Bedrock Glg Plate

Total Page:16

File Type:pdf, Size:1020Kb

Bedrock Glg Plate Prepared and Published with the Support of COUNTY ATLAS SERIES THE MOWER COUNTY BOARD OF COMMISSIONERS AND ATLAS C-11, PART A MINNESOTA GEOLOGICAL SURVEY Plate 2—Bedrock Geology D.L. Southwick, Director THE MINNESOTA DEPARTMENT OF NATURAL RESOURCES, DIVISION OF WATERS ° R 18 W 93 00' B' R 17 W R 16 W 92°45' Omaq 56 1 6 6 1 6 1 Ogal R 15 W R 14 W 92°30' Odub er v Odub 16 i Dspl 00 R 1100 reek 11 UDOLPHO 1150 C 7 oot Omaq k BEDROCK GEOLOGY R ree 8 Ogal 1 Omaq PLEASANT C AA y AA' Waltham re Odub Dspl VALLEY a C Dclp By 1 Sargeant 63 T 104 N A' n so 90 in Omaq John H. Mossler ch b n o a R Br Dspl 1250 SARGEANT T 104 N 1100 1998 C Dspl e Omaq d a WALTHAM 12 218 r 20 RACINE Dclp 00 1 STRATIGRAPHIC COLUMN 1050 12 50 North Dclp U 31 R 36 31 31 iv 56 36 31 36 31 36 D 36 e Racine r Group, Natural Gamma Log 1250 Era Formation, Lithology Increasing count BB Unit N BB' o Series Member r 0 100 th R Omaq Unit Symbol o 6 API-G units 6 b 1 6 1 Hydrostratigraphic LANSING 1 erts 1 6 Thickness (in feet) Lansing Creek 6 1 43°45' Dclp 7 Bear 43°45' 2 Ostrander Fork Member Kwos Dspl Creek Upper Omaq 250 Iron Hill Fe Fe 20–35 DEXTER Windrow 2 1 (<100 m.y.) Kwih Brownsdale Formation Cretaceous Member Omaq MESOZOIC D 1050 Dclp Lithograph Dclp k U ee City Dcuu Cr Dspl Formation k r Up to 50 1000 ree GRAND ea Odub Wolf C B Dclc MEADOW th Fork Ramsey ou 1100 S Coralville Mill Pond Creek T 103 N T 103 N Deer Formation Dspl D RED ROCK Dexter Grand 57–61 Ogal Dcum 16 16 Dcum U U Meadow D k 1050 1100 16 e 20 e Hinkle & Mur r Dcum phy 1150 C Dclc Eagle CC C CC' re Center Mbrs 25–35 e 1050 k U D U Cedar Valley Group ins FRANKFORD Chickasaw 1100 D b Dclc Dclp b Member o Dclp Maple View D Dspl 15–43 1150 8 Dspl Bassett 36 Little Cedar Formation 31 31 1200 14 Member 36 31 36 31 36 31 40–70 1100 1100 Dclc Dclp Pinicon 16 90 1250 Dclc Dcum Elkton Ridge 6 1 6 1 6 1 6 1 6 1 Formation 20–47 90 Middle Devonian (387–374 m.y.) ek re r C ee er 3 Dclc Dclp D Riv Dcum Spillville Dspl 1050 Formation Dclc 21–84 3 Dcum Root Wapsipinicon Group DD 1000 DD' Austin 56 Dclc Dcum Branch 1050 O 1000 7 r c h 105 South a Maquoketa r 3 Omaq T 102 N d CLAYTON 1100 T 102 N C Formation AUSTIN 36–85 r C Dclp e Dcum e MARSHALL k BENNINGTON Dubuque Dcuu 3 Odub Formation 23–40 Dclp 1150 D U Dcuu 1050 Dclc 4 Dcuu 1050 1200 Varco er Rose v er WINDOM i U er iv Creek 4 4 R D iv R R a R o w s e Creek o a Stewartville Dcum I w r Io Formation e 218 p 75–85 31 ar 31 36 31 36 31 p 36 31 36 Dspl d 36 1100 e Dclc U C EE EE' Group 56 7 Dclp Ogal 6 1 6 Dclc 1 6 nch 1 a 6 1 6 r 1 e tl Galena Prosser B it L h Limestone Adams t 1000 r 40–50 o 1000 Dcum N Dclc 5 Dclc Taopi 5 1000 LE ROY 11 Cummings- ville 7 Dspl U Formation 70–75 p p 950 er 950 Dcum Little U LYLE 5 5 Fe Fe T 101 N NEVADA D T 101 N Upper Ordovician (458–444 m.y.) Decorah 1000 Dcum Dcuu Dcuu LODI Shale 950 Cedar Dclp Dcum Dcum 56 45–50 105 Dcuu Odpg Dcum Platteville Iowa 14 Dcum Formation 20–30 FF W R FF' Glenwood Ph o iver Ph o 900 Dclc 5–6 d 900 Formation Ph b ur 1100 Fe Fe y C R O i reek v Dcuu er t 0 ter 105 6 Creek 6 6 St. Peter Ostp Dcuu Sandstone Le Roy 70–80 Lyle 31 31 36 7 36 31 Dcum 31 36 31 36 C' 36 Dclc 43°30' 43°30' 93°00' R 18 W B R 17 W A R 16 W 92°45' R 15 W R 14 W 92°30' Digital base modified from 1990 Census TIGER/Line Files SCALE 1:100 000 Cartography by Joyce Meints and Philip Heywood of U.S. Bureau of the Census (source scale 1:100,000); Graphic design by Philip Heywood 1 0 12345 MILES county border files modified from Minnesota Department of Transportation files; digital base annotation by Minnesota 1 0 12345 6 7 8 KILOMETERS Shakopee Geological Survey Formation Universal Transverse Mercator Projection, grid zone 15 1927 North American Datum INTRODUCTION The Bassett Member, though very thick bedded to massive, is jointed and pump sand). Also, a low-permeability regional confining layer at the bottom Many zones of well-cemented siltstone and shale may reduce yields of The map on this plate shows the bedrock formations that crop out or lie immediately contains a few large, open vugs. This relatively permeable unit forms a minor of the formation—found farther north and west in the state—is missing in wells developed in the Mt. Simon. The effect of Precambrian bedrock highs beneath Quaternary sediments. The information used to create this map was compiled from aquifer (J.A. Green, pers. commun., 1997). The medial limestone member of Mower County (Woodward, 1986). Confining layers may be present locally. and structure on unit thickness is uncertain, but they may dramatically reduce Opdc Pinicon Ridge, which farther south in Iowa is broken, possibly brecciated, and Opdc Prairie du Chien Group (Lower Ordovician). the amount of sandstone available for well development: to the south in Cerro PALEOZOIC examination of exposures of bedrock and from subsurface data, including water well drillers' 320–340 cavernous (Libra and Hallberg, 1985), may form an aquifer. Shaly dolostone Shakopee Formation—Dense to finely crystalline, light-gray to light-olive-gray Gordo County, Iowa, the Mt. Simon is absent locally due to nondeposition logs, geologists' descriptions of water-well cuttings, wireline geophysical logs, engineering drawings, and geotechnical logs. Unpublished sources that were consulted include geologic and shale in the upper and lower parts of Pinicon Ridge have been interpreted dolostone. Locally sandy (medium to coarse quartz sand grains); siliceous (Hershey and others, 1970). Prairie du Chien Group field notes by R.E. Sloan (1954–1960), D.W. Kohls (1959–1960), Nikola Prokopovich to be confining units (Libra and Hallberg, 1985). oolites present locally. Oolitic dolostone possesses moldic porosity in places. Fond du Lac and Solor Church Formations (Middle Proterozoic)—Not penetrated (1955), and W.E. Parham (1966). J.A. Green, Minnesota Department of Natural Resources, Dspl Spillville Formation (Middle Devonian)—Finely crystalline, light-brown to grayish- Minor amount of white chert. Thickness about 150 ft. by any wells drilled in Mower County. Interpreted from adjacent areas to orange dolostone; abundant fossil-moldic porosity; dog-tooth calcite spar in Oneota Dolomite—Very light gray to yellowish-gray, finely crystalline, consist of red-brown siltstone, sandstone, and shale having low permeability. Oneota and G.N. Meyer provided the author with locations and descriptions of outcrops and sinkholes. Dolomite For further information on the bedrock geology of Mower County, see Mossler (1998). larger vugs. Very thick to thin bedded. Basal few feet are sandy to silty and nonfossiliferous. Thickness, about 170 ft. may contain minor amounts of shale or shaly dolostone. Middle to upper parts Coon Valley Member—Heterolithic basal unit; medium- to coarse-grained quartzose Lower Ordovician (505–478 m.y.) of unit have thin-bedded, light-olive-gray, dense dolomitic limestone. Unit sandstone, very fine grained, feldspathic sandstone and siltstone, and sandy to Contact—Approximately located; generally concealed. DESCRIPTION OF MAP UNITS thickness is as much as 78 ft in eastern Mower County; unit thins in western silty dolostone. Windrow Formation (Upper Cretaceous?)—The Windrow Formation unconformably Mower County, where it is 21–66 ft thick. Most permeability and porosity in the Prairie du Chien is related to fractures D Fault—Inferred; U, upthrown side, D, downthrown side. overlies Devonian carbonate rocks; the contact is generally marked by a zone Fracture porosity and permeability dominate upper part of unit; fossil- (joints, bedding planes), but intergranular porosity is present in sandstone U of weathered rubbly rock several feet thick at the top. The mapped extent of moldic, vuggy porosity is prominent in lower part. The basal shaly dolostone beds. Fractures near the sub–St. Peter unconformity are possibly solution Anticline—Showing trace of axial surface and plunge of fold. the two members as shown on the map and sections is approximate. of low permeability may function as confining unit locally, as studies suggest enhanced through weathering that occurred prior to deposition of the St. Peter. Coon Valley Member Kwos Ostrander Member—Conglomerate consisting of rounded pebble-sized clasts of it may in northern Iowa (Witzke and Bunker, 1985); however, gamma logs Strongly cemented, very fine grained sandstone and siltstone beds in the basal Syncline—Showing trace of axial surface and plunge of fold. quartz and chert set in matrix of fine to coarse quartz sand grains.
Recommended publications
  • Stratographic Coloumn of Iowa
    Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn
    [Show full text]
  • Water Flow in the Silurian-Devonian Aquifer System, Johnson County, Iowa
    Hydrogeology and Simulation of Ground- Water Flow in the Silurian-Devonian Aquifer System, Johnson County, Iowa By Patrick Tucci (U.S. Geological Survey) and Robert M. McKay (Iowa Department of Natural Resources, Iowa Geological Survey) Prepared in cooperation with The Iowa Department of Natural Resources – Water Supply Bureau City of Iowa City Johnson County Board of Supervisors City of Coralville The University of Iowa City of North Liberty City of Solon Scientific Investigations Report 2005–5266 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Tucci, Patrick and McKay, Robert, 2006, Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa: U.S. Geological Survey, Scientific Investigations
    [Show full text]
  • An Examination of the Devonian Bedrock and Overlying Pleistocene Sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa
    FromFFrroomm OceanOOcceeaann tottoo Ice:IIccee:: AnAAnn examinationeexxaammiinnaattiioonn ofooff thetthhee DevonianDDeevvoonniiaann bedrockbbeeddrroocckk andaanndd overlyingoovveerrllyyiinngg PleistocenePPlleeiissttoocceennee sedimentssseeddiimmeennttss ataatt MesserlyMMeesssseerrllyy &&& MorganMMoorrggaann Quarries,QQuuaarrrriieess,, BlackBBllaacckk HawkHHaawwkk County,CCoouunnttyy,, IowaIIoowwaa Geological Society of Iowa ______________________________________ April 24, 2004 Guidebook 75 Cover photograph : University of Northern Iowa Professor and field trip leader Dr. Jim Walters points to a stromatoporoid-rich bed in the Osage Springs Member of the Lithograph City Formation at the Messerly Quarry, the first stop of this field trip From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa prepared and led by: James C. Walters Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 John R. Groves Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 Sherman Lundy 4668 Summer St. Burlington IA 52601 with contributions by: Bill J. Bunker Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 Brian J. Witzke Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 April 24, 2004 Geological Society of Iowa Guidebook 75 i ii Geological Society of Iowa TABLE OF CONTENTS From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene
    [Show full text]
  • Karst Landscape Units of Houston and Winona Counties, GW-06 Report
    Karst Landscape Units of Houston and Winona Counties Groundwater Atlas Program: GW-06 Report Accompanies two map plates: Plate 1, Karst Landscape Units of Houston County Plate 2, Karst Landscape Units of Winona County St. Paul 2021 mndnr.gov/groundwatermapping This report, karst features, dye tracing, and springs can be found at the following link. mndnr.gov/groundwatermapping > Springs, Springsheds, and Karst Citation Green, J.A., and Barry, J.D., 2021, Karst landscape units of Houston and Winona counties: Minnesota Department of Natural Resources, Groundwater Atlas Program, GW-06, report, 2 pls., GIS files. Author/GIS Jeffrey A. Green and John D. Barry, Cartographer Holly Johnson, Editor/Graphics Ruth MacDonald. Acknowledgments The authors would like to thank Julia Steenberg and Tony Runkel of the Minnesota Geological Survey; Bob Tipping of the Minnesota Department of Health; E. Calvin Alexander, Jr. of the University of Minnesota; and Ross Dunsmoor of Winona County Environmental Services who provided valuable input on technical aspects of this report. Most importantly, we would like to thank the many Houston and Winona county landowners who allowed access to their property to inventory sinkholes, stream sinks, and springs and to conduct fluorescent dye tracing and spring monitoring. Without their cooperation, this effort would not have been possible. Technical reference Maps were compiled and generated in a geographic information system. Digital data products are available from the Minnesota Department of Natural Resources (DNR) Groundwater Atlas Program. Maps were prepared from DNR and other publicly available information. Every reasonable effort has been made to ensure the accuracy of the data on which the report and map interpretations were based.
    [Show full text]
  • Ground-Water Recharge and Flowpaths Near the Edge of the Decorah-Platteville-Glenwood Confining Unit, Rochester, Minnesota
    3UHSDUHGLQFRRSHUDWLRQZLWKWKHFLW\RI5RFKHVWHU0LQQHVRWD Ground-Water Recharge and Flowpaths Near the Edge of the Decorah-Platteville-Glenwood Confining Unit, Rochester, Minnesota :DWHU5HVRXUFHV,QYHVWLJDWLRQV5HSRUW¥ 86'HSDUWPHQWRIWKH,QWHULRU 86*HRORJLFDO6XUYH\ U.S. Department of the Interior U.S. Geological Survey Ground-Water Recharge and Flowpaths Near the Edge of the Decorah-Platteville-Glenwood Confining Unit, Rochester, Minnesota By Richard J. Lindgren Water-Resources Investigations Report 00-4215 Prepared in cooperation with the City of Rochester, Minnesota U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director Use of trade, product, or firm names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government. Mounds View, Minnesota, 2001 For additional information write to: District Chief U.S. Geological Survey, WRD 2280 Woodale Drive Mounds View MN 55112 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Federal Center Denver CO 80225 For more information on the USGS in Minnesota, you may connect to the Minnesota District home page at http://mn.water.usgs.gov For more information n all USGS reports and products (including maps mages, and computerized data), call 1-888-ASK-USGS Water-Resources Investigations Report 00-4215 CONTENTS Abstract..................................................................................................................................................................................
    [Show full text]
  • Geologic Atlas of Mower County, Minnesota
    STATE OF MINNESOTA COUNTY ATLAS SERIES DEPARTMENT OF NATURAL RESOURCES ATLAS C–11, PART B, PLATE 7 OF 10 DIVISION OF WATERS Bedrock Hydrogeology 92°45' R 18 W 93°00' R 17 W R 16 W BEDROCK HYDROGEOLOGY CROSS-SECTION EXPLANATION Dsom 56 6 6 1 6 1 1 Recent—Water entered the ground since 1953 (10 or more tritium units). Ogal 92°30' R 15 W R 14 W By Well screen color shows recent water. Odub er 6000 Mixed—Water is a mixture of recent and vintage waters Odub iv Dsom 16 R reek (0.8 to less than 10 tritium units). Well screen color shows mixed water. UDOLPHO 2500 C Moira Campion 7 ot Dsom ek o re 818,000 Ogal Dsom R C ’ Vintage—Water entered the ground before 1953 (less than 0.8 tritium units). 1 PLEASANT y A e 2002 Well screen color shows vintage water. A 1240 r Odub Waltham VALLEY 1260 a Dsom C Dcvl Very old—Water with carbon-14 age greater than 10,000 years before present. 16,000 63 Well screen color shows vintage water. 1 Sargeant T 104 N son 90 in Dsom b Potentiometric Contour Cross-Section Symbols ch o In feet above mean sea level. 1240 n R Waltham a If shown, ground-water age in years, Br Dsom I-90 Contour interval is 20 feet. Arrow 18,000 1220 1220 T 104 N Robinson indicates general direction of ground- estimated by carbon-14 SARGEANT Creek ( ) U.S. 63 ’ A Cedar River A water movement Dsom SV Vintage water shallower than mixed water C Dsom e 1300 1300 Upper Cedar Valley d WALTHAM RACINE Spring associated with stream a 20 Dcvl 218 r 1240 SV Lower Cedar Valley 1 6000 Ground-water flow into the cross section 1200 2500 1200 Spillville-Maquoketa
    [Show full text]
  • IC-39 Geology and Ground Water Resources of Floyd and Polk
    INFORMATIONCIRCULAR~ ~ GEOLOGY AND GROUND-WATER RESOURCES OF FLOYD AND POLK COUNTIES, GEORGIA by Charles W. Cressler THE GEOLOGICAL SURVEY OF GEORGIA DEPARTMENT OF MINES, MINING AND GEOLOGY Jesse H. Auvil, Jr. State Geologist and Director ATLANTA 1970 For convenience in selecting our reports from your bookshelves, they will be color-keyed across the spine by subject as follows: Red Valley & Ridge mapping and structural geology Dk. Purple Piedmont & Blue Ridge mapping and struc- tural geology Maroon Coastal Plain mapping and stratigraphy Lt. Green Paleontology Lt. Blue Coastal Zone studies Dk. Green Geochemical and Geophysical studies Dk. Blue Hydrology Olive Economic geology Mining directory Yellow Environmental studies Engineering studies Dk. Orange Bibliographies and lists of publications Brown Petroleum and natural gas Black Field trip guidebooks. Colors have been selected at random, and will be aug­ mented as new subjects are published. GEOLOGY AND GROUND-WATER RESOURCES OF FLOYD AND POLK COUNTIES, G EORG IA by Charles W. Cressler THE GEOLOGICAL SURVEY OF GEORGIA DEPARTMENT OF MINES, MINING AND GEOLOGY PREPARED IN COOPERATION WITH THE U.S. GEOLOGICAL SURVEY ATLANTA 1970 CONTENTS Page No. Abstract . 1 Introduction 1 Location and extent of area . 1 Physiography, topography, and climate 2 Purpose, scope, and methods of investigation 2 Well and spring numbering system 3 Previous investigations . 3 Acknowledgments . 3 Geologic formations and their water-bearing properties 4 Cambrian System . 4 Shady Dolomite 4 Rome Formation . 6 Conasauga Formation 9 Cambro-Ordovician Sediments . 13 Knox Group ..... 13 Copper Ridge Dolomite 13 Chepultepec Dolomite . 13 Longview Limestone 13 Ordovician System . 16 Newala Limestone 16 Lenoir Limestone 20 Mosheim Member 20 Deaton Member 22 Rockmart Slate 23 Other formations of Ordovician age .
    [Show full text]
  • Paleozoic Lithostratigraphic Nomenclature for Minnesota
    MINNESOTA GEOLOGICAL SURVEY PRISCILLA C. GREW, Director PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA John H. Mossier Report of Investigations 36 ISSN 0076-9177 UNIVERSITY OF MINNESOTA Saint Paul - 1987 PALEOZOIC LITHOSTRATIGRAPHIC NOMENCLATURE FOR MINNESOTA CONTENTS Abstract. Structural and sedimentological framework • Cambrian System • 2 Mt. Simon Sandstone. 2 Eau Claire Formation • 6 Galesville Sandstone • 8 Ironton Sandstone. 9 Franconia Formation. 9 St. Lawrence Formation. 11 Jordan Standstone. 12 Ordovician System. 13 Prairie du Chien Group. 14 Oneota Dolomite. 14 Shakopee Formation. 15 St. Peter Sandstone. 17 Glenwood Formation. 17 Platteville Formation. 18 Decorah Shale. 19 Galena Group • 22 Cummings ville Formation. 22 Prosser Limestone. 23 Stewartville Formation • 24 Dubuque Formation. 24 Maquoketa Formation. 25 Devonian System • 25 Spillville Formation • 26 Wapsipinicon Formation 26 Cedar Valley Formation • 26 Northwestern Minnesota. 28 Winnipeg Formation • 28 Red River Formation. 29 Acknowledgments • 30 References cited. 30 Appendix--Principal gamma logs used to construct the composite gamma log illustrated on Plate 1. 36 ILLUSTRATIONS Plate 1 • Paleozoic lithostratigraphic nomenclature for Minnesota • .in pocket Figure 1. Paleogeographic maps of southeastern Minnesota • 3 2. Map showing locations of outcrops, type sections, and cores, southeastern t1innesota • 4 3. Upper Cambrian stratigraphic nomenclature 7 iii Figure 4. Lower Ordovician stratigraphic nomenclature • • • • 14 5. Upper Ordovician stratigraphic nomenclature 20 6. Middle Devonian stratigraphic nomenclature. • • . • • 27 7. Map showing locations of cores and cuttings in northwestern Minnesota • • • • • • • • • • • • • • • • • • 29 TABLE Table 1. Representative cores in Upper Cambrian formations •••••• 5 The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national orgin, handicap, age, veteran status, or sexual orientation.
    [Show full text]
  • Geologic Map of Minnesota Bedrock Geology
    STATE MAP SERIES S-21 Bedrock Geology GEOLOGIC MAP OF MINNESOTA BEDROCK GEOLOGY Compiled by Mark A. Jirsa, Terrence J. Boerboom, V.W. Chandler, John H. Mossler, Anthony C. Runkel, and Dale R. Setterholm 2011 INTRODUCTION This map is a new construct that incorporates existing geologic maps where prior mappers had adequate ground control, and new interpretations based on drill hole, geophysical, and unpublished data where they did not. The interpretation differs significantly from previous maps to reflect new data and accommodate scale. It portrays our current geologic understanding of the temporal and geographic distribution of units within major Precambrian terranes (Fig. 1), and of the Phanerozoic strata. The western part of the map is inferred largely from geophysical maps, anchored locally by drilling. In many places, contacts are drawn between units of the same or similar apparent rock type (and same unit label); these are recognized as geometrically distinct, though geophysically or lithologically similar. Digital files corresponding to this map allow removal of Cretaceous, Paleozoic, and some parts of Mesoproterozoic strata to reveal an interpretation of the underlying Precambrian bedrock. DESCRIPTION OF MAP UNITS PHANEROZOIC ROCKS MESOZOIC Cretaceous Ku Undifferentiated—Conglomerate, sandstone, mudstone, shale, marlstone, siltstone, and minor lignite, deposited in marine and non-marine settings; likely Cenomanian to Campanian age. Unit outline is the product of contouring the stratigraphic top and base, from which an isopach grid was created. Because the distribution is patchy, unit boundaries were drawn from the gridded data to represent locations where more than 25 feet (8 meters) of thickness occurs. As a result, many areas outside of the unit boundaries may be overlain by thin Cretaceous strata and the unit is depicted without a contact line.
    [Show full text]
  • Origin and Configuration of the Present-Day Land Surface, Goodhue County, Minnesota
    AN ABSTRACT OF THE THESIS OF Constance Jefferson Sansome for the degree of D0c_t.0r_0f__Phii0s.22hy. in Ge.ol.o___ presented on April 2 5, 19 86. Title: Origin and Configuration of the Present-Day Land _u r__ac e___G ood hu e_C oun_____M inn es o__a,,.,- " Abstract approved: Redacted for Privacy J . G. \J ojti n s o n This study describes the surface configuration of Goodhue County and attempts to determine the origin of that configuration. The research has a descriptive portion—an objective examination of land surface configuration and the composition and distribution of rock material underlying that surface, and a theoretical portion—a speculative examination of the factors controlling the land surface configuration and discussion of the probable origin of that c onf igurat ion. I found that the configuration of any land surface is described in terms of drainage and topography and that the origin and age of any land surface is determined by an examination of the materials making up that surface, the present and past processes acting on that surface, and the amount of time available for the processes to act. I also found that the age of land surface configuration is distinct from the age of the underlying materials and that the degree to which configuration of any land surface is dependent on structure, process, and time is dependent on the scale of the investigation and the surface itself. The surface of Goodhue County ranges in elevation from approximately 670 feet to 1275 feet. The southern two- thirds of the county is a broad upland; the northern third of the county is slightly lower and more dissected.
    [Show full text]
  • Creation of a Map of Paleozoic Bedrock Springsheds in Southeast Minnesota
    CREATION OF A MAP OF PALEOZOIC BEDROCK SPRINGSHEDS IN SOUTHEAST MINNESOTA Jeffrey A. Green Minnesota Department of Natural Resources, Division of Ecological & Water Resources, 3555 9th St. NW Suite 350, Rochester, MN, U.S.A., 55904, [email protected] E. Calvin Alexander, Jr. Morse-Alumni Professor Emeritus, Earth Sciences Department, University of Minnesota, 310 Pillsbury Dr. SE, Minneapolis, MN 55455, [email protected] Abstract hundreds-of-meters to kilometers-per-day range in all Springs are groundwater discharge points that serve of the bedrock aquifers tested. The width and duration as vital coldwater sources for streams in southeast of tails of breakthrough curves in these conduit flow Minnesota. The springs generally emanate from systems vary with the bedrock aquifers. The Galena Paleozoic carbonate and siliciclastic bedrock aquifers. Group has Full Widths at Half Maximums (FWHMs) of Use of systematic dye tracing began in the 1970s and a few hours and tails that are down to background in a continues through the present as a standard method for few days. The Prairie du Chien Group also has FWHMs investigating karst hydrology and to map springsheds. of hours but has tails that continue for weeks. The St. The work was accelerated in 2007 because of increased Lawrence and Lone Rock Formations have FWHMs of funding from the State of Minnesota’s Environment and months to years. Natural Resources Trust Fund. A compilation springshed map of dye traces conducted over the last several decades Introduction has been assembled for the region. Springs are natural discharge points for groundwater systems. They provide baseflow for streams and are In southeast Minnesota, the springs are the outlets of critical sources of cold, relatively constant-temperature conduit flow systems in both carbonate and siliciclastic water for trout streams.
    [Show full text]
  • Proceedings of the Tenth Conference on Fossil Resources May 13-15, 2014 Rapid City, South Dakota
    PROCEEDINGS OF THE TENTH CONFERENCE ON FOSSIL RESOURCES May 13-15, 2014 Rapid City, South Dakota Edited by Vincent L. Santucci, Gregory A. Liggett, Barbara A. Beasley, H. Gregory McDonald and Justin Tweet Dakoterra Vol. 6 Eocene-Oligocene rocks in Badlands National Park, South Dakoata. Table of Contents Dedication ....................................................................................8 Introduction ..................................................................................9 Presentation Abstracts *Preserving THE PYGMY MAMMOTH: TWENTY YEARS OF collaboration BETWEEN CHANNEL ISLANDS National PARK AND THE MAMMOTH SITE OF HOT SPRINGS, S. D., INC. LARRY D. AGENBROAD, MONICA M. BUGBEE, DON P. MORRIS and W. JUSTIN WILKINS .......................10 PERMITS AND PALEONTOLOGY ON BLM COLORADO: RESULTS FROM 2009 TO 2013 HARLEY J. ARMSTRONG .....................................................................................................................................10 DEVIL’S COULEE DINOSAUR EGG SITE AND THE WILLOW CREEK HOODOOS: HOW SITE VARIABLES INFLUENCE DECISIONS MADE REGARDING PUBLIC ACCESS AND USE AT TWO DESIGNATED PROVINCIAL HISTORIC SITES IN ALBERTA, CANADA JENNIFER M. BANCESCU ...................................................................................................................................12 USDA FOREST SERVICE PALEONTOLOGY PASSPORT IN TIME PROGRAM: COST EFFECTIVE WAY TO GET FEDERAL PALEONTOLOGY PROJECTS COMPLETED BARBARA A. BEASLEY and SALLY SHELTON ...................................................................................................17
    [Show full text]