'13.3" E131°36'40", on Corymbia foelscheana, 22 Sept. 2007, coll. plant pathogenic (Butin et al. 1996, Taylor & Crous 2000), B.A. Summerell, isol. P.W. Crous (holotype CBS H-20288, culture ex-type N. abietis has since been isolated from a range of substrates, CPC 14640 = CBS 124769, CPC 14641, 14642). commonly as either a saprobe or endophyte in pine needles. The genus Catenulostroma is based on C. protearum, which Myrtapenidiella eucalypti (Cheew., K.D. Hyde & Crous) is associated with dead leaves of Proteaceae, and probably Quaedvlieg & Crous, comb. nov. — MycoBank MB807803 is not plant pathogenic (Crous et al. 2009b). Morphologically, Basionym. Penidiella eucalypti Cheew., K.D. Hyde & Crous, Per­soonia Catenulostroma s.str. contains colonies that produce muriform 21: 86. 2008. eu- or distoseptate conidia in branched chains. Neocatenulo­ stroma on the other hand, has chains of irregularly branched Specimens examined. Thailand, Payakpoompisai, Mahasarakam, on leaves conidia with transverse, longitudinal or oblique septa, variously of E. camaldulensis, July 2007, P. Suwannawong (holotype CBS H-20136, cultures ex-type CBS 123246 = CPC 15411, AGI064.1, AGI064.2; occurring shaped, from cylindrical to Y-shaped or ellipsoidal. on a lesion in association with Harknessia sp.); Satuk, Burirum, on leaves of E. camaldulensis, July 2007, R. Cheewangkoon, cultures CBS 123245, CPC 15449 (occurring on a lesion in association with several micro­fungi). W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 27

Neocatenulostroma abietis (Butin & Pehl) Quaedvlieg & Hyphomycetous, saprobic. Hyphae in vitro creeping, brown, Crous, comb. nov. — MycoBank MB807806 verruculose, branched, septate, becoming swollen, verruculose, dark brown, or forming a mucoid capsule filled with endoconidia Basionym. Trimmatostroma abietis Butin & Pehl, Antonie van Leeuwen- hoek 69: 204. 1996. derived from hyphal cells that turn brown and become thick- ≡ Catenulostroma abietis (Butin & Pehl) Crous & U. Braun, Stud. Mycol. walled; end cells divide into several endoconidia, which are 58: 15. 2007. released upon rupture of the cell wall. Endoconidia medium to dark brown, verruculose to verrucose to warty, thick-walled, Specimen examined. Sweden, Götenborg, isolated from outdoor painted walls, culture CBS 110038. ellipsoid to obovoid or obclavate; after liberation swelling, be- coming transversely 1-septate, or with several oblique septa, again forming endoconidia, becoming warty with age, the outer Neocatenulostroma germanicum (Crous & U. Braun) Quaed­ layer peels off after endoconidia are released. vlieg & Crous, comb. nov. — MycoBank MB807807 Notes — Neophaeothecoidea proteae was initially described Basionym. Catenulostroma germanicum Crous & U. Braun, Stud. Mycol. in Phaeothecoidea as it clustered close to other species of 58: 16. 2007. Phaeothecoidea s.str. However, N. proteae was originally Specimen examined. Germany (former West-Germany), isolated from isolated as a coelomycete. In culture, it grew like a yeast, and stone, Oct. 1988, J. Kuroczkin (holotype CBS H-19936, culture ex-type CBS was thought to represent Coniothyrium leucospermi (= Conio­ 539.88). zyma leucospermi; Swart et al. 1998, Taylor & Crous 2001, Marincowitz et al. 2008). Based on present data, it appears to Neocatenulostroma microsporum (Joanne E. Taylor & Crous) represent a distinct genus. Quaedvlieg & Crous, comb. nov. — MycoBank MB807808 Basionym. Trimmatostroma microsporum Joanne E. Taylor & Crous, Neophaeothecoidea proteae (Crous) Quaedvlieg & Crous, Mycol. Res. 104: 631. 2000. comb. nov. — MycoBank MB807812 ≡ Catenulostroma microsporum (Joanne E. Taylor & Crous) Crous & U. Braun, Stud. Mycol. 58: 10. 2007. Basionym. Phaeothecoidea proteae Crous, Persoonia 20: 71. 2008. = Teratosphaeria microspora Joanne E. Taylor & Crous, Mycol. Res. 104: Specimen examined. South Africa, Western Cape Province, Stellen­ 631. 2000. bosch, Elsenburg Farm, on leaves of Protea repens, 23 July 1999, S. Denman

Specimens examined. South Africa, Western Cape Province, Somerset (holotype CBS H-20092, cultures ex-type CPC 2828–2830, 2831 = CBS West, Hilly Lands Farm, on a living leaf of a Protea cynaroides, 21 July 1998, 114129). S. Denman & J.E. Taylor (holotype of Teratosphaeria microspora, PREM 56207a, culture ex-type CPC 1960 = CBS 101951; holotype of Trimmato­ Neotrimmatostroma Quaedvlieg & Crous, gen. nov. — Myco­ stroma microspora, PREM 56207b, CPC 1832 = CBS 110890). Bank MB807813

Type species. Neotrimmatostroma excentricum (B. Sutton & Ganap.) Neohortaea Quaedvlieg & Crous, gen. nov. — MycoBank Quaedvlieg & Crous. MB807809 Etymology. Named after its similarity to the genus Trimmatostroma. Type species. Neohortaea acidophila (Hölker, Bend, Pracht, Tetsch, Tob. Müll., M. Höfer & de Hoog) Quaedvlieg & Crous. Foliicolous, plant pathogenic. Ascomata pseudothecial, sepa- Etymology. Named after its morphological similarity to the genus Hortaea. rate, dark brown, subepidermal, becoming erumpent, globose; ostiole apical, central, frequently opening by irregular rupture; Colonies smooth, mucilaginous, black. Mycelium consisting of wall of 2–3 layers of dark brown, thick-walled textura angula­ pale olivaceous, thin-walled hyphae that become dark brown ris. Asci fasciculate, bitunicate, aparaphysate (remains of the with thick walls, producing copious mucus. Conidiogenous hamathecium observed in some ascomata), 8-spored, obovoid cells integrated on hyphae, reduced to conidiogenous loci, with to broadly ellipsoidal, straight to slightly incurved. Ascospores several minute percurrent proliferations. Conidia initially sub- tri- to multiseriate, fusoid-ellipsoidal with obtuse ends, hyaline, hyaline, smooth, thin-walled, ellipsoidal, becoming dark brown, smooth, pale brown and verruculose in old asci, becoming broadly ellipsoid to clavate, septum median, hilum truncate with 3-septate, not constricted at median septum, thick-walled, minute marginal frill; conidiation microcyclic. guttulate, widest in the middle of the apical cell, with persistent Notes — Morphologically similar to Hortaea (Teratosphae­ mucous sheath. Conidiomata sporodochial, at times concen- riaceae), except that the latter has prominently annellate coni­ trically arranged, dark brown to black, dry, powdery, confined diogenous loci, and conidia that develop several septa, forming to the lesions. Conidiophores branched at base, pale brown, chlamydospores with age (de Hoog et al. 2000, Plemenitas et smooth, loosely aggregated, pale brown. Conidiogenous cells al. 2008). terminal, cylindrical to doliiform, holothallic, pale brown. Conidia formed in basipetal chains, smooth, medium brown, 4-celled, consisting of two basal cells with truncate lateral sides (adhe- Neohortaea acidophila (Hölker, Bend, Pracht, Tetsch, Tob. sion scars present when catenulate), each giving rise to a Müll., M. Höfer & de Hoog) Quaedvlieg & Crous, comb. secondary globose apical cell, that may extend and develop two nov. — MycoBank MB807810 additional septa; septa dark brown and thick-walled between Basionym. Hortaea acidophila Hölker, Bend, Pracht, Tetsch, Tob. Müll., the primary and secondary cells. M. Höfer & de Hoog, Antonie van Leeuwenhoek 86: 293. 2004. Notes — Neotrimmatostroma is distinguished from Terato­ Specimen examined. Germany, Bergheim, from lignite, May 2001, U. Hölker, sphaeria in that its ascospores become brown and up to culture ex-type CBS 113389. 3-septate in older asci, have a persistent mucoid sheath, and frequently have remnants of the hamathecium in the ascomatal Neophaeothecoidea Quaedvlieg & Crous, gen. nov. — Myco­ cavity. The asexual morph is distinguished from Trimmatostro­ Bank MB807811 ma in that it is plant pathogenic, and conidiogenous cells give rise to 4-celled conidia with two basal cells that have truncate Type species. Neophaeothecoidea proteae (Crous) Quaedvlieg & Crous. lateral sides and two globose apical cells, separated by dark Etymology. Named after its similarity to the genus Phaeothecoidea. brown, thick-walled septa. Although there are presently no 28 Persoonia – Volume 33, 2014 cultures available of Trimmatostroma bifarium, which is also Apenidiella strumelloidea (Milko & Dunaev) Quaedvlieg & pathogenic to Eucalyptus, the latter is clearly congeneric Crous, comb. nov. — MycoBank MB807817 with N. excentricum. Basionym. Cladosporium strumelloideum Milko & Dunaev, Novosti Sist. Nizsh. Rast. 23: 134. 1986. Neotrimmatostroma bifarium (Gadgil & M.A. Dick) Quaed­ ≡ Penidiella strumelloidea (Milko & Dunaev) Crous & U. Braun, Stud. vlieg & Crous, comb. nov. — MycoBank MB807814 Mycol. 58: 23. 2007. Specimen examined. Russia, Yaroslavl Region, Rybinsk Reservoir, mouth Basionym. Trimmatostroma bifarium Gadgil & M.A. Dick, New Zealand of Sutka River, isolated from leaf of Carex sp. (Cyperaceae), from stagnant J. Bot. 21: 49. 1983. water, S. Ozerskaya (holotype BKMF-2534, culture ex-type CBS 114484). Description and illustration — Gadgil & Dick 1983, Park et al. 2000. Parateratosphaeria Quaedvlieg & Crous, gen. nov. — Myco-

Specimen examined. New Zealand, Kinleith, on leaves of E. regnans, Bank MB807818 Sept. 1981, D.J. Rawcliffe (holotype NZFRI, isotype PDD 42845). Type species. Parateratosphaeria bellula (Crous & M.J. Wingf.) Quaed- vlieg & Crous.

Neotrimmatostroma excentricum (B. Sutton & Ganap.) Etymology. Named after its similarity to the genus Teratosphaeria. Quaedvlieg & Crous, comb. nov. — MycoBank MB807815 Foliicolous, plant pathogenic. Ascomata amphigenous, im- Basionym. Trimmatostroma excentricum B. Sutton & Ganap., New Zea- mersed, substomatal, black, singular, gregarious; pyriform or land J. Bot. 16: 529. 1978. globose, with a non-periphysate to periphysate papillate ostiole, ≡ Catenulostroma excentricum (B. Sutton & Ganap.) Crous & U. Braun, Stud. Mycol. 58: 10. 2007. becoming erumpent through the stomatal pore. Peridium with = Mycosphaerella excentrica Crous & Carnegie, Fung. Diversity 26: 164. 3–4 layers of compressed textura angularis that comprise an 2007. outer stratum of dark brown thick-walled cells with large lumina ≡ Teratosphaeria excentrica (Crous & Carnegie) Crous & U. Braun, Stud. that become hyaline and thin-walled in the inner stratum. Para­ Mycol. 58: 10. 2007. physes absent. Asci obclavate to cylindrical, pedicel short, straight, tapering to a narrow rounded apex with an indistinct Description and illustration — Sutton & Ganapathi 1978, Crous ocular chamber, 8-spored, bitunicate with fissitunicate dehis- et al. 2007c. cence. Ascospores overlapping bi- to multiseriate, 1-septate, Specimen examined. Australia, New South Wales, Mackenzie Creek fusiform to ellipsoidal, with obtuse ends, straight, hyaline, gut- Road, Kempsey, Byrne Plantation, E152°27'47" S30°53'15", on leaf spots tulate, surrounded by an inconspicuous mucilaginous sheath. of E. agglomerata, 13 Apr. 2005, G. Price (holotype of sexual morph CBS Germinating ascospores become brown and verruculose. H-19829, isotype DAR 78033, culture ex-type CPC 13092 = CBS 121102). Notes — Parateratosphaeria is morphologically indistin- guishable from Teratosphaeria. Ascospores turn brown and Apenidiella Quaedvlieg & Crous, gen. nov. — MycoBank verruculose during germination and some species also have a MB807816 mucoid sheath, though these features also occur in some taxa Type species. Apenidiella strumelloidea (Milko & Dunaev) Quaedvlieg & of Teratosphaeria s.str. The genus Parateratosphaeria is only Crous. distinguishable from Teratosphaeria based on DNA sequence Etymology. Named after its similarity to the genus Penidiella. data. Either ITS or LSU sequence data differentiates these genera. Hyphomycetous, saprobic. Mycelium consisting of branched, septate, smooth, hyaline to pale olivaceous, hyphae, sometimes Parateratosphaeria altensteinii (Crous) Quaedvlieg & Crous, constricted at dark septa. Conidiophores solitary, erect, aris- comb. nov. — MycoBank MB807819 ing from superficial mycelium, reduced to conidiogenous cells or macronematous, subcylindrical, straight to slightly curved, Basionym. Teratosphaeria altensteinii Crous, Persoonia 21: 139. 2008. sometimes attenuated towards the apex, septate, medium Specimen examined. South Africa, Western Cape Province, Kirstenbosch brown, smooth, apex with a terminal conidiogenous cell giv- Botanical Garden, on living leaves of Encephalartos altensteinii, 6 Jan. 2008, ing rise to a single set of ramoconidia. Conidiogenous cells P.W. Crous, M.K. Crous, M. Crous & K. Raath (holotype CBS H-20162, culture terminal, integrated, subcylindrical, straight, pale brown, thin- ex-type CPC 15133 = CBS 123539, CPC 15134–15135). walled, smooth, apex obtusely rounded to somewhat clavate; loci terminal, occasionally subterminal or lateral, unthickened Parateratosphaeria bellula (Crous & M.J. Wingf.) Quaedvlieg to slightly thickened and darkened, not refractive. Conidia in & Crous, comb. nov. — MycoBank MB807820 branched chains; ramoconidia subcylindrical, with 1–3 terminal Basionym. Mycosphaerella bellula Crous & M.J. Wingf., Mycotaxon 46: loci, olivaceous-brown, smooth; secondary conidia ellipsoidal, 20. 1993. with one side straight and the other convex, straight to slightly ≡ Teratosphaeria bellula (Crous & M.J. Wingf.) Crous & U. Braun, Stud. curved, subhyaline to olivaceous-brown, smooth, thin-walled; Mycol. 58: 10. 2007. hila unthickened to slightly thickened and darkened, not re- Specimen examined. South Africa, Western Cape Province, Stellen- fractive. bosch, J.S. Marais Botanical Garden, on leaves of Protea eximia, Apr. 1998, J.E. Taylor (epitype CBS H-20094, culture ex-epitype CPC 1821 = CBS Notes — Apenidiella is distinct from Penidiella in that conidio­ 111700). phores end with a solitary conidiogenous cell that gives rise to a single set of ramoconidia (thus not penicillate with branches as in Penidiella s.str.). Ramoconidia and conidia are aseptate, Parateratosphaeria karinae (Crous) Quaedvlieg & Crous, smooth and thin-walled, subhyaline to olivaceous-brown. Nosrati comb. nov. — MycoBank MB807821 et al. (2010) reported this fungus to be pathogenic to green- Basionym. Teratosphaeria karinae Crous, Persoonia 26: 80. 2011. house cucumbers in Iran. However, based on their illustrations, Specimen examined. South Africa, Western Cape Province, Hermanus, they appear to have been working with a species of Cladospo­ Fernkloof Nature Reserve, S34°23'38" E19°16'9.7", on leaf bracts of Phae­ rium (brown conidia with darkened, thickened, refractive scars; nocoma prolifera, 2 May 2010, K.L. Crous & P.W. Crous (holotype CBS see Bensch et al. 2012). H-20534, cultures ex-type CPC 18256, 18255 = CBS 128774). W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 29

Parateratosphaeria marasasii (Crous) Quaedvlieg & Crous, Pseudoteratosphaeria ohnowa (Crous & M.J. Wingf.) Quaed­ comb. nov. — MycoBank MB807822 vlieg & Crous, comb. nov. — MycoBank MB807827

Basionym. Teratosphaeria marasasii Crous, Persoonia 20: 79. 2008. Basionym. Mycosphaerella ohnowa Crous & M.J. Wingf., Stud. Mycol. 50: 206. 2004. Specimen examined. South Africa, Western Cape Province, Kirstenbosch ≡ Teratosphaeria ohnowa (Crous & M.J. Wingf.) Crous & U. Braun, Stud. Botanical Garden, on living leaves of Protea sp., 6 Jan. 2008, P.W. Crous Mycol. 58: 10. 2007. & M. Crous (holotype CBS H-20105, cultures ex-type CBS 122899 = CPC 14889, CPC 14890, 14891; on leaf spots in association with Coleroa sen­ Specimen examined. South Africa, Mpumalanga, Hazy View, on leaves of niana). E. grandis, 27 Mar. 1995, M.J. Wingfield (holotype PREM 51912, cultures ex- type CPC 1004 = CBS 112896, CPC 1005 = CBS 112973, CPC 1006 = CBS 110949). Parateratosphaeria persoonii (Crous & L. Mostert) Quaed­ vlieg & Crous, comb. nov. — MycoBank MB807823 Pseudoteratosphaeria perpendicularis (Crous & M.J. Wingf.) Basionym. Teratosphaeria persoonii Crous & L. Mostert, Persoonia 20: Quaedvlieg & Crous, comb. nov. — MycoBank MB807828 80. 2008. Basionym. Mycosphaerella perpendicularis Crous & M.J. Wingf., Stud. Specimen examined. South Africa, Western Cape Province, Jonkers­ Mycol. 55: 113. 2006. hoek, S33°59'4.2" E18°57'16.1", on living leaves of Protea sp., 1 Apr. 2007, ≡ Teratosphaeria perpendicularis (Crous & M.J. Wingf.) Crous & U. Braun, P.W. Crous & L. Mostert (holotype CBS H-20102, cultures ex-type CPC Stud. Mycol. 58: 10. 2007. 13972 = CBS 122895, CPC 13973, 13974; on leaf spots in association with Specimen examined. Colombia, Suiza, on leaves of Eucalyptus eurogran­ T. jonkershoekensis = Xenoteratosphaeria jonkershoekensis). dis, Jan. 2004, M.J. Wingfield (holotype CBS H-19691, cultures ex-type CBS 118367 = CPC 10983–10985). Pseudoteratosphaeria Quaedvlieg & Crous, gen. nov. — Myco­ Bank MB807824 Pseudoteratosphaeria secundaria (Crous & Alfenas) Quaed­ Type species. Pseudoteratosphaeria perpendicularis (Crous & M.J. vlieg & Crous, comb. nov. — MycoBank MB807829 Wingf.) Quaedvlieg & Crous. Basionym. Mycosphaerella secundaria Crous & Alfenas, Stud. Mycol. 55: 122. 2006. Etymology. Named after its morphological similarity to the genus Terato­ ≡ Teratosphaeria secundaria (Crous & Alfenas) Crous & U. Braun, Stud. sphaeria. Mycol. 58: 11. 2007.

Foliicolous, plant pathogenic or saprobic. Ascomata pseudothe- Specimen examined. Brazil, Bahia, Teixeira de Freitas, on leaves of cial, epiphyllous, single, black, subepidermal, globose; ostiole Eucalyptus sp., 8 June 2004, A.C. Alfenas (holotype CBS H-19697, culture central, apical; wall of 2–3 layers of medium brown textura ex-type CBS 118507 = CPC 11551–11553). angularis. Asci aparaphysate, fasciculate, bitunicate, subses- sile, obovoid to broadly ellipsoid, slightly incurved, 8-spored. Pseudoteratosphaeria stramenticola (Crous & Alfenas) Ascospores multiseriate, overlapping, hyaline, guttulate, thin- Quaedvlieg & Crous, comb. nov. — MycoBank MB807830 walled, straight, fusoid-ellipsoidal, ellipsoidal or obovoid with obtuse ends, medianly 1-septate, widest in the middle of the Basionym. Mycosphaerella stramenticola Crous & Alfenas, Stud. Mycol. 55: 123. 2006. apical cell, constricted at the septum, tapering towards both ≡ Teratosphaeria stramenticola (Crous & Alfenas) Crous & U. Braun, ends, but more prominently towards the lower end. Stud. Mycol. 58: 11. 2007. = Mycosphaerella parkiiaffinis Crous & M.J. Wingf., Fung. Diversity 26: Notes — Pseudoteratosphaeria is morphologically similar to 168. 2007. species of Teratosphaeria and can only be distinguished based ≡ Teratosphaeria parkiiaffinis (Crous & M.J. Wingf.) Crous & U. Braun, on DNA phylogeny. No asexual morphs are presently known Stud. Mycol. 58: 10. 2007. for Pseudoteratosphaeria. Either ITS or LSU sequence data Specimens examined. Brazil, Bahia, Eunapolis, on leaf litter of Eucalyptus differentiates these genera. sp., 23 May 2004, A.C. Alfenas (holotype of M. stramenticola, CBS H-19699, cultures ex-type CBS 118506 = CPC 11438–11440). – Venezuela, near Acari- gua, on leaves of Eucalyptus urophylla, Oct. 2006, M.J. Wingfield (holotype of (Crous & M.J. Wingf.) Quaed­ Pseudoteratosphaeria flexuosa M. parkiiaffinis, CBS H-19823, cultures ex-type CPC 13373 = CBS 120737, vlieg & Crous, comb. nov. — MycoBank MB807825 CPC 13374). Basionym. Mycosphaerella flexuosa Crous & M.J. Wingf., Mycol. Mem. Notes — Pseudoteratosphaeria stramenticola was isolated 21: 58. 1998. ≡ Teratosphaeria flexuosa (Crous & M.J. Wingf.) Crous & U. Braun, Stud. from leaf litter of a Eucalyptus sp. in Brazil (Crous et al. 2006). Mycol. 58: 10. 2007. Ascospores were fusoid-ellipsoidal, (8–)9–10(–11) × 3(–3.5) μm. In contrast, Mycosphaerella parkiiaffinis was associated Specimen examined. Colombia, La Selva, leaves of E. globulus, May with well-defined leaf spots of E. urophylla in Venezuela, and 1995, M.J. Wingfield (holotype PREM 54401, cultures ex-type STE-U 1107– its ascospores were fusoid-ellipsoidal, (8–)9–10 × 3(–3.5) μm 1109 = CBS 111012). (Crous et al. 2007c). These two species are also identical based on their DNA phylogeny, which provides further evidence that Pseudoteratosphaeria gamsii (Crous) Quaedvlieg & Crous, some of these pathogens are endophytes. comb. nov. — MycoBank MB807826

Basionym. Mycosphaerella gamsii Crous, Stud. Mycol. 55: 113. 2006. Queenslandipenidiella Quaedvlieg & Crous, gen. nov. — ≡ Teratosphaeria gamsii (Crous) Crous & U. Braun, Stud. Mycol. 58: 10. MycoBank MB807831 2007. Type species. Queenslandipenidiella kurandae (Crous & J.K. Stone) Specimen examined. India, Palampur, on leaves of Eucalyptus sp., Mar. Quaedvlieg & Crous. 2004, W. Gams & M. Arzanlou (holotype CBS H-19690, culture ex-type CBS Etymology. Named after its occurrence in Queensland, Australia, and 118495 = CPC 11138–11140). morphological similarity to the genus Penidiella. Hyphomycetous. Mycelium consisting of smooth, brown, thick- walled, branched, hyphae. Conidiophores macronematous, 30 Persoonia – Volume 33, 2014 erect, arising from superficial hyphae, branching penicillate, Specimens examined. Australia, Queensland, Cairns, Kuranda, Kuranda septate. Conidiogenous apparatus consisting of several sets walking trail, S16°49'24.6" E145°38'2.6", from exudates of stem cankers on of branches; primary branches subcylindrical, brown, smooth, unidentified rainforest tree, 30 Aug. 2006, P.W. Crous & J.K. Stone (holotype CBS H-19932, culture ex-type CPC 13333 = CBS 121715, CPC 13334; ditto, 0–1-septate, giving rise to 1–2 conidiogenous cells or second- S16°49'29" E145°38'28.6", paratype CBS H-19924, CPC 13335). ary branches; secondary branches 0–1-septate. Conidiogenous cells doliiform to subcylindrical, brown, smooth, with 1–2 apical scars that are flattened, not darkened, refractive nor thickened. Readeriella Syd. & P. Syd., Ann. Mycol. 6, 5: 484. 1908 Ramoconidia brown, smooth, with 2–3 apical loci, narrowly Readeriella deanei Quaedvlieg, Summerell & Crous, sp. nov. ellipsoidal to subcylindrical. Conidia occurring in short chains, — MycoBank MB807833; Fig. 7 brown, smooth, ellipsoidal, apex obtuse, base subtruncate with or without a flattened inconspicuous hilum. Etymology. Name refers to the host from which it was isolated, Eucalyptus deanei. Notes — Queenslandipenidiella was placed in Penidiella based on having penicillate conidiophores that produce brown Description on OA. Conidiomata pycnidial, brown, globose to conidia with inconspicuous hila, as well as phylogenetic place- subglobose, up to 250 µm diam; wall consisting of 2–3 layers ment in the Teratosphaeriaceae (Crous et al. 2007c). Eco- of brown textura angularis. Conidiophores reduced to conidio­ logically it is very interesting, as it colonises the exudates of genous cells, or with a supporting cell. Conidiogenous cells bleeding cankers that are common on many of the trees lining discrete, doliiform to ampulliform, pale brown, finely verrucu- a rainforest walking trail at Kuranda in northern Queensland. lose, proliferating several times percurrently near apex, 5–8 Whether it is the cause of the cankers, or simply a secondary × 4–6 µm. Conidia solitary, aseptate, ellipsoid to limoniform, invader on the exudates, remains unknown. Queenslandi­ tapering towards a bluntly rounded, subobtuse, thickened apex, base subtruncate and thickened, hyaline becoming medium to penidiella can be distinguished from Penidiella s.str. by its golden brown, finely verruculose, (8–)9–10(–11) × 4(–5) µm. well defined penicillate conidiophores, with clear branching Culture characteristics — Colonies erumpent, spreading, structure, which is less apparent in species of Penidiella s.str. with lobate, feathery margins and sparse aerial mycelium on (Crous et al. 2007a, c). OA and PDA; fluffy to woolly on MEA, 5 cm diam after 2 wk. On MEA surface olivaceous-grey, reverse iron-grey. On PDA Queenslandipenidiella kurandae (Crous & J.K. Stone) and OA, surface and reverse iron-grey. Quaed­vlieg & Crous, comb. nov. — MycoBank MB807832 Specimen examined. Australia, New South Wales, Wollemi National Basionym. Penidiella kurandae Crous & J.K. Stone, Fungal Planet 16. Park, on leaves of Eucalyptus deanei, 9 Feb. 2006, B. Summerell (holotype 2007. CBS H-21136, culture ex-type CPC 12715 = CBS 134746).

Fig. 7 Readeriella deanei (CPC 12715). a. Colony sporulating on OA; b–e. conidiogenous cells with percurrent proliferation; f. conidia. –– Scale bars = 10 µm.

Fig. 8 Readeriella limoniforma (CPC 12727). a. Colony sporulating on PDA; b, c. conidiogenous cells with percurrent proliferation; f. conidia. –– Scale bars = 10 µm. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 31

Notes — Morphologically similar to R. readeriellophora (co- Description on OA. Conidiomata pycnidial, brown, globose, nidiomata up to 130 µm diam, conidiogenous cells 8–15 × 3–4 up to 300 µm diam; wall consisting of 2–3 layers of brown µm, conidia (5–)6–7(–9) × (3–)4(–4.5) µm; Crous et al. 2004b). textura angularis. Conidiophores 0–1-septate, pale brown, However, conidiomata of R. deanei are larger, conidiogenous finely verruculose, ampulliform to doliiform, 10–20 × 4–6 µm. cells wider and conidia longer and wider. Conidiogenous cells pale brown, finely verruculose, ampul- liform to doliiform, proliferating several times percurrently near apex, mono- or polyphialidic, 8–10 × 4–6 µm. Conidia solitary, Readeriella limoniforma Quaedvlieg, Summerell & Crous, sp. medium brown, aseptate, smooth, granular, base truncate, with nov. — MycoBank MB807834; Fig. 8 three apical, lateral, obtuse projections, deltoid, thick-walled, Etymology. Name refers to its conidia, which are characteristically limoni- with darker pigmentation in the lateral projections, but with more form in shape. prominent constriction between the projections and the base, Description on OA. Conidiomata pycnidial, brown, globose to (9–)10–11(–12) µm long, (8–)9–10(–11) µm wide at apex. subglobose, up to 150 µm diam, ostiole central, up to 60 µm Culture characteristics — Colonies spreading, erumpent diam; wall consisting of 2–3 layers of brown textura angularis. with lobate, feathery margins and moderate aerial mycelium. Conidiophores reduced to conidiogenous cells. Conidiogenous On OA, MEA and PDA surface olivaceous-grey with patches cells discrete, doliiform to subcylindrical, hyaline to pale brown, of pale olivaceous-grey; reverse iron-grey; after 2 wk reaching smooth to finely verruculose, monophialidic, proliferating sever­ ­ 55 mm diam. al times percurrently near apex, 5–8 × 3–4 µm. Conidia soli- Specimen examined. Australia, Tasmania, Tasman Peninsula, Brown tary, aseptate, ellipsoid to limoniform, tapering towards a bluntly Mountain walk, S43°11'13.9" E147°50'50.7", on leaves of E. delegatensis, rounded, subobtuse, thickened apex, base subtruncate, hya- 14 Oct. 2006, P. Summerell & B. Summerell (holotype CBS H-21134, culture line becoming medium to golden brown, finely verruculose, ex-type CPC 13611 = CBS 134744). (6–)7–8(–10) × 3(–4) µm. Notes — Morphologically similar to R. mirabilis (conidia (7–) Culture characteristics — Colonies erumpent, spreading, with 9–10(–11) µm long, (7–)8–9(–10) µm wide at apex), although lobate, feathery margins and moderate to fluffy aerial mycelium, the conidia of R. mirabiliaffinis are larger. reaching 4 cm diam after 2 wk. On MEA surface smoke-grey, outer region purplish grey, reverse fuscous-black. On PDA sur- Quaedvlieg & Crous, gen. nov. — Myco­ face iron-grey, and pale olivaceous-grey in centre; reverse Suberoteratosphaeria Bank MB807836 iron-grey. Type species. Suberoteratosphaeria suberosa (Crous, F.A. Ferreira, Specimen examined. Australia, New South Wales, Wollemi National Alfenas & M.J. Wingf.) Quaedvlieg & Crous. Park, on leaves of Eucalyptus sp., 9 Feb. 2006, B. Summerell (holotype CBS H-21135, cultures ex-type CPC 12727–12729 = CBS 134745). Etymology. Named after its similarity to the genus Teratosphaeria and association with corky leaf spots. Notes — Morphologically R. limoniforma is similar to R. cal­ lista (conidia ellipsoid to fusoid, 7–11 × 3–5.5 µm; Crous et al. Foliicolous and caulicolous, plant pathogenic. Ascomata pseu- 2009d), but conidia are more limoniform in shape and slightly dothecial, solitary or aggregated, black, superficial to subepider- wider than those of R. callista. mal, globose, glabrous; ostiole apical, central, papillate, lined with periphyses; wall of 3–4 layers of medium brown textura angularis, subhymenium of 3–5 layers of hyaline cells. Asci Quaedvlieg, Summerell & Crous, Readeriella mirabiliaffinis fasciculate, bitunicate, aparaphysate, subsessile, 8-spored, sp. nov. — MycoBank MB807835; Fig. 9 ellipsoid to obclavate, straight or curved. Ascospores bi- to Etymology. Name refers to its similarity to R. mirabilis. triseriate or irregularly arranged, oblique, overlapping, straight

Fig. 9 Readeriella mirabiliaffinis (CPC 13611). a. Colony sporulating on PDA; c, e, g. conidiogenous cells with percurrent proliferation; b, d, f. conidia. –– Scale bars = 10 µm. 32 Persoonia – Volume 33, 2014 ellipsoidal, obtuse at each end, hyaline to pale brown, smooth, Specimen examined. Australia, Queensland, Coolabunia Plantation, 1-septate, guttulate, with or without mucoid sheath. Germinating Kingaroy, on E. mollucana, 14 Feb. 2004, A.J. Carnegie (holotype CBS ascospores become brown and verruculose. H-21138, culture ex-type CPC 13093 = CBS 134747 = NSWF 005175). Notes — Suberoteratosphaeria is plant pathogenic, associ- Notes — Teratosphaeria xenosuberosa was originally identi­ ated with corky leaf spots, but also on stems and leaf petioles. fied as T. suberosa based on the similar corky leaf spots it The genus has ascospores that are hyaline to pale brown (as induces on E. mollucana. Although the specimen was lost, the found in several species of Teratosphaeria s.str.). Suberotera­ fungus can be described morphologically, as it is homothallic tosphaeria is distinguished from Teratosphaeria by its corky and sporulates in culture. Teratosphaeria xenosuberosa is lesions, and less so by ascospores that become brown, ver- distinguished from T. suberosa (ascospores 10–)12–16(–17) ruculose and germinate by two or multiple germ tubes. × (3–)3.5–5(–6) µm (Crous et al. 1993) by a mean ascospore length that is shorter than found in T. suberosa.

Suberoteratosphaeria pseudosuberosa (Crous & M.J. Wingf.) Quaedvlieg & Crous, comb. nov. — MycoBank MB807838 Teratosphaeria molleriana (Thüm.) Crous & U. Braun, Stud. Mycol. 58: 10. 2007 Basionym. Mycosphaerella pseudosuberosa Crous & M.J. Wingf., Stud. Mycol. 55: 118. 2006. Basionym. Sphaerella molleriana Thüm., Revista Inst. Sci. Lit. Coimbra ≡ Teratosphaeria pseudosuberosa (Crous & M.J. Wingf.) Crous & U. Braun, 28: 31. 1881. Stud. Mycol. 58: 11. 2007. Mycosphaerella molleriana (Thüm) Lindau, Nat. Pfanzenfam. 1: 424. 1897. Specimen examined. Uruguay, on leaves and petioles of Eucalyptus = Colletogloeopsis molleriana Crous & M.J. Wingf., Canad. J. Bot. 75: sp., Apr. 2005, M.J. Wingfield (holotype CBS H-19695, culture ex-type CBS 670. 1997. 118911 = CPC 12085). Readeriella molleriana (Crous & M.J. Wingf.) Crous & U. Braun, Stud. Mycol. 58: 10. 2007. Suberoteratosphaeria suberosa (Crous, F.A. Ferreira, Alfenas = Mycosphaerella vespa Carnegie & Keane, Mycol. Res. 102: 1275. 1998. & M.J. Wingf.) Quaedvlieg & Crous, comb. nov. — Myco- = Mycosphaerella ambiphylla A. Maxwell, Mycol. Res. 107: 354. 2003. Bank MB807839 = Teratosphaeria xenocryptica Crous & M.J. Wingf., Persoonia 23: 139. Basionym. Mycosphaerella suberosa Crous, F.A. Ferreira, Alfenas & M.J. 2009. Wingf., Mycologia 85, 4: 707. 1993. Specimens examined. Australia, Tasmania, on leaves of E. globulus, BOT ≡ Teratosphaeria suberosa (Crous, F.A. Ferreira, Alfenas & M.J. Wingf.) 2823 = CBS 117924 (identified as M. vespa); Western Australia, Manjimup, Crous & U. Braun, Stud. Mycol. 58: 11. 2007. Boorara plantation of WACAP, E116°10' S34°45', on E. globulus, 16 Feb. 2000, A. Maxwell (holotype of M. ambiphylla, PERTH 05849608, culture Specimen examined. Brazil, Espírito Santo, Santa Catarina, on leaves of E. dunnii, Aug. 1992, M.J. Wingfield (holotype PREM 51082, culture ex ex-type CBS 110499). – Chile, on leaves of Eucalyptus sp., 1994, M.J. Wing­ type CPC 515 = CBS 436.92). field (holotype of T. xenocryptica deposited at PREM, culture ex-type CPC 355 = CBS 122905). – Portugal, Lisbon, N40°00'39" W8°36'2.3", 77 m, on leaves of Eucalyptus sp., 13 Oct. 2006, P.W. Crous & A.J.L. Phillips (epitype of Suberoteratosphaeria xenosuberosa Quaedvlieg, Carnegie T. molleriana, CBS H-19826, cultures ex-epitype CPC 13398 = CBS 120746, & Crous, sp. nov. — MycoBank MB807840; Fig. 10 CPC 13399–13400). Etymology. Name refers to its similarity to Suberoteratosphaeria suberosa. Notes — Hunter et al. (2006) reduced M. vespa and M. ambi­ phylla to synonymy under M. molleriana (= Teratosphaeria). Leaf spots similar to those reported for T. suberosa, corky, and Based on the multigene data generated here, T. xenocryptica erumpent. Description on PDA (homothallic). Ascomata black, (Wingfield et al. 1995, Crous et al. 2009b) also falls within the erumpent, punctiform, globose, up to 150 µm diam; apical osti- variation observed in T. molleriana. ole 10–15 µm diam; wall consisting of 2–3 layers of medium brown textura angularis. Asci obovoid to broadly ellipsoid, aparaphysate, fasciculate, subsessile, bitunicate, 8-spored, Teratosphaericola Quaedvlieg & Crous, gen. nov. — Myco- straight to slightly incurved, 50–75 × 10–12 µm. Ascospores Bank MB807841 bi- to triseriate, hyaline, ellipsoidal with rounded ends, medi- Type species. Teratosphaericola pseudoafricana (Crous & T.A. Cout.) anly 1-septate, constricted at the septum, straight to slightly Quaedvlieg & Crous. curved, guttulate, thick-walled, widest in middle of apical cell, Etymology. Named after its similarity to the genus Teratosphaeria. (10–)11–13(–15) × (4–)4.5(–5) µm. Ascospores brown and verruculose at germination. Foliicolous, plant pathogenic. Ascomata pseudothecial, solitary, Culture characteristics — Colonies spreading, erumpent, black, immersed becoming erumpent, globose; ostiole apical, with sparse aerial mycelium and feathery margins, reaching central; wall of 2–3 cell layers of medium brown textura an­ 15 mm diam after 2 mo on PDA; surface olivaceous-grey, gularis. Asci aparaphysate, fasciculate, bitunicate, subsessile, reverse iron-grey. narrowly ellipsoid to subcylindrical, slightly incurved, 8-spored.

Fig. 10 Suberoteratosphaeria xenosuberosa (CPC 13093). a. Colony sporulating on PDA; b. broken asci; c. ascospores. –– Scale bars = 10 µm. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 33

Fig. 11 Teratosphaeriopsis pseudoafricana (CBS 111171). a. Colony sporulating on PDA; b, c. ascomata; c–e. asci with ascospores. –– Scale bars: a = 250 µm; b = 120 µm; c–e = 10 µm; d applies to e.

Ascospores tri- to multiseriate, overlapping, hyaline to pale Description on OA (homothallic). Ascomata black, erumpent, brown, guttulate, thin-walled, straight to slightly curved, smooth globose, solitary or in clusters of up to three, up to 120 µm to finely roughened, fusoid-ellipsoidal with subobtuse ends, diam, with papillate apex and central ostiole; wall consisting of medianly 1-septate. Spermatogonia similar to the ascomata 2–3 layers of medium brown textura angularis. Asci obovoid in morphology. Spermatia hyaline, smooth, rod-shaped with to broadly ellipsoid, aparaphysate, fasciculate, subsessile, rounded ends. bitunicate, 8-spored, straight to slightly incurved; apical cham- ber 1.5–2 µm diam, 25–50 × 8–10 µm. Ascospores tri- to Notes — Teratosphaericola is similar to Teratosphaeria in multiseriate, hyaline, obovoid with rounded ends, medianly morphology, and can only be distinguished based on DNA 1-septate, slightly constricted at the septum, straight to slightly phylogeny. Ascospores become darkened and verruculose curved, guttulate, thin-walled, widest in middle of apical cell, at germination, but this is also known for several species of (8–)9(–10) × (3–)3.5(–4) µm. Ascospores brown and verru­ Teratosphaeria. Either ITS or LSU sequence data differentiate culose at germination. these genera. Culture characteristics — Colonies on OA iron-grey, spread- ing with moderate aerial mycelium in centre. On MEA and PDA Teratosphaericola pseudoafricana (Crous & T.A. Cout.) erumpent, spreading, with folded surface, and moderate aerial Quaedvlieg & Crous, comb. nov. — MycoBank MB807842 mycelium, and even, lobed margin; centre olivaceous-grey, outer region iron-grey, reverse iron-grey; reaching 40 mm diam Basionym. Mycosphaerella pseudoafricana Crous & T.A. Cout. (as pseud- africana), Stud. Mycol. 55: 115. 2006. after 1 mo.

≡ Teratosphaeria pseudoafricana (Crous & T.A. Cout.) Crous & U. Braun, Specimen examined. South Africa, KwaZulu-Natal, on leaves of Eucalyp­ Stud. Mycol. 58: 11. 2007. tus sp., 23 Nov. 1995, P.W. Crous (holotype CBS H-21137, culture ex-type CBS 111171 = CPC 1261). Specimen examined. Zambia, on leaves of E. globulus, Aug. 1995, T. Cou- tinho (holotype PREM 54973, culture ex-type CPC 1229, 1231, 1230 = CBS Notes — Teratosphaeriopsis pseudoafricana was originally 114782). identified as Amycosphaerella africana (= Mycosphaerella afri­ cana) based on morphology. Phylogenetically it is distinct from Teratosphaeriopsis Quaedvlieg & Crous, gen. nov. — Myco- the taxa presently known to occur on eucalypts. Although the Bank MB807843 specimen has been lost, the fungus can still be described Type species. Teratosphaeriopsis pseudoafricana Quaedvlieg & Crous. morphologically, as it is homothallic and sporulates in culture. Ascospores of T. pseudoafricana are obovoid, and shorter and Etymology. Named after its morphological similarity to the genus Terato­ wider than those of Amycosphaerella africana, which are fusoid- sphaeria. ellipsoidal, (7–)8–10(–11) × (2–)2.5–3 µm (Crous & Wing- Foliicolous, plant pathogenic. Ascomata black, erumpent, glo- field 1996). bose, solitary or in clusters of up to three, with papillate apex and central ostiole; wall consisting of 2–3 layers of medium Xenopenidiella Quaedvlieg & Crous, gen. nov. — MycoBank brown textura angularis. Asci obovoid to broadly ellipsoid, MB807845 aparaphysate, fasciculate, subsessile, bitunicate, 8-spored, straight to slightly incurved. Ascospores tri- to multiseriate, Type species. Xenopenidiella rigidophora (Crous, R.F. Castañeda & U. Braun) Quaedvlieg & Crous. hyaline, obovoid with rounded ends, medianly 1-septate, slightly constricted at the septum, straight to slightly curved, guttulate, Etymology. Named after the genus Penidiella, but distinct in having di­ thin-walled, widest in middle of apical cell; ascospores brown morphic conidiophores. and verruculose at germination. Hyphomycetous, saprobic on leaf litter. Mycelium consisting Notes — Teratosphaeriopsis is best distinguished from Tera­ of strongly branched, septate, smooth, pale olivaceous to tosphaeria based on phylogenetic data, as several species in medium brown, guttulate, hyphae. Conidiophores dimorphic. Teratosphaeria are morphologically similar. Macronematous conidiophores separate, erect, subcylindrical, predominantly straight to slightly curved, terminally loosely branched; base neither lobed nor swollen, lacking rhizoids, Teratosphaeriopsis pseudoafricana Quaedvlieg & Crous, septate, medium to dark brown. Micronematous conidiophores sp. nov. — MycoBank MB807844; Fig. 11 erect, subcylindrical, septate, pale to medium brown (concolor- Etymology. Name refers to its morphological similarity to M. africana. ous with hyphae). Conidiogenous cells predominantly terminal, 34 Persoonia – Volume 33, 2014 rarely intercalary, medium brown, smooth, subcylindrical, but Mycosphaerella Leaf Disease frequently swollen at apex, loci flat-tipped, sub-denticulate or Mycosphaerella Leaf Disease is a serious impediment for not, barely to slightly thickened and darkened-refractive. Coni­ the cultivation of eucalypts worldwide (Crous et al. 2009d, dia in branched chains, medium brown, verruculose, ellipsoid Hunter et al. 2011). Throughout the years numerous species to cylindrical-oblong, turning dark with age; hila sometimes of Mycosphaerellaceae and Teratosphaeriaceae have been slightly thickened and darkened, not refractive. described from eucalypt leaves, several of which have been Notes — Xenopenidiella is superficially similar to Penidiella, associated with MLD and TLD. The present study provides a but distinct in that conidiophores are dimorphic, not truly penicil- multigene DNA comparison of more than 146 taxa isolated from late (rather loosely branched at apex), and conidiogenous cells eucalypt leaves, and is the most comprehensive multigene DNA often appear subdenticulate. phylogeny generated to date for these fungi, following a previ- ous study by Hunter et al. (2006). Numerous species examined here were originally described without isolation or preservation Xenopenidiella rigidophora (Crous, R.F. Castañeda & U. Braun) of ex-type strains, and consequently had to be recollected to Quaedvlieg & Crous, comb. nov. — MycoBank MB807846 enable DNA comparisons. Even though partial gene sequences Basionym. Penidiella rigidophora Crous, R.F. Castañeda & U. Braun, of the ITS and LSU loci have been obtained for many of these Stud. Mycol. 58: 21. 2007. fungi in recent years comprehensive multigene phylogenetic

Specimen examined. Cuba, isolated from leaf litter of Smilax sp. (Smila­ comparisons have mostly been lacking. caceae), 6 Nov. 1994, R.F. Castañeda (holotype CBS H-19938, culture ex-type CBS 314.95). Lineages within the Teratosphaeriaceae Schoch et al. (2006) placed the Piedraiaceae in the Dothideo­ Xenoteratosphaeria Quaedvlieg & Crous, gen. nov. — Myco­ mycetes, and Crous et al. (2009b) showed it clustered within Bank MB807847 the Teratosphaeriaceae. Ruibal et al. (2011) discussed this Type species. Xenoteratosphaeria jonkershoekensis (P.S. van Wyk, placement in depth and suggested that it was possibly due to Marasas & Knox-Dav.) Quaedvlieg & Crous. long branch attraction and poor taxon sampling (these long branches are clearly visible in Fig. 3 derived from our LSU/ Etymology. Resembling the genus Teratosphaeria, but with distinct culture characteristics. RPB2 dataset). Although we have been unable to resolve the placement of the Piedraiaceae in the present study, we still Foliicolous, plant pathogenic. Ascomata immersed, substoma- regard it as a separate family based on its unique morphology tal, black, singular, gregarious, immersed, becoming erumpent and ecology. Furthermore, the Piedraiaceae clade was the only through the stomatal pore, pyriform or globose with a papillate unstable clade in this dataset; e.g. it clustered as sister to dif- periphysate ostiole. Asci obclavate, straight, subsessile or with ferent clades within the Teratosphaeriaceae depending on the a small pedicel, narrowing slightly to a rounded apex with a dis- addition/deletion of additional families to the dataset (results not tinctive ocular chamber, 8-spored, bitunicate with fissitunicate shown) and was the only Teratosphaeriaceae-associated clade dehiscence. Ascospores bi- to multiseriate, fusiform, tapering which actually clustered outside of the Teratosphaeriaceae gradually to the rounded ends, widest in the middle of the upper while running preliminary Neighbour joining trees on our LSU/ cell, with the lower cell slightly narrower and longer, straight, RPB2 dataset (results not shown). We await further insights hyaline, becoming pale brown with age, medianly septate. on the correct placement of the Piedraiaceae, which appears Notes — Xenoteratosphaeria is morphologically similar to to be sensitive to sampling and different algorithms used for Teratosphaeria (also with ascospores becoming brown and phylogenetic reconstruction. verruculose in asci), but distinct in that in culture hyphae termi- Not all extremophiles could previously be accommodated in nate in brown, multicellular chlamydospore-like structures, not the Teratosphaeriaceae as some isolates clustered in closely observed in Teratosphaeria s.str. (see Crous et al. 2000, f. 18, related, but undescribed, separate families. Ruibal et al. (2009) 19, 25). resorted to referring to these rock-inhabiting isolates as being members of Teratosphaeriaceae (‘clade 2’). Although the in- Xenoteratosphaeria jonkershoekensis (P.S. van Wyk, Mara- troduction of the Neodevriesiaceae and Extremaceae (Fig. 5) sas & Knox-Dav.) Quaedvlieg & Crous, comb. nov. — Myco­ within the present study provide families for many of these Bank MB807848 extremophilic genera, the resulting Teratosphaeriaceae LSU/ RPB2 tree (Fig. 3) is still not fully resolved. Overall, these Basionym. Mycosphaerella jonkershoekensis P.S. van Wyk, Marasas & results underline the fact that the Teratosphaeriaceae (Fig. 3) Knox-Dav., S. African J. Bot. 41: 234. 1975. is still too broadly defined. A more robust dataset is needed to ≡ Teratosphaeria jonkershoekensis (P.S. van Wyk, Marasas & Knox-Dav.) Crous & U. Braun, Stud. Mycol. 58: 10. 2007. address this issue, within the wider context of what is now seen as the Capnodiales. Specimen examined. South Africa, Western Cape Province, Jonkers­ hoek, S33°59'4.2" E18°57'16.1", on living leaves of Protea sp., 1 Apr. 2007, With the narrow circumscriptions of Ramularia (= Mycosphae­ P.W. Crous & L. Mostert (epitype CBS H-20095, culture ex-epitype CBS rella) and Teratosphaeria (= Kirramyces), 23 novel genera have 122897 = CPC 13984). to be introduced to accommodate other monophyletic lin- eages in this complex. Although the present study presents a Discussion sound road map for future work on the Teratosphaeriaceae, it also illustrates that we are approaching the limits of purely The genus Mycosphaerella s.l. is one of the largest genera morphology-based classification for species and genera within of ascomycetes with thousands of species (Crous 2009). the Mycosphaerellaceae and Teratosphaeriaceae. Several However, the Mycosphaerella morphology evolved in many genera that are readily identifiable based even on a single lineages independently, and the separation of the Teratosphae­ locus, are virtually impossible to distinguish by morphological riaceae from the Mycosphaerellaceae (Crous et al. 2007a) means (e.g. Parateratosphaeria and Teratosphaeria) and this was an important step towards delimitation of taxa within the will pose problems for forest pathologists wanting to identify Mycosphaerella complex. these taxa in the field. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 35

Best genes to distinguish species in Mycosphaerellaceae species, T. stellenboschiana and T. foliensis. Does this mean and Teratosphaeriaceae that these eight Teratosphaeria isolates belong to one, two or From the DNA sequence data we conclude that any of the more different taxa? five coding loci tested in this study (Btub, Act, RPB2, EF-1α Traditionally, five previously described species concepts have and Cal) will reliably identify most of the species studied. The been used in mycology to distinguish taxa. The Biological Spe- only exception was species of Pseudocercospora, which were cies Concept (BSC) emphasizes reproductive isolation (Wright difficult to identify based on a single locus, although this had 1940, Mayr 1942), the Morphological Species Concept (MSC) already been demonstrated (Crous et al. 2013). The Act, Cal emphasizes morphological divergence, the Ecological Species and Btub genes were incongruent with the other loci in the two Concept (ESC) emphasizes adaptation to a particular ecologi- five-locus datasets. However, this does not exclude these genes cal niche (van Valen 1976), the Phylogenetic Species Concept as barcoding loci for species identification within the MLD and (PSC) emphasizes nucleotide (non) divergence (Hennig 1966) TLD complexes, as these loci resolve the terminal clades in and the Genealogical Concordance Phylogenetic Species their derived trees, if not their higher order clustering. These Recognition (GCPSR) (an adaptation of the PSC) uses the ‘aberrant’ loci should not be combined with other loci within phylogenetic concordance of unlinked genes to indicate a lack these two datasets, if the intention is to draw taxonomic conclu- of genetic exchange and thus, evolutionary independence of sions about the relationships of these species to one another. lineages (O’Donnell et al. 1998, Taylor et al. 2000, Dettman et This incongruency can be caused by several factors, including al. 2003a, b, de Queiroz 2007). differing rates of evolution, and different selection pressures. During the last decade a sixth, polyphasic approach to species As none of the coding gene loci had a 100 % amplification recognition has evolved within the mycological community. This success rate, none of these loci alone are ideal for species polyphasic method grades the MSC, ESC and PSC charac- identification in a generic protocol. The two loci that did have teristics with a variable weight in order to reach a conclusion a 100 % success rate (LSU and ITS) lack species resolution on the proposition that a taxon represents a separate species. power for a large number of species, and are thus not inde- Conclusions based on the molecular similarity between different pendently reliable as an identification tool. The Btub and EF-1α taxa in a robust multi-locus DNA dataset (PSC) are generally loci have the highest Kimura-2-parameter distances, with RPB2 unbiased and warrant a high weight in any CSC analysis conclu- in the third place (i.e. they show the highest natural variation sion. Differences in morphology (MSC) and ecology (ESC) are between species) for the species used in this dataset, but these given less weight in reaching a CSC conclusion. This approach loci have the disadvantage that they only have amplification has become generally accepted during the last decade as a success rates of 97, 98 and 95 %, respectively (Table 3). functional species concept within the mycological community, To compensate for both this lack of amplification success and without ever officially having been described as such (Frisvad & the limited amount of available reference data for these protein Samson 2004, Crous & Groenewald 2005, Samson et al. 2006, coding loci in public databases, we recommend a combination Leslie & Summerell 2006, Cai et al. 2009, Groenewald et al. of a primary and a secondary locus to provide a more reliable 2013). To remedy this, we propose to formally name this widely identification result. The ITS locus is a prime candidate as the used, polyphasic method for identifying species within the fungal primary locus as the ITS locus has recently been proposed as kingdom, as the Consolidated Species Concept (CSC) (derived the primary fungal barcoding locus (Schoch et al. 2012), and from a discussion with Keith Seifert about how to describe the ITS sequence data are easily obtained and are a good starting polyphasic identification approach at the ‘One Fungus = Which point to rapidly identify genera and often species. If an unknown Name’ symposium, held in Amsterdam in April 2012). genus or species is not represented in a curated database such Even with the use of these six species concepts, successfully as Q-bank (www.q-bank.eu), then GenBank should be used distinguishing between two or more closely related taxa can still to supplement the data. As a secondary identification locus, be daunting and open to debate. The generated phylogenetic either Btub, EF-1α or even RPB2, suffice for many species of trees (Fig. 1–4) show several of these closely related isolates Mycosphaerellaceae or Teratosphaeriaceae. We recommend (clades A–K) that have previously been identified as belonging EF-1α, followed by Btub and then RPB2, as the most effective to different taxa. These clades will therefore be discussed in way of identifying many species within these genera. As with more detail under the listed species concepts. all molecular-based identification approaches, care needs to be taken with the interpretation of results arising from such analy- As we did not perform mating compatibility tests on this dataset, ses, as many mistakes occur in uncurated public nucleotide we have no data regarding the BSC concept for most of these databases such as GenBank. isolates. However, we can discuss the implications of the five remaining species concepts (MSC, ESC, PSC, GCPSR and Species concepts within the fungal kingdom CSC) on this dataset. Ever since Darwin (1859) published his species concept in Different conclusions can be drawn about speciation, when ap- ‘On the Origin of Species’, scientists have been struggling with plying these five species concepts individually to clade C (Fig. 1). how to define and recognise species, i.e., when has a lineage Clade C contains seven isolates that were previously identified diverged far enough to be considered a species. Numerous as either one of two closely related Teratosphaeria species authors have since considered a multitude of taxonomic charac- (T. gauchensis or T. stellenboschiana). Each one of these ters as essential elements to define novel species. Authors com- two species has a distinct morphology (Crous et al. 2004b, 2009a, monly disagree about species numbers and species boundar- Andjic et al. 2010), was isolated from a different host (E. gran­ ies. Species delimitation and conceptualisation has become dis and E. punctata) and collected from different continents increasingly confused by disagreements about species con- (Africa and South America). So, according to both the MSC cepts (de Queiroz 2007, Costello et al. 2013). and the ESC concepts, there is very good support for the pro­ Some of the more ambiguous phylogenetic conclusions in the position that they should be regarded as separate species. present study demonstrate the problems experienced when However, the PSC concept is inconclusive in this case as the defining species. For example, Fig. 1, clade C reveals that the four T. gauchensis isolates show a wide genetic drift while the four tested T. gauchensis isolates (Cortinas et al. 2006) have T. stellenboschiana isolates are relatively conserved. extensive natural variation within the seven loci tested, which When applying the GCPSR concept to this dataset, the taxa causes them to overlap with two other, morphologically distinct within this dataset are tested for genetic exchange to indicate 36 Persoonia – Volume 33, 2014 their evolutionary independence (a pairwise homoplasy index was added to this dataset. When applying the CSC concept

(PHI or Φw) score below 0.05 is considered proof for the pres- to clade B, we can take into account that the MSC, ESC and ence of significant recombination within the dataset). The PSC characteristics all support the two species proposition so GCPSR test revealed that there was no significant genetic we conclude that there is full support for the proposition that recombination within this dataset (Φw = 0.1) (Fig. 6c). There T. destructans and T. viscidus represent two different taxa. are still common (but not significant) recombination events present within this dataset, as is apparent by the relative low Clade D contains two isolates that were previously identified as Φw and the conflicting phylogenetic splits (another indicator of recombination) observed in the split tree decomposition network either belonging to the closely related T. pluritubularis and for the T. gauchensis and T. stellenboschiana isolates (Fig. 6c). T. profusa (including the respective ex-type isolates CBS 118508 According to the GCPSR species concept, there is no sup- and CBS 125007; Crous et al. 2006), which were isolated port for the proposition that these isolates belong to the same from either E. globulus or E. nitens from different continents species, as there was no significant recombination between (Spain and Australia). Both species have distinct morphologi- T. gauchensis and T. stellenboschiana. cal variation and can be separated based on morphological When applying the CSC concept to clade C, we can take into characteristics (Crous et al. 2009b). These two species are account that the phylogenetic data regarding T. stellenboschia­ phylogenetically (Fig. 1D) very closely related but distinct over na and T. gauchensis is ambiguous as the variation within the the five test loci. However, when applying the GCPSR concept T. gauchensis isolates more or less overlaps with the T. stellen­ to these isolates, we detect significant recombination between these isolates (Φ = < 0.001) (Fig. 6d). To obtain a minimum boschiana isolates, but the ecological and morphological criteria w support the proposition that these isolates belong to two distinct of four isolates, isolates of T. complicata and T. caesia were taxa. So when combining the MSC, ESC and PSC characteris­ added to this dataset. Multiple combinations of closely related tics into a CSC conclusion on speciation, we can conclude that Teratosphaeria species were tested, but only the combinations there is good support for the proposition that these isolates that included both the T. pluritubularis and T. profusa isolates showed significant recombination in their Φ (results not actually belong to two distinct taxa. w shown). When applying the CSC concept to clade D, the MSC, We can now also apply the CSC concept to the rest of the ESC and PSC characteristics all support the two species propo- clades, marked A to K, in Fig. 1 and 2. sition so we conclude that there is full support for the proposi- tion that T. pluritubularis and T. profusa represent two different Clade A taxa. These results conflict, as we have two morphologically contains 12 isolates previously identified as either belong- and ecologically distinct taxa that have very strong and recent ing to closely related Teratosphaeria nubilosa or T. pseudo­ family ties (as shown by the GCPSR test results). It is possible nubilosa (including the ex-type of T. nubilosa, CBS 116005) that these two species recently underwent speciation and that and were isolated from either Eucalyptus globulus or Eucalyp­ the loci selected for molecular comparison have not evolved tus sp. hosts from the same continent (Australia). These two sufficiently individually to provide higher phylogenetic support. species show very little morphological variation and cannot be separated by morphological characteristics. Differentiation Clade E of these species is based on SNPS in 29, seperatly anaysed contains eight isolates that were previously identified as gene regions, and on four nucleotide characters in the ITS Austroafricana parva (= T. parva) based on limited morphol- and six nucleotides in the Btub loci (Pérez et al. 2013). These ogy and ITS sequence data. Strains were isolated from both two species are phylogenetically distinct over the five test loci Eucalyptus and Protea hosts located on three different con- (Fig. 1) (which also includes the ITS and Btub loci). When ap- tinents (Australia, Egypt, Portugal, South Africa). Although plying the GCPSR concept to these 12 isolates, we detect no these isolates are morphologically very similar and have a significant recombination events shared between these isolates high degree of conservation in their ITS sequences, they are

(Φw = 0.07) (Fig. 6a). This lack of significant recombination does phylogenetically very distinct over the five test loci and even not mean that there are no shared recombination events. As form four to five subclades (indicating that this might actually the Φw value approximates 0.05, this indicates that there are be a species complex). When applying the GCPSR concept some shared insignificant recombination events between these to these isolates, we detect significant recombination between isolates. This example also shows the limitations of the GCPSR these isolates (Φw = < 0.001) (Fig. 6e). Multiple combinations of concept, which looks for significant recombination events in a these eight isolates were tested and significant recombination black and white way, ignoring borderline cases. When applying was detected within two separate groups. Group one consists the CSC concept to clade A, we conclude that there is reason- of CBS 119901, 116289, 122892 and CPC 12249, while group able support for the proposition that these isolates belong to two consists of CBS 122893 and 114761 (results not shown). different taxa even as the morphological and ecological criteria These results correspond to the phylogenetic tree (Fig. 1E) in are inconclusive as we have a clear phylogenetic separation which the isolates within these two groups are closely related. between these two Teratosphaeria taxa. When applying the CSC concept to clade E, we see only limited (MSC) support for the single species proposition and much Clade B stronger (ESC and PSC) support for the proposition that these contains three isolates that were previously classified as isolates actually represent four to five different taxa. But more either closely related to T. destructans (ex-type CBS 111370) detailed morphological future work is needed to confirm this or T. viscidus (ex-type CBS 124992), which were isolated proposition. from either Eucalyptus grandis or E. nitens, from two differ- ent continents (Indonesia and Australia). These two species Clade F can be separated by morphological characteristics (Andjic et contains six isolates that had previously been identified as al. 2007). Both species are phylogenetically (Fig. 1) distinct Austroafricana associata (= A. associata) based on limited mor- over the five test loci and when applying the GCPSR concept phological characters and ITS sequence data. These isolates to these isolates, we did not detect significant recombination were isolated from different Eucalyptus and Corymbia hosts in between the isolates (Φw = 1) (Fig. 6b). Because the Φw test Australia and they are phylogenetically highly distinct over the requires a minimum of four isolates, an isolate of T. eucalypti five test loci, and even form five to six subclades (indicating W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 37 that this might actually be a species complex). When applying Clade J the GCPSR concept to these isolates, we detect significant contains 24 isolates that were previously identified as either recombination between these isolates (Φ = < 0.001) (Fig. 6f). w belonging to Pseudocercospora gracilis (ex-type CBS 111189) Multiple combinations of these six isolates were tested and or Ps. eucalyptorum (ex-type CBS 114866). Both species this significant recombination was limited between two isolates were described from several Eucalyptus hosts. While Ps. eu­ (CBS 112224 and CPC 13113) (results not shown). When ap- calyptorum occurs in Europe, Africa and Australia, Ps. gracilis plying the CSC concept to clade F, we see only limited (MSC) is only known from South-East Asia. The two species are support for the single species proposition and much stronger morphologically distinct based on differences in their conidial (ESC and PSC) support for the proposition that these isolates morphology (Crous et al. 1989, Crous & Alfenas 1995) and actually represent five or six different taxa. But more detailed also phylogenetically distinguishable over the five tested loci morphological future work is needed to confirm this proposition. (Fig. 2J). When applying the GCPSR concept to these isolates, Clade G we detect no significant recombination between these isolates (Φ = 0.8) (Fig. 6j). When applying the CSC concept to clade J, contains two isolates that had previously been identified as w we see full (MSC, ESC and PSC) support for the two species, Pseudoteratosphaeria parkiiaffinis (ex-type CBS 120737) or so we conclude that there is full support for the proposition that Pet. stramenticola (ex-type CBS 118506). Both strains were P. eucalyptorum and P. gracilis represent two different taxa. isolated from Eucalyptus hosts (E. urophylla and Eucalyptus sp.) from South America (Venezuela and Brazil). Both species Clade K are morphologically similar to one another (Crous et al. 2006, 2007c), and are phylogenetically indistinguishable over the five contains 12 isolates previously identified as Zasmidium citri test loci (Fig. 1). When applying the GCPSR concept to these based on limited morphology and ITS sequence data. These isolates, we detect significant recombination between these two isolates where isolated from a mixed host range (Acacia, Musa, Citrus and Eucalyptus) from both South-East Asia and North isolates (Φw = 0.03) (Fig. 6g). Because the Φw test requires a minimum of four isolates, isolates of Pet. perpendicularis and America. These isolates are phylogenetically distinct over the Pet. gamsii were added to this dataset. Multiple combinations of five test loci and even form five to six subclades (indicating that closely related Pseudotera­tosphaeria species were tested, but this is actually a species complex) (Fig 2K). When applying only the combinations that included both the Pet. parkiiaffinis the GCPSR concept to these 12 isolates, we detect significant and Pet. stramenticola isolates showed significant recombina- recombination between these isolates (Φw = < 0.001) (Fig. 6k). tion in their Φw (results not shown). When applying the CSC However, Φw testing of multiple isolate combinations within the concept to clade G, we get full support for the proposition that 12 species dataset showed that the significant recombination these isolates actually belong to the same taxon. The CSC data in the pairwise homoplasy index were limited to four isolates suggests that these two isolates actually belong to the same most likely comprising two separate species (CPC 15289 / taxon and this could be confirmed with more detailed morpho- CPC 15296 and CPC 10522 / CBS 116366) (data not shown). logical work and these species are subsequently synonymised. When applying the CSC concept to clade K, we only see low (MSC) support for the proposition that these isolates actually Clade H belong to the same taxon, and much higher (PSC and ESC) contains six isolates that were previously identified as support for the proposition that these isolates actually belong either belonging to closely related Pallidocercospora thai­ to the different taxa, but more detailed morphological work is landica (ex-type CBS 120723) or P. colombiensis (ex-type needed to confirm this proposition. CBS 110967). All P. colombiensis isolates where isolated from E. urophylla in Colombia while the P. thailandica isolates had a mixed host range from Acacia and Musa to E. camaldulensis In the present study we introduced the Consolidated Species in Thailand, Brazil and Cameroon. Both species are morpho- Concept to distinguish species of Teratosphaeriaceae identified logically distinct (Crous et al. 2004c) but are phylogenetically via a polyphasic approach, combining morphological, ecological difficult to distinguish over the five tested loci (Fig. 2H). When and phylogenetic species concepts. We also tried to provide applying the GCPSR concept to these isolates, we detect no a better phylogenetic backbone for the Teratosphaeriaceae, which contains numerous plant and human pathogens, but also significant recombination among these isolates (Φw = 1.0) (Fig. 6h). When applying the CSC concept to clade H, we see no saprobes, endophytes, and rock-inhabiting fungi. Although we support for the single species proposition and stronger (ESC were able to introduce the Extremaceae and Neodevriesiaceae and MSC) support for the proposition that these isolates indeed to accommodate a group of extremophilic fungi that occur on represent two different taxa. a range of diverse substrates, we were unable to resolve the phylogenetic position of the Piedraiaceae in relation to the Clade I Teratosphaeriaceae. At a generic level, Mycosphaerella and contains three isolates previously identified as either closely Teratosphaeria are now well defined, with an additional 23 related (Crous et al. 2013) Pseudocercospora fori (ex-type genera being introduced for distinct phylogenetic lineages. CBS 113285) or Ps. natalensis (ex-type CBS 111069). Both Many lineages remain yet unresolved and are treated as either taxa were described from Eucalyptus species (E. grandis and Teratosphaeria sp. or Teratosphaeriaceae, awaiting further col- E. nitens) collected in South Africa. Morphologically, they are lections to hopefully add additional morphological characters distinguishable based on the number of conidial septa (Crous to these unnamed generic clades, many which remain poorly 1998, Hunter et al. 2004) but phylogenetically they are difficult understood, and greatly undersampled. to distinguish over the five tested loci (Fig. 2i). Application of the GCPSR concept, showed no significant recombination Acknowledgements We thank the technical staff, Arien van Iperen (cul- (Φw = 0.11) (Fig. 6i). Because the Φw test requires a minimum tures) and Marjan Vermaas (photographic plates) for their invaluable assis- of four isolates, an isolate of Ps. subulata was added to this tance. Numerous forest pathologists and mycologists have made material dataset. When applying the GCPSR concept to clade I, we see available to us for examination, without which this study would not have no support for the single species proposition and good support been possible. (ESC, PSC and MSC) for the proposition that these isolates indeed represent two different taxa. 38 Persoonia – Volume 33, 2014

REFERENCES Crous PW, Ferreira FA, Sutton BC. 1997. A comparison of the fungal genera Phaeophleospora and Kirramyces (coelomycetes). South African Journal Andjic V, Barber PA, Carnegie AJ, Pegg GS, Hardy GE, et al. 2007. Kirramy- of Botany 63: 111–115. ces viscida sp. nov, a new eucalypt pathogen from tropical Australia closely Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. 2004a. MycoBank: related to the serious leaf pathogen, Kirramyces destructans. Australasian an online initiative to launch mycology into the 21st century. Studies in Plant Pathology 36: 478–487. Mycology 50: 19–22. Andjic V, Whyte G, Hardy G, Burgess T. 2010. New Teratosphaeria species Crous PW, Groenewald JZ. 2005. Hosts, species and genotypes: opinions occurring on eucalypts in Australia. Fungal Diversity 43: 27–38. versus data. Australasian plant pathology 34: 463–470. Arzanlou M, Groenewald JZ, Fullerton RA, Abeln ECA, Carlier J, et al. 2008. Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ. 2004b. Multiple gene genealogies and phenotypic characters differentiate several Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs novel species of Mycosphaerella and related anamorphs on banana. occurring on Eucalyptus. Studies in Mycology 50: 195–214. Persoonia 20: 19–37. Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wing­ Barnes I, Crous PW, Wingfield BD, Wingfield MJ. 2004. Multigene phylo­ field MJ. 2004c. Cryptic speciation and host specificity among Mycosphae- genies reveal that red band needle blight of Pinus is caused by two distinct rella spp. occurring on Australian Acacia species grown as exotics in the species of Dothistroma, D. septosporum and D. pini. Studies in Mycology tropics. Studies in Mycology 50: 457–469. 50: 551–565. Crous PW, Groenewald JZ, Summerell BA, Wingfield BD, Wingfield MJ. Batzer JC, Arias MMD, Harrington TC, Gleason ML, Groenewald JZ, Crous 2009a. Co-occurring species of Teratosphaeria on Eucalyptus. Persoonia PW. 2008. Four species of Zygophiala (Schizothyriaceae, Capnodiales) 22: 38–48. are associated with the sooty blotch and flyspeck complex on apple. Myco­ Crous PW, Hong L, Wingfield MJ, Wingfield BD, Kang JC. 1999. Uwebraunia logia 100: 246–258. and Dissoconium, two morphologically similar anamorph genera with dif- Bensch K, Braun U, Groenewald JZ, Crous PW. 2012. The genus Clado- ferent teleomorph affinity. Sydowia 51: 155–166. sporium. Studies in Mycology 72: 1–401. Crous PW, Kang JC, Braun U. 2001. A phylogenetic redefinition of anamorph Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, genera in Mycosphaerella based on ITS rDNA sequence and morphology. et al. 2010. Species and ecological diversity within the Cladosporium Mycologia 93: 1081–1101. cladosporioides complex (, Capnodiales). Studies in Myco­ Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, Hoog GS de, Groe­ logy 67: 1–94. newald JZ. 2009b. Phylogenetic lineages in the Capnodiales. Studies in Boland DJ, Brooker IH, Chippendale GM, McDonald MW. 2006. Forest trees Mycology 64: 17–47. of Australia. CSIRO Publishing. Crous PW, Summerell BA, Carnegie AJ, Mohammed C, Himaman W, Groe- Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de. 2003. Phylogeny newald JZ. 2007c. Foliicolous Mycosphaerella spp. and their anamorphs and taxonomy of Cladosporium-like hyphomycetes, including Davidiella on Corymbia and Eucalyptus. Fungal Diversity 26: 143–185. gen. nov., the teleomorph of Cladosporium s.str. Mycological Progress Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Groenewald JZ. 2: 3–18. 2009c. Novel species of Mycosphaerellaceae and Teratosphaeriaceae. Burgess TI, Barber PA, Sufaati S, Xu D, Hardy GES, Dell B. 2007. Myco- Persoonia 23: 119–146. sphaerella spp. on Eucalyptus in Asia: new species, new hosts and new Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, et al. records. Fungal Diversity 24: 135–157. 2009d. Unravelling Mycosphaerella: do you believe in genera? Persoonia Butin H, Pehl L, Hoog GS de, Wollenzien U. 1996. Trimmatostroma abietis 23: 99–118. sp. nov. (hyphomycetes) and related species. Antonie Van Leeuwenhoek Crous PW, Summerell BA, Mostert L, Groenewald JZ. 2008. Host specificity 69: 203–209. and speciation of Mycosphaerella and Teratosphaeria species associated Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller JM, et al. 2009. A polyphasic with deaf spots of Proteaceae. Persoonia 20: 59–86. approach for studying Colletotrichum. Fungal Diversity 39: 183–204. Crous PW, Verkley GJM, Groenewald JZ, Samson RA (eds). 2009e. Fungal Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation Biodiversity. CBS Laboratory Manual Series 1: 1–269. Centraalbureau voor studies in filamentous ascomycetes. Mycologia 91: 553–556. Schimmelcultures, Utrecht, The Netherlands. Cheewangkoon R, Crous PW, Hyde KD, Groenewald JZ, To-anan C. 2008. Crous PW, Wingfield MJ. 1996. Species of Mycosphaerella and their ana- Species of Mycosphaerella and related anamorphs on Eucalyptus leaves morphs associated with leaf blotch disease of Eucalyptus in South Africa. from Thailand. Persoonia 21: 77–91. Mycologia 88: 441–458. Cortinas MN, Barnes I, Wingfield MJ, Wingfield BD, 2010. Genetic diversity Crous PW, Wingfield MJ, Mansilla J, Alfenas AC, Groenewald JZ. 2006. in the Eucalyptus stem pathogen Teratosphaeria zuluensis. Australasian Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs Plant Pathology 39: 383–393. occurring on Eucalyptus. Studies in Mycology 55: 99–131. Cortinas MN, Crous PW, Wingfield BD, Wingfield MJ. 2006. Multi-gene phylo- Crous PW, Wingfield MJ, Marasas WFO, Sutton BC. 1989. Pseudocerco- genies and phenotypic characters distinguish two species within the Col- spora eucalyptorum sp. nov. on Eucalyptus leaves. Mycological Research letogloeopsis zuluensis complex associated with Eucalyptus stem cankers. 93: 394–398. Studies in Mycology 55: 133–146. Crous PW, Wingfield MJ, Park RF. 1991. Mycosphaerella nubilosa, a syno­ Costello MJ, May RM, Stork NE. 2013. Can we name earth’s species before nym of M. molleriana. Mycological Research 95: 628–632. they go extinct? Science 339: 413–416. Darwin C. 1859. On the origin of species. London, John Murray. Crous PW. 1998. Mycosphaerella spp. and their anamorphs associated Dettman JR, Jacobson DJ, Taylor JW. 2003a. A multilocus genealogical ap- with leaf spot diseases of Eucalyptus. Mycologia Memoir 21: 1–170. APS proach to phylogenetic species recognition in the model eukaryote Neuro­ Press, MN, USA. spora. Evolution 57: 2703–2720. Crous PW. 2009. Taxonomy and phylogeny of the genus Mycosphaerella Dettman JR, Jacobson DJ, Turner E, Pringle A, Taylor JW. 2003b. Reproduc- and its anamorphs. Fungal Diversity 38: 1–24. tive isolation and phylogenetic divergence in Neurospora: Comparing meth- Crous PW, Alfenas AC. 1995. Mycosphaerella gracillis and other species ods of species recognition in a model eukaryote. Evolution 57: 2721–2741. of Mycosphaerella associated with leaf spot of Eucalyptus in Indonesia. Dugan FM, Braun U, Groenewald JZ, Crous PW. 2008. Morphological plastic- Mycologia 87: 121–126. ity in Cladosporium sphaerospermum. Persoonia 21: 9–16. Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ. 2000. The genus Egidi E, Hoog GS de, Isola D, Onofri S, Stielow B, Quaedvlieg W, Zucconi L, Mycosphaerella and its anamorphs. Studies in Mycology 45: 107–121. Selbmann L. 2014. Phylogeny and taxonomy of meristematic rock-inhabi­ Crous PW, Braun U. 2003. Mycosphaerella and its anamorphs: 1. Names ting black fungi in the Dothidemycetes based on multi-locus phylogenies. published in Cercospora and Passalora. CBS Biodiversity Series No 1. Fungal Diversity 65: 127–165. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands. Friedmann EI. 1982. Endolithic microorganisms in the Antarctic cold desert. Crous PW, Braun U, Groenewald JZ. 2007a. Mycosphaerella is polyphyletic. Science 215: 1045–1053. Studies in Mycology 58: 1–32. Frisvad JC, Samson RA. 2004. Polyphasic taxonomy of Penicillium subgenus Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, et al. 2013. Phy- Penicillium – A guide to identification of food and air-borne terverticillate logenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. penicillia and their mycotoxins. Studies in Mycology 49: 1–173. Crous PW, Braun U, Schubert K, Groenewald JZ. 2007b. Delimiting Clado- Gadgil PD, Dick M. 1983. Fungi Eucalyptorum novazelandiae: Septoria sporium from morphologically similar genera. Studies in Mycology 58: pulcherrima sp. nov. and Trimmatostroma bifarium sp. nov. New Zealand 33–56. Journal of Botany 21: 49–52. Crous PW, Ferreira FA, Alfenas A, Wingfield MJ. 1993. Mycosphaerella Geiser DM, Pitt JI, Taylor JW. 1998. Cryptic speciation and recombination suberosa associated with corky leaf spots on Eucalyptus in Brazil. Myco- in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the logia 85: 705–710. National Academy of Sciences of the United States of America 95: 388–393. W. Quaedvlieg et al.: Consolidated species concept in Teratosphaeriaceae 39

Gezahgne A, Roux J, Wingfield MJ. 2003. Diseases of exotic Eucalyptus O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC. 1998. Multiple evolutionary and Pinus species in Ethiopian plantations. South African Journal of Sci- origins of the fungus causing Panama disease of banana: Concordant ence 99: 29–33. evidence from nuclear and mitochondrial gene genealogies. Proceedings Goodwin SB, Dunkle LD, Zismann VL. 2001. Phylogenetic analysis of Cerco- of the National Academy of Sciences of the United States of America 95: spora and Mycosphaerella based on the internal transcribed spacer region 2044–2049. of ribosomal DNA. Phytopathology 91: 648–658. Old KM, Wingfield MJ, Yuan ZQ. 2003. A manual of diseases of eucalypts Grattapaglia D, Vaillancourt R, Shepherd M, Thumma B, Foley W, et al. 2012. in South-East Asia. Centre for International Forestry Research, Jakarta, Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal Indonesia. genus. Tree Genetics & Genomes 8: 463–508. Park RF, Keane PJ, Wingfield MJ, Crous PW. 2000. Fungal diseases of Groenewald JZ, Nakashima C, Nishikawa J, Shin H-D, Park J-H, et al. 2013. eucalypt foliage. In: Keane PJ, Kile GA, Podger FD, Brown BN (eds), Dis- Species concepts in Cercospora: spotting the weeds among the roses. eases and pathogens of eucalypts: 153–239. CSIRO Publishing, Australia. Studies in Mycology 75: 115–170. Pérez G, Burgess T, Slippers B, Carnegie A, Wingfield B, Wingfield M. Groenewald M, Groenewald JZ, Crous PW. 2005. Distinct species exist within 2013. Teratosphaeria pseudonubilosa sp. nov., a serious Eucalyptus leaf the morphotype. Phytopathology 95: 951–959. pathogen in the Teratosphaeria nubilosa species complex. Australasian Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor Plant Pathology 43: 67–77. and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Philippe H, Bryant D. 2006. A simple and robust statistical test for detecting Series 41: 95–98. the presence of recombination. Genetics 172: 2665–2681. Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifi­ Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N. 2008. cations through DNA barcodes. Proceedings of the Royal Society of London Adaptation of extremely halotolerant black yeast Hortaea werneckii to Series B-Biological Sciences 270: 313–321. increased osmolarity: a molecular perspective at a glance. Studies in Hennig W. 1966. Phylogenetic systematics. University of Illinois Press, Mycology 61: 67–75. Urbana, USA. Quaedvlieg W, Groenewald JZ, Jesús Yáñez-Morales M de, Crous PW. Hoog GS de, Guarro J, Gené J, Figueras MJ. 2000. Atlas of clinical fungi, 2012. DNA barcoding of Mycosphaerella species of quarantine importance 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; to Europe. Persoonia 29: 101–115. University Rovira i Virgili, Reus, Spain. Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, et al. Hunter GC, Crous PW, Carnegie AJ, Burgess TI, Wingfield MJ. 2011. My- 2011. Zymoseptoria gen. nov.: a new genus to accommodate Septoria-like cosphaerella and Teratosphaeria diseases of Eucalyptus; easily confused species occurring on graminicolous hosts. Persoonia 26: 57–69. and with serious consequences. Fungal Diversity 50: 145–166. Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Alfenas AC, et al. 2013. Hunter GC, Roux J, Wingfield BD, Crous PW, Wingfield MJ. 2004. Myco­ Sizing up Septoria. Studies in Mycology 75: 307–390. sphaerella species causing leaf disease in South African Eucalyptus Queiroz K de. 2007. Species concepts and species delimitation. Systematic plantations. Mycological Research 108: 672–681. Biology 56: 879–886. Hunter GC, Wingfield BD, Crous PW, Wingfield MJ. 2006. A multi-gene phylo- Rayner RW. 1970. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Surrey, UK. geny for species of Mycosphaerella occurring on Eucalyptus leaves. Stud- Ronquist F, Teslenko M, Mark P van der, Ayres DL, Darling A, et al. 2011. ies in Mycology 55: 147–161. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice Huson DH. 1998. SplitsTree: analyzing and visualizing evolutionary data. across a large model space. Systematic Biology 61: 539–542. Bioinformatics 14: 68–73. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, et al. 2009. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolution- Phylogeny of rock-inhabiting fungi related to . Studies in ary studies. Molecular Biology and Evolution 23: 254–267. Mycology 64: 123–133S7. Hyde KD, Jones EBG, Lui J-K, Ariyawansa H, Boehm E, et al. 2013. Families Ruibal C, Millanes AM, Hawksworth DL. 2011. Molecular phylogenetic studies of Dothideomycetes. Fungal Diversity 63: 1–313. on the lichenicolous Xanthoriicola physciae reveal Antarctic rock-inhabiting Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for fungi and Piedraia species among closest relatives in the Teratosphaeria­ rapid multiple sequence alignment based on fast Fourier transform. Nucleic ceae. IMA Fungus 2: 97–103. Acids Research 30: 3059–3066. Samson RA, Hong S-B, Frisvad JC. 2006. Old and new concepts of species Kohlmeyer J, Volkmann-Kohlmeyer B, Eriksson OE. 1999. Fungi on Juncus differentiation in Aspergillus. Medical Mycology 44: S133–S148. roemerianus 12. Two new species of Mycosphaerella and Paraphaeos- Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. 2012. phaeria (Ascomycotina). Botanica Marina 42: 505–511. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal Koufopanou V, Burt A, Taylor JW. 1997. Concordance of gene genealo- DNA barcode marker for fungi. Proceedings of the National Academy of gies reveals reproductive isolation in the pathogenic fungus Coccidioides Sciences of the United States of America 109: 6241–6246. immitis. Proceedings of the National Academy of Sciences of the United Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous States of America 94: 5478–5482. PW. 2006. A multigene phylogeny of the Dothideomycetes using four Leslie JF, Summerell BA. 2006. The Fusarium laboratory manual. Blackwell nuclear loci. Mycologia 98: 1041–1052. Publishing, Ames, USA. Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, et al. 2007. Li HY, Sun GY, Zhai XR, Batzer JC, Mayfield DA, Crous PW, Groenewald Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Cap- JZ, Gleason ML. 2012. Dissoconiaceae associated with sooty blotch and nodiales), with standardisation of methods for Cladosporium taxonomy and flyspeck on fruits in China and the United States. Persoonia 28: 113–125. diagnostics. Studies in Mycology 58: 105–156. Marincowitz S, Crous PW, Groenewald JZ, Wingfield MJ. 2008. Microfungi Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ. occurring on Proteaceae in the Fynbos. CBS Biodiversity Series 7: 1–166. 2004. Devriesia, a new hyphomycete genus to accommodate heat-resistant, CBS Fungal Biodiversity Centre, Utrecht, The Netherlands. cladosporium-like fungi. Canadian Journal of Botany 82: 914–926. Mason-Gamer RJ, Kellogg EA. 1996. Testing for phylogenetic conflict among Selbmann L, Hoog GS de, Zucconi L, Isola D, Ruisi S, et al. 2008. Drought molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology meets acid: three new genera in a dothidealean clade of extremotolerant 45: 524–545. fungi. Studies in Mycology 61: 1–20. Maxwell A, Dell B, Neumeister-Kemp HG, Hardy GEStJ. 2003. Mycosphae- Selbmann L, Hoog GS de, Mazzaglia A, Friedmann EI, Onofri S. 2005. Fungi rella species associated with Eucalyptus in south-western Australia: new at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud- species, new records and a key. Mycological Research 107: 351–359. ies in Mycology 51: 1–32. Mayr E. 1942. Systematics and the origin of species. Columbia University Slippers B, Stenlid J, Wingfield MJ. 2005. Emerging pathogens: fungal host Press, New York, USA. jumps following anthropogenic introduction. Trends in Ecology & Evolution Müller E, Oehrens E. 1982. On the genus Teratosphaeria (Ascomycetes). 20: 420–421. Sydowia 35: 38–42. Smith H, Wingfield MJ, Crous PW, Coutinho TA. 1996. Sphaeropsis sapinea Nosrati S, Esmailzadeh-Hosseini SA, Sarpeleh A. 2010. First report of and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. Penidiella strumelloidea as a pathogen of greenhouse cucumbers in Iran. in South Africa. South African Journal of Botany 62: 86–88. Phytoparasitica 38: 95–97. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, et al. 2007. Global Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. molecular surveillance reveals novel Fusarium head blight species and Evolutionary Biology Centre Uppsala University 2: 1–2. trichothecene toxin diversity. Fungal Genetics and Biology 44: 1191–1204. O’Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types Stewart EL, Liu ZW, Crous PW, Szabo LJ. 1999. Phylogenetic relationships within a monophyletic lineage of the fungus Fusarium are nonorthologous. among some cercosporoid anamorphs of Mycosphaerella based on rDNA Molecular Phylogenetics and Evolution 7: 103–116. sequence analysis. Mycological Research 103: 1491–1499. 40 Persoonia – Volume 33, 2014

Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, Valen L van. 1976. Ecological species, multispecies and oaks. Taxon 25: McDonald BA. 2012. Zymoseptoria ardabilia and Z. pseudotritici, two pro- 233–239. genitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Verkley GJM, Crous PW, Groenewald JZ, Braun U, Aptroot A. 2004. Myco- Mycosphaerella graminicola). Mycologia 104: 1397–1407. sphaerella punctiformis revisited: morphology, phylogeny, and epitypification Sutton BC, Ganapathi A. 1978. Trimmatostroma excentricum sp. nov. on of the type species of the genus Mycosphaerella (Dothideales, Ascomy- Eucalyptus from New-Zealand and Fiji. New Zealand Journal of Botany cota). Mycological Research 108: 1271–1282. 16: 529–533. Verkley GJM, Quaedvlieg W, Shin H-D, Crous PW. 2013. A new approach Swart L, Crous PW, Denman S, Palm ME. 1998. Fungi occurring on Protea­ to species delimitation in Septoria. Studies in Mycology 75: 213–305. ceae. South African Journal of Botany 64: 137–145. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of en- Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary zymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. genetics analysis (MEGA) software version 4.0. Molecular Biology and White TJ, Bruns T, Lee J, Taylor SB. 1990. Amplification and direct sequenc- Evolution 24: 1596–1599. ing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand Taylor JE, Crous PW. 2000. Fungi occurring on Proteaceae: new anamorphs DH, Sninsky JJ, White TJ (eds), PCR protocols: a guide to methods and for Teratosphaeria, Mycosphaerella and Lembosia, and other fungi as- applications: 315–322. Academic Press, San Diego, California, USA. sociated with leaf spots and cankers of proteaceous hosts. Mycological Wingfield MJ, Crous PW, Coutinho TA. 1996. A serious canker disease of Research 104: 618–636. Eucalyptus in South Africa caused by a new species of Coniothyrium. Taylor JE, Crous PW. 2001. Morphological variation and cultural characteris- Mycopathologia 136: 139–145. tics of Coniothyrium leucospermi associated with leaf spots of Proteaceae. Wingfield MJ, Crous PW, Peredo HL. 1995. A preliminary, annotated list Mycoscience 42: 265–271. of foliar pathogens of Eucalyptus spp. in Chile. South African Forestry Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, et al. 2000. Phylo- Journal 173: 53–57. genetic species recognition and species concepts in fungi. Fungal Genetics Wingfield MJ, Roux J, Coutinho T, Govender P, Wingfield BD. 2001. Planta­ and Biology 31: 21–32. tion disease and pest management in the next century. South African Turnbull JW. 2000. Economic and social importance of eucalypts. CSIRO Forestry Journal 190: 67–71. Publishing, Australia. Wright S. 1940. The new systematics. Oxford University Press, London, UK.