Full Text (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Full Text (Pdf) Journal of Biomechanics 67 (2018) 91–97 Contents lists available at ScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com Intraoperative and biomechanical studies of human vastus lateralis and vastus medialis sarcomere length operating range ⇑ Jongsang Son a, Andy Indresano b, Kristin Sheppard b, Samuel R. Ward b,c, Richard L. Lieber a,b,d, a Shirley Ryan AbilityLab (formerly Rehabilitation Institute of Chicago), IL, United States b Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, United States c Department of Radiology, University of California San Diego, La Jolla, CA, United States d Research Service, Hines V.A. Hospital, Maywood, IL, United States article info abstract Article history: The vast majority of musculoskeletal models are not validated against primary experimental data. Accepted 26 November 2017 Conversely, most human experimental measurements are not explained theoretically using models to provide a mechanistic understanding of experimental results. Here we present a study with both primary human data and primary modeling data. Intraoperative sarcomere length was measured on the human Keywords: vastus lateralis (VL) and vastus medialis (VM) muscles (n = 8) by laser diffraction. These data were com- Muscle physiology pared to a biomechanical model based on muscle architecture and moment arms obtained independently Sarcomere length from cadaveric specimens (n = 9). Measured VL sarcomere length ranged from about 3.2 mm with the Biomechanical modeling knee flexed to 45° to 3.8 mm with the knee flexed to 90°. These values were remarkably close to theoret- Patellar pain ical predictions. Measured VM sarcomere length ranged from 3.6 mm with the knee flexed to 45° to 4.1 mm with the knee flexed to 90°. These values were dramatically longer than theoretical predictions. Our measured sarcomere length values suggest that human vasti may have differing functions with regard to knee extension and patellar stabilization. This report underscores the importance of validating experi- mental data to theoretical models and vice versa. Published by Elsevier Ltd. 1. Introduction what is known about human muscle fiber types and plasticity is primarily known about the vastus lateralis muscle. Elucidating the design and function of human skeletal muscles A detailed understanding of the design and function of human is required to understand normal function, pathological conditions muscles in hampered by the lack of tools available to provide the and suggest surgical interventions to recover function after injury types of detailed studies in humans that have often been per- (Fridén and Lieber, 2002; Gans, 1982; Lieber and Friden, 2000; formed in animal models. One of the most important parameters Lieber and Ward, 2011). Across the human body, it could be argued needed to understand the design and function of muscle is sarcom- that quadriceps muscles are the most important functional muscle ere length (Lieber and Friden, 2000; Lieber and Ward, 2011). The group. Their function is obviously critical for locomotion and muscle sarcomere is the functional unit of force generation in opposing gravity (Perry, 1992). However, their strength is also skeletal muscle and its length is an excellent predictor of active related to clinical problems such as patellar pain and tracking muscle force (Edman, 1966; Gordon et al., 1966; Winters et al., and locomotion efficiency and there is even evidence that quadri- 2011). Our laboratory has published sarcomere length values in ceps strength loss can predict the onset of osteoarthritis (Mahir humans for over twenty years (Lieber et al., 1994) and sarcomere et al., 2016). At the tissue level, human vastus lateralis muscle lengths in animal models for over thirty years (Lieber and Baskin, biopsies represent the gold standard for study of human muscle 1983; Lieber et al., 1983), primarily using laser diffraction (Bergstrom, 1975; Lexell et al., 1986; Sjöström et al., 1982; approaches (Lieber et al., 1984). Laser diffraction provides a robust Willan et al., 2002) so it is not an understatement to state that sarcomere length value because it spatially averages across hun- dreds of thousands of sarcomeres (see Table 1 of reference Young et al., 2014) to yield a single value with a resolution of 5–10 nm. In cadaveric samples, sarcomere length measurements across the ⇑ Corresponding author at: Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL 60611, United States. muscle can provide sarcomere length estimates for the entire mus- E-mail address: [email protected] (R.L. Lieber). cle (Takahashi et al., 2007) while, in patients, sarcomere length is https://doi.org/10.1016/j.jbiomech.2017.11.038 0021-9290/Published by Elsevier Ltd. 92 J. Son et al. / Journal of Biomechanics 67 (2018) 91–97 typically measured only in single muscle region exposed based on of moment arm and quadriceps muscle architecture (n = 9). In surgical indications (Lieber et al., 1994; Ward et al., 2009). addition to the VL and VM, rectus femoris (RF) and vastus inter- In light of the fact that laser diffraction studies are limited to medius (VI) were dissected from extremities with care taken to surgical patients, it is encouraging that microendoscopy has been maintain the integrity of the skin and associated tissues of the recently emerged for intravital use in human volunteers not under- knee. Muscles were removed and their architectural properties going surgery (Llewellyn et al., 2008). Because microendoscopy is determined using methods previously described (see below). much less invasive than laser diffraction, sarcomere lengths can The dissected knee was mounted onto a mechanical jig securing now be recorded from muscles not previously available. This rep- the distal femur by Steinman pins to vertical braces while an addi- resents a significant technical advance in the field, perhaps even tional pin engaged the middle third of the tibia allowing knee flex- enabling dynamic sarcomere length measurements. ion and extension (Fig. 1). Thirty-gauge stainless steel sutures were Another approach used to understand musculoskeletal func- secured to the distal stumps of quadriceps tendon and routed to tion, is to create biomechanical models based on previously mea- electrogoniometers recreating the line of force for each muscle. sured muscle, joint and tendon properties. The vast majority of These stainless steel sutures were secured to toothed nylon cables these theoretical models are not validated against primary experi- and connected to nonbacklash gears mounted to potentiometers as mental data (Hicks et al., 2015). It is also fair to critique most described by An et al. (1983) and placed under 500 g tension. Neu- human experimental measurements as not being explained theo- tral (0°) was defined as alignment of the tibia and the distal femur retically using models to provide a mechanistic understanding of in the sagittal plane. The knee was passed manually from 0 to 100° experimental results. Our goal was to measure human quadriceps of flexion. Individual excursions of quadriceps tendons and joint sarcomere length during knee flexion in joint replacement patients angular displacements were digitized simultaneously. Each excur- and then to validate these measurements against a model gener- sion trial was repeated three times. ated from independent measurements obtained from cadaveric Tendon excursion was differentiated with respect to joint angle specimens. Because sarcomere lengths from one of these same yielding moment arm as a function of joint angle. Before differen- muscles was recently reported (Chen et al., 2016), it is also possible tiating, excursion data were resampled every 10° to avoid superflu- to compare laser diffraction and microendoscopy methods for the ous noise. Moment arm-knee angle relationships were then fit by vastus lateralis muscle. stepwise polynomial regression using an algorithm developed to With regard to the modeling approach, biomechanical and minimize the influence of the fitting method on the resulting equa- anatomical data are often combined to make predictions. Because tion (Burkholder and Lieber, 1996; Loren et al., 1996). This was a high degree of inter-individual variation occurs, it is not clear done by including only the polynomial terms that significantly whether it is justified to combine disparate datasets collected on improved the curve fit (p-to-enter = 0.05) and not requiring all different individuals and combining them to create models. lower order terms to be included beneath the highest order term. Addressing this question is relevant to the current trend toward The explanation power of the stepwise polynomial regression developing patient-specific models. Thus, the purpose of this study was confirmed according to the different maximum polynomial was to compare the sarcomere length range of the human vasti order ranging 0–10. As a result, 3rd-order stepwise regression between directly measured values and those obtained via biome- was used for further analysis because 3rd-order stepwise fitting chanical modeling. explained 90% of the variability in the raw data (Fig. 3A). 2. Methods 2.3. Muscle architecture 2.1. Intraoperative sarcomere length For architectural measurements, fascicles were dissected from specimens that were Formalin-fixed with the body fully supine. Sarcomere length was measured from human patients (n = 7) Thus, the hip and knee were at approximately 0° and the ankles using a protocol approved by the Committee
Recommended publications
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • Influence of Nebulin on the Assembly Mechanics Of
    INFLUENCE OF NEBULIN ON THE ASSEMBLY MECHANICS OF DESMIN An Undergraduate Research Scholars Thesis by MARC ADRIAN CARAGEA Submitted to Honors and Undergraduate Research Texas A&M University In partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Adviser: Gloria M. Conover, Ph.D. May 2014 Major: Biomedical Sciences TABLE OF CONTENTS Page ABSTRACT ............................................................................................................................... 1 ACKNOWLEDGMENTS ........................................................................................................... 2 NOMENCLATURE .................................................................................................................... 3 CHAPTER I INTRODUCTION ............................................................................................... 4 II MATERIALS AND METHODS ......................................................................... 8 Affinity purification of WT and mutant desmin proteins from bacteria ................ 8 Affinity purification of recombinant Nebulin M160 – 164 ................................... 9 Assembly protocol for desmin precursors into filaments in vitro ...................... 11 Sample preparation for atomic force microscopy ............................................... 11 Single desmin filament length acquisition and analysis ..................................... 13 Determination of Young’s modulus for desmin filament networks ...................
    [Show full text]
  • Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
    International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies.
    [Show full text]
  • Distal Myopathies a Review: Highlights on Distal Myopathies with Rimmed Vacuoles
    Review Article Distal myopathies a review: Highlights on distal myopathies with rimmed vacuoles May Christine V. Malicdan, Ikuya Nonaka Department of Neuromuscular Research, National Institutes of Neurosciences, National Center of Neurology and Psychiatry, Tokyo, Japan Distal myopathies are a group of heterogeneous disorders Since the discovery of the gene loci for a number classiÞ ed into one broad category due to the presentation of distal myopathies, several diseases previously of weakness involving the distal skeletal muscles. The categorized as different disorders have now proven to recent years have witnessed increasing efforts to identify be the same or allelic disorders (e.g. distal myopathy the causative genes for distal myopathies. The identiÞ cation with rimmed vacuoles and hereditary inclusion body of few causative genes made the broad classiÞ cation of myopathy, Miyoshi myopathy and limb-girdle muscular these diseases under “distal myopathies” disputable and dystrophy type 2B (LGMD 2B). added some enigma to why distal muscles are preferentially This review will focus on the most commonly affected. Nevertheless, with the clariÞ cation of the molecular known and distinct distal myopathies, using a simple basis of speciÞ c conditions, additional clues have been classification: distal myopathies with known molecular uncovered to understand the mechanism of each condition. defects [Table 1] and distal myopathies with unknown This review will give a synopsis of the common distal causative genes [Table 2]. The identification of the myopathies, presenting salient facts regarding the clinical, genes involved in distal myopathies has broadened pathological, and molecular aspects of each disease. Distal this classification into sub-categories as to the location myopathy with rimmed vacuoles, or Nonaka myopathy, will of encoded proteins: sarcomere (titin, myosin); plasma be discussed in more detail.
    [Show full text]
  • Effect of Nebulin Variants on Nebulin-Actin Interaction
    Pro gradu –thesis EFFECT OF NEBULIN VARIANTS ON NEBULIN-ACTIN INTERACTION Svetlana Sofieva November 2019 University of Helsinki Genetics Folkhälsan research center Specialization in Human Genetics Tiedekunta – Fakultet – Faculty Laitos – Institution– Department Faculty of biological and environmental sciences Department of Biosciences Tekijä – Författare – Author Svetlana Sofieva Työn nimi – Arbetets titel – Title Effect of nebulin variants on nebulin-actin interaction Oppiaine – Läroämne – Subject Human genetics Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis 11/2019 61 pages + 15 pages in Appendix Tiivistelmä – Referat – Abstract Nemaline myopathy (NM) is a rare congenital disorder, the most common of congenital myopathies. It affects primarily the skeletal muscles and it is recognised by nemaline bodies in muscle tissue samples and muscle weakness. Mutation of eleven genes are known to lead to NM and the most frequent disease-causing variants are either recessive NEB variants or dominant ACTA1 variants. Variants in NEB are thought to be well tolerated and only 7% of them are hypothesized to be pathogenic. Over 200 pathogenic NEB- variants have been identified in Helsinki and the majority occurred in patients as a combination of two different variants. The missense variants were speculated to have a modifying effect on pathogenicity by affecting nebulin-actin or nebulin-tropomyosin interactions. Nebulin is a gigantic protein coded by NEB and is one of the largest proteins in vertebrates. It is located in the thin filament of the skeletal muscle sarcomere. Enclosed by terminal regions, nebulin has an extensive repetitive modular region that covers over 90% of the protein.
    [Show full text]
  • Diagnosis and Cell-Based Therapy for Duchenne Muscular Dystrophy in Humans, Mice, and Zebrafish
    J Hum Genet (2006) 51:397–406 DOI 10.1007/s10038-006-0374-9 MINIREVIEW Louis M. Kunkel Æ Estanislao Bachrach Richard R. Bennett Æ Jeffrey Guyon Æ Leta Steffen Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish Received: 3 January 2006 / Accepted: 4 January 2006 / Published online: 1 April 2006 Ó The Japan Society of Human Genetics and Springer-Verlag 2006 Abstract The muscular dystrophies are a heterogeneous mutants carries a stop codon mutation in dystrophin, group of genetically caused muscle degenerative disor- and we have recently identified another carrying a ders. The Kunkel laboratory has had a longstanding mutation in titin. We are currently positionally cloning research program into the pathogenesis and treatment of the disease-causative mutation in the remaining 12 mu- these diseases. Starting with our identification of dys- tant strains. We hope that one of these new mutant trophin as the defective protein in Duchenne muscular strains of fish will have a mutation in a gene not previ- dystrophy (DMD), we have continued our work on ously implicated in human muscular dystrophy. This normal dystrophin function and how it is altered in gene would become a candidate gene to be analyzed in muscular dystrophy. Our work has led to the identifi- patients which do not carry a mutation in any of the cation of the defective genes in three forms of limb girdle known dystrophy-associated genes. By studying both muscular dystrophy (LGMD) and a better understand- disease pathology and investigating potential therapies, ing of how muscle degenerates in many of the different we hope to make a positive difference in the lives of dystrophies.
    [Show full text]
  • Postmortem Changes in the Myofibrillar and Other Cytoskeletal Proteins in Muscle
    BIOCHEMISTRY - IMPACT ON MEAT TENDERNESS Postmortem Changes in the Myofibrillar and Other C'oskeletal Proteins in Muscle RICHARD M. ROBSON*, ELISABETH HUFF-LONERGAN', FREDERICK C. PARRISH, JR., CHIUNG-YING HO, MARVIN H. STROMER, TED W. HUIATT, ROBERT M. BELLIN and SUZANNE W. SERNETT introduction filaments (titin), and integral Z-line region (a-actinin, Cap Z), as well as proteins of the intermediate filaments (desmin, The cytoskeleton of "typical" vertebrate cells contains paranemin, and synemin), Z-line periphery (filamin) and three protein filament systems, namely the -7-nm diameter costameres underlying the cell membrane (filamin, actin-containing microfilaments, the -1 0-nm diameter in- dystrophin, talin, and vinculin) are listed along with an esti- termediate filaments (IFs), and the -23-nm diameter tubu- mate of their abundance, approximate molecular weights, lin-containing microtubules (Robson, 1989, 1995; Robson and number of subunits per molecule. Because the myofibrils et al., 1991 ).The contractile myofibrils, which are by far the are the overwhelming components of the skeletal muscle cell major components of developed skeletal muscle cells and cytoskeleton, the approximate percentages of the cytoskel- are responsible for most of the desirable qualities of muscle eton listed for the myofibrillar proteins (e.g., myosin, actin, foods (Robson et al., 1981,1984, 1991 1, can be considered tropomyosin, a-actinin, etc.) also would represent their ap- the highly expanded corollary of the microfilament system proximate percentages of total myofibrillar protein. of non-muscle cells. The myofibrils, IFs, cell membrane skel- eton (complex protein-lattice subjacent to the sarcolemma), Some Important Characteristics, Possible and attachment sites connecting these elements will be con- Roles, and Postmortem Changes of Key sidered as comprising the muscle cell cytoskeleton in this Cytoskeletal Proteins review.
    [Show full text]
  • Calmodulin-Binding Profiles for Nebulin and Dystrophin in Human Skeletal Muscle
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 234, number 2, 267-271 FEB 06034 July 1988 Calmodulin-binding profiles for nebulin and dystrophin in human skeletal muscle K. Patel, P.N. Strong, V. Dubowitz and M.J. Dunn Jerry Lewis Muscle Research Centre, Department of Paediairics and Neonatal Medicine, Royal Postgraduate Medical School, London WI2 ONN, EngIand Received 20 April 1988; revised version received 15 May 1988 Nebulin and dystrophin are two high-molecular-mass skeletal muscle proteins that have both been associated with the defective gene in Duchenne muscular dystrophy, although the function of neither protein is known. Other high-molecu- lar-mass, calmodulin-binding proteins have recently been implicated in regulating calcium release from skeletal muscle. Western blots of human skeletal muscle biopsy samples were probed with biotinylated calmodulin; nebulin was identified as a prominent high-molecular-mass calmodulin-binding protein but dystrophin did not bind detectable amounts of bio- tinylated calmodulin. Dystrophin was absent in a Duchenne muscle biopsy. Muscle protein; Duchenne muscular dystrophy; Nebulin; Dystrophin; Calmodulin; SDS-PAGE 1. INTRODUCTION with the defective gene product in Duchenne muscular dystrophy 131, has recently been shown The structure and function of high-molecular- to fractionate with junctional feet membrane mass proteins in junctional sarcoplasmic reticulum preparations, although it is distinct (both im- and the
    [Show full text]
  • Skeletal Muscle in Aged Mice Reveals Extensive Transformation of Muscle
    Lin et al. BMC Genetics (2018) 19:55 https://doi.org/10.1186/s12863-018-0660-5 RESEARCHARTICLE Open Access Skeletal muscle in aged mice reveals extensive transformation of muscle gene expression I-Hsuan Lin1†, Junn-Liang Chang3†, Kate Hua1, Wan-Chen Huang4, Ming-Ta Hsu2 and Yi-Fan Chen4* Abstract Background: Aging leads to decreased skeletal muscle function in mammals and is associated with a progressive loss of muscle mass, quality and strength. Age-related muscle loss (sarcopenia) is an important health problem associated with the aged population. Results: We investigated the alteration of genome-wide transcription in mouse skeletal muscle tissue (rectus femoris muscle) during aging using a high-throughput sequencing technique. Analysis revealed significant transcriptional changes between skeletal muscles of mice at 3 (young group) and 24 (old group) months of age. Specifically, genes associated with energy metabolism, cell proliferation, muscle myosin isoforms, as well as immune functions were found to be altered. We observed several interesting gene expression changes in the elderly, many of which have not been reported before. Conclusions: Those data expand our understanding of the various compensatory mechanisms that can occur with age, and further will assist in the development of methods to prevent and attenuate adverse outcomes of aging. Keywords: Aging, Skeletal muscle, Cardiac-related genes, RNA sequencing analysis, Muscle fibers, Defects on differentiation Background SIRT1 reduces the oxidative stress and inflammation Aging is a process whereby various changes were accu- associated with ameliorating diseases, such as vascular mulated over time, resulting in dysfunction in mole- endothelial disorders, neurodegenerative diseases, as cules, cells, tissues and organs.
    [Show full text]
  • The Role of Nuclear Positioning in Muscle Function
    UNIVERSIDADE DE LISBOA Faculdade de Medicina The role of nuclear positioning in muscle function Mafalda Ramos de Melo Pimentel Orientador: Prof. Doutor Edgar Rodrigues Almeida Gomes Tese especialmente elaborada para obtenção do grau de Doutor em Ciências Biomédicas especialidade em Biologia Celular e Molecular 2019 UNIVERSIDADE DE LISBOA Faculdade de Medicina The role of nuclear positioning in muscle function Mafalda Ramos de Melo Pimentel Orientador: Prof. Doutor Edgar Rodrigues Almeida Gomes Tese especialmente elaborada para obtenção do grau de Doutor em Ciências Biomédicas especialidade em Biologia Celular e Molecular Júri: Presidente: Doutor João Eurico Cortez Cabral da Fonseca, Professor Catedrático e Vice-Presidente do Conselho Cientifico da Faculdade de Medicina da Universidade de Lisboa Vogais: Doctor Antoine Guichet, Group Leader and Principal Investigator, Institut Jacques Monod, Université Paris Diderot; Doutor Reto Gassmann, Group Leader and Investigador do Instituto de Biologia Molecular e Celular da Universidade do Porto; Doutor Ramiro Daniel Carvalho de Almeida, Professor Auxiliar do Departamento de Ciências Médicas da Universidade de Aveiro; Doutora Solveig Thorsteinsdottir, Professora Associada com Agregação da Faculdade de Ciências da Universidade de Lisboa; Doutora Maria do Carmo Salazar Velez Roque da Fonseca, Professora Catedrática da Faculdade de Medicina da Universidade de Lisboa; Doutor Edgar Rodrigues Almeida Gomes, Professor Associado Convidado da Faculdade de Medicina da Universidade de Lisboa; Instituição Financiadora: Fundação para a Ciência e Tecnologia SFRH/BD/52227/2013 2019 A impressão desta tese foi aprovada pelo Conselho Científico da Faculdade de Medicina de Lisboa em reunião de 16 de Outubro de 2018. As opiniões expressas nesta publicação são da exclusiva respondabilidade do seu autor.
    [Show full text]
  • New Insights Into the Protein Aggregation Pathology in Myotilinopathy by Combined Proteomic and Immunolocalization Analyses A
    Maerkens et al. Acta Neuropathologica Communications (2016) 4:8 DOI 10.1186/s40478-016-0280-0 RESEARCH Open Access New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses A. Maerkens1,2, M. Olivé3, A. Schreiner1, S. Feldkirchner4, J. Schessl4, J. Uszkoreit2, K. Barkovits2, A. K. Güttsches1, V. Theis2,5, M. Eisenacher2, M. Tegenthoff1, L. G. Goldfarb6, R. Schröder7, B. Schoser4, P. F. M. van der Ven8, D. O. Fürst8, M. Vorgerd1, K. Marcus2† and R. A. Kley1*† Abstract Introduction: Myofibrillar myopathies are characterized by progressive muscle weakness and impressive abnormal protein aggregation in muscle fibers. In about 10 % of patients, the disease is caused by mutations in the MYOT gene encoding myotilin. The aim of our study was to decipher the composition of protein deposits in myotilinopathy to get new information about aggregate pathology. Results: Skeletal muscle samples from 15 myotilinopathy patients were included in the study. Aggregate and control samples were collected from muscle sections by laser microdissection and subsequently analyzed by a highly sensitive proteomic approach that enables a relative protein quantification. In total 1002 different proteins were detected. Seventy-six proteins showed a significant over-representation in aggregate samples including 66 newly identified aggregate proteins. Z-disc-associated proteins were the most abundant aggregate components, followed by sarcolemmal and extracellular matrix proteins, proteins involved in protein quality control and degradation, and proteins with a function in actin dynamics or cytoskeletal transport. Forty over-represented proteins were evaluated by immunolocalization studies. These analyses validated our mass spectrometric data and revealed different regions of protein accumulation in abnormal muscle fibers.
    [Show full text]
  • Effect of Levosimendan on the Contractility of Muscle Fibers From
    de Winter et al. Skeletal Muscle (2015) 5:12 DOI 10.1186/s13395-015-0037-7 RESEARCH Open Access Effect of levosimendan on the contractility of muscle fibers from nemaline myopathy patients with mutations in the nebulin gene Josine M de Winter1, Barbara Joureau1, Vasco Sequeira1, Nigel F Clarke2, Jolanda van der Velden1, Ger JM Stienen1,3, Henk Granzier4, Alan H Beggs5 and Coen AC Ottenheijm1,4* Abstract Background: Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is characterized by generalized skeletal muscle weakness, often from birth. To date, no therapy exists that enhances the contractile strength of muscles of NM patients. Mutations in NEB, encoding the giant protein nebulin, are the most common cause of NM. The pathophysiology of muscle weakness in NM patients with NEB mutations (NEB-NM) includes a lower calcium-sensitivity of force generation. We propose that the lower calcium-sensitivity of force generation in NEB-NM offers a therapeutic target. Levosimendan is a calcium sensitizer that is approved for use in humans and has been developed to target cardiac muscle fibers. It exerts its effect through binding to slow skeletal/cardiac troponin C. As slow skeletal/cardiac troponin C is also the dominant troponin C isoform in slow-twitch skeletal muscle fibers, we hypothesized that levosimendan improves slow-twitch muscle fiber strength at submaximal levels of activation in patients with NEB-NM. Methods: To test whether levosimendan affects force production, permeabilized slow-twitch muscle fibers isolated from biopsies of NEB-NM patients and controls were exposed to levosimendan and the force response was measured.
    [Show full text]