Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution As a Working Fluid and a Technically Feasible Configuration
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Thermodynamic Optimization of an Organic Rankine Cycle for Power Generation from a Low Temperature Geothermal Heat Source
Thermodynamic Optimization of an Organic Rankine Cycle for Power Generation from a Low Temperature Geothermal Heat Source Inés Encabo Cáceres Roberto Agromayor Lars O. Nord Department of Energy and Process Engineering Norwegian University of Science and Technology (NTNU) Kolbjørn Hejes v.1B, NO-7491 Trondheim, Norway [email protected] Abstract fueled by natural gas or other fossil fuels (Macchi and Astolfi, 2017). However, during the last years, the The increasing concern on environment problems has increasing concern of the greenhouse effect and climate led to the development of renewable energy sources, change has led to an increase of renewable energy, such being the geothermal energy one of the most promising as wind and solar power. In addition to these listed ones in terms of power generation. Due to the low heat renewable energies, there is an energy source that shows source temperatures this energy provides, the use of a promising future due to the advantages it provides Organic Rankine Cycles is necessary to guarantee a when compared to other renewable energies. This good performance of the system. In this paper, the developing energy is geothermal energy, and its optimization of an Organic Rankine Cycle has been advantages are related to its availability (Macchi and carried out to determine the most suitable working fluid. Astolfi, 2017): it does not depend on the ambient Different cycle layouts and configurations for 39 conditions, it is stable, and it offers the possibility of different working fluids were simulated by means of a renewable energy base load operation. One of the Gradient Based Optimization Algorithm implemented challenges of geothermal energy is that it does not in MATLAB and linked to REFPROP property library. -
Transcritical Pressure Organic Rankine Cycle (ORC) Analysis Based on the Integrated-Average Temperature Difference in Evaporators
Applied Thermal Engineering 88 (2015) 2e13 Contents lists available at ScienceDirect Applied Thermal Engineering journal homepage: www.elsevier.com/locate/apthermeng Research paper Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators * Chao Yu, Jinliang Xu , Yasong Sun The Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilizations, North China Electric Power University, Beijing 102206, PR China article info abstract Article history: Integrated-average temperature difference (DTave) was proposed to connect with exergy destruction (Ieva) Received 24 June 2014 in heat exchangers. Theoretical expressions were developed for DTave and Ieva. Based on transcritical Received in revised form pressure ORCs, evaporators were theoretically studied regarding DTave. An exact linear relationship be- 12 October 2014 tween DT and I was identified. The increased specific heats versus temperatures for organic fluid Accepted 11 November 2014 ave eva protruded its TeQ curve to decrease DT . Meanwhile, the decreased specific heats concaved its TeQ Available online 20 November 2014 ave curve to raise DTave. Organic fluid in the evaporator undergoes a protruded TeQ curve and a concaved T eQ curve, interfaced at the pseudo-critical temperature point. Elongating the specific heat increment Keywords: fi Organic Rankine Cycle section and shortening the speci c heat decrease section improved the cycle performance. Thus, the fi Integrated-average temperature difference system thermal and exergy ef ciencies were increased by increasing critical temperatures for 25 organic Exergy destruction fluids. Wet fluids had larger thermal and exergy efficiencies than dry fluids, due to the fact that wet fluids Thermal match shortened the superheated vapor flow section in condensers. -
Recording and Evaluating the Pv Diagram with CASSY
LD Heat Physics Thermodynamic cycle Leaflets P2.6.2.4 Hot-air engine: quantitative experiments The hot-air engine as a heat engine: Recording and evaluating the pV diagram with CASSY Objects of the experiment Recording the pV diagram for different heating voltages. Determining the mechanical work per revolution from the enclosed area. Principles The cycle of a heat engine is frequently represented as a closed curve in a pV diagram (p: pressure, V: volume). Here the mechanical work taken from the system is given by the en- closed area: W = − ͛ p ⋅ dV (I) The cycle of the hot-air engine is often described in an idealised form as a Stirling cycle (see Fig. 1), i.e., a succession of isochoric heating (a), isothermal expansion (b), isochoric cooling (c) and isothermal compression (d). This description, however, is a rough approximation because the working piston moves sinusoidally and therefore an isochoric change of state cannot be expected. In this experiment, the pV diagram is recorded with the computer-assisted data acquisition system CASSY for comparison with the real behaviour of the hot-air engine. A pressure sensor measures the pressure p in the cylinder and a displacement sensor measures the position s of the working piston, from which the volume V is calculated. The measured values are immediately displayed on the monitor in a pV diagram. Fig. 1 pV diagram of the Stirling cycle 0210-Wei 1 P2.6.2.4 LD Physics Leaflets Setup Apparatus The experimental setup is illustrated in Fig. 2. 1 hot-air engine . 388 182 1 U-core with yoke . -
Sustainable Energy Conversion Through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications
ENERGY SYSTEMS RESEARCH UNIT AEROSPACE AND MECHANICAL ENGINEERING DEPARTMENT UNIVERSITY OF LIÈGE Sustainable Energy Conversion Through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications. in Partial Fulfillment of the Requirements for the Degree of Doctor of Applied Sciences Presented to the Faculty of Applied Science of the University of Liège (Belgium) by Sylvain Quoilin Liège, October 2011 Introductory remarks Version 1.1, published in October 2011 © 2011 Sylvain Quoilin 〈►[email protected]〉 Licence. This work is licensed under the Creative Commons Attribution - No Derivative Works 2.5 License. To view a copy of this license, visit ►http://creativecommons.org/licenses/by-nd/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. Contact the author to request other uses if necessary. Trademarks and service marks. All trademarks, service marks, logos and company names mentioned in this work are property of their respective owner. They are protected under trademark law and unfair competition law. The importance of the glossary. It is strongly recommended to read the glossary in full before starting with the first chapter. Hints for screen use. This work is optimized for both screen and paper use. It is recommended to use the digital version where applicable. It is a file in Portable Document Format (PDF) with hyperlinks for convenient navigation. All hyperlinks are marked with link flags (►). Hyperlinks in diagrams might be marked with colored borders instead. Navigation aid for bibliographic references. Bibliographic references to works which are publicly available as PDF files mention the logical page number and an offset (if non-zero) to calculate the physical page number. -
Advanced Power Cycles with Mixtures As the Working Fluid
Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Doctoral Thesis Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology Stockholm, Sweden, 2003 Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Doctoral Thesis Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology Stockholm, Sweden, 2003 TRITA-KET R173 ISSN 1104-3466 ISRN KTH/KET/R--173--SE ISBN 91-7283-443-9 Contact information: Royal Institute of Technology Department of Chemical Engineering and Technology, Division of Energy Processes SE-100 44 Stockholm Sweden Copyright © Maria Jonsson, 2003 All rights reserved Printed in Sweden Universitetsservice US AB Stockholm, 2003 Advanced Power Cycles with Mixtures as the Working Fluid Maria Jonsson Department of Chemical Engineering and Technology, Energy Processes Royal Institute of Technology, Stockholm, Sweden Abstract The world demand for electrical power increases continuously, requiring efficient and low-cost methods for power generation. This thesis investigates two advanced power cycles with mixtures as the working fluid: the Kalina cycle, alternatively called the ammonia-water cycle, and the evaporative gas turbine cycle. These cycles have the potential of improved performance regarding electrical efficiency, specific power output, specific investment cost and cost of electricity compared with the conventional technology, since the mixture working fluids enable efficient energy recovery. This thesis shows that the ammonia-water cycle has a better thermodynamic performance than the steam Rankine cycle as a bottoming process for natural gas- fired gas and gas-diesel engines, since the majority of the ammonia-water cycle configurations investigated generated more power than steam cycles. -
Section 15-6: Thermodynamic Cycles
Answer to Essential Question 15.5: The ideal gas law tells us that temperature is proportional to PV. for state 2 in both processes we are considering, so the temperature in state 2 is the same in both cases. , and all three factors on the right-hand side are the same for the two processes, so the change in internal energy is the same (+360 J, in fact). Because the gas does no work in the isochoric process, and a positive amount of work in the isobaric process, the First Law tells us that more heat is required for the isobaric process (+600 J versus +360 J). 15-6 Thermodynamic Cycles Many devices, such as car engines and refrigerators, involve taking a thermodynamic system through a series of processes before returning the system to its initial state. Such a cycle allows the system to do work (e.g., to move a car) or to have work done on it so the system can do something useful (e.g., removing heat from a fridge). Let’s investigate this idea. EXPLORATION 15.6 – Investigate a thermodynamic cycle One cycle of a monatomic ideal gas system is represented by the series of four processes in Figure 15.15. The process taking the system from state 4 to state 1 is an isothermal compression at a temperature of 400 K. Complete Table 15.1 to find Q, W, and for each process, and for the entire cycle. Process Special process? Q (J) W (J) (J) 1 ! 2 No +1360 2 ! 3 Isobaric 3 ! 4 Isochoric 0 4 ! 1 Isothermal 0 Entire Cycle No 0 Table 15.1: Table to be filled in to analyze the cycle. -
Thermodynamic Cycles of Direct and Pulsed-Propulsion Engines - V
THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS – Vol. I - Thermodynamic Cycles of Direct and Pulsed-Propulsion Engines - V. B. Rutovsky THERMODYNAMIC CYCLES OF DIRECT AND PULSED- PROPULSION ENGINES V. B. Rutovsky Moscow State Aviation Institute, Russia. Keywords: Thermodynamics, air-breathing engine, turbojet. Contents 1. Cycles of Piston Engines of Internal Combustion. 2. Jet Engines Using Liquid Oxidants 3. Compressor-less Air-Breathing Jet Engines 3.1. Ramjet engine (with fuel combustion at p = const) 4. Pulsejet Engine. 5. Cycles of Gas-Turbine Propulsion Systems with Fuel Combustion at a Constant Volume Glossary Bibliography Summary This chapter considers engines with intermittent cycles and cycles of pulsejet engines. These include, piston engines of various designs, pulsejet engines, and gas-turbine propulsion systems with fuel combustion at a constant volume. This chapter presents thermodynamic cycles of thermal engines in which the propulsive mass is a mixture of air and either a gaseous fuel or vapor of a liquid fuel (on the initial portion of the cycle), and gaseous combustion products (over the rest of the cycle). 1. Cycles of Piston Engines of Internal Combustion. Piston engines of internal combustion are utilized in motor vehicles, aircraft, ships and boats, and locomotives. They are also used in stationary low-power electric generators. Given the variety of conditions that engines of internal combustion should meet, depending on their functions, engines of various types have been designed. From the standpointUNESCO of thermodynamics, however, – i.e. EOLSS in terms of operating cycles of these engines, all of them can be classified into three groups: (a) engines using cycles with heat addition at a constant volume (V = const); (b) engines using cycles with heat addition at a constantSAMPLE pressure (p = const); andCHAPTERS (c) engines using the so-called mixed cycles, in which heat is added at either a constant volume or a constant pressure. -
Thermodynamic Analysis of Solar Absorption Cooling System Open Access Jasim Abdulateef1,, Sameer Dawood Ali1, Mustafa Sabah Mahdi2
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 60, Issue 2 (2019) 233-246 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Thermodynamic Analysis of Solar Absorption Cooling System Open Access Jasim Abdulateef1,, Sameer Dawood Ali1, Mustafa Sabah Mahdi2 1 Mechanical Engineering Department, University of Diyala, 32001 Diyala, Iraq 2 Chemical Engineering Department, University of Diyala, 32001 Diyala, Iraq ARTICLE INFO ABSTRACT Article history: This study deals with thermodynamic analysis of solar assisted absorption refrigeration Received 16 April 2019 system. A computational routine based on entropy generation was written in MATLAB Received in revised form 14 May 2019 to investigate the irreversible losses of individual component and the total entropy Accepted 18 July 2018 generation (푆̇ ) of the system. The trend in coefficient of performance COP and 푆̇ Available online 28 August 2019 푡표푡 푡표푡 with the variation of generator, evaporator, condenser and absorber temperatures and heat exchanger effectivenesses have been presented. The results show that, both COP and Ṡ tot proportional with the generator and evaporator temperatures. The COP and irreversibility are inversely proportional to the condenser and absorber temperatures. Further, the solar collector is the largest fraction of total destruction losses of the system followed by the generator and absorber. The maximum destruction losses of solar collector reach up to 70% and within the range 6-14% in case of generator and absorber. Therefore, these components require more improvements as per the design aspects. Keywords: Refrigeration; absorption; solar collector; entropy generation; irreversible losses Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved 1. -
Turbocharged Diesel Engine Power Production Enhancement: Proposing a Novel Thermal-Driven Supercharging System Based on Kalina Cycle
Vol 1, No 2, 2020, 223-234 DOI: 10.22044/rera.2020.9521.1028 Turbocharged Diesel Engine Power Production Enhancement: Proposing a Novel Thermal-Driven Supercharging System based on Kalina Cycle 1 1 1 F. Salek , A. Eskandary Nasrabad and M.M. Naserian * 1- Department of Mechanical Engineering, Faculty of Montazeri, Khorasan Razavi Branch, Technical and Vocational University (TVU), Mashhad, Iran. Receive Date 3 April 2020; Revised 26 April 2020; Accepted Date 25 May 2020 *Corresponding authors: [email protected] (M. M. Naserian) Abstract In this paper, a novel thermal-driven supercharging system is proposed for downsizing of a turbocharged diesel engine. Furthermore, the Kalina cycle is used as a waste heat recovery system to run the mounted supercharging system. The waste heat of air in engine exhaust and intake pipes is converted to the cooling and mechanical power by the Kalina cycle. The mechanical power produced by the Kalina cycle is transferred to an air compressor to charge extra air to the engine in order to generate more power. This feature can be used for downsizing the turbo-charged heavy duty diesel engine. In addition, the heat rejected from the engine intercooler is transferred to the Kalina cycle vapor generator component, and part of the engine exhaust waste heat is also used for superheating the Kalina working fluid before entering the engine. Then the first and second law analyses are performed to assess the operation of the engine in different conditions. Moreover, an economic model is provided for the Kalina cycle, which is added to the engine as a supplementary component. -
Rankine Cycle Definitions
Rankine Cycle Reading Problems 11.1 ! 11.7 11.29, 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Definitions • working fluid is alternately vaporized and condensed as it recirculates in a closed cycle • the standard vapour cycle that excludes internal irreversibilities is called the Ideal Rankine Cycle Analyze the Process Device 1st Law Balance Boiler h2 + qH = h3 ) qH = h3 − h2 (in) Turbine h3 = h4 + wT ) wT = h3 − h4 (out) Condenser h4 = h1 + qL ) qL = h4 − h1 (out) Pump h1 + wP = h2 ) wP = h2 − h1 (in) 1 The Rankine efficiency is net work output ηR = heat supplied to the boiler (h − h ) + (h − h ) = 3 4 1 2 (h3 − h2) Effects of Boiler and Condenser Pressure We know the efficiency is proportional to T η / 1 − L TH The question is ! how do we increase efficiency ) TL # and/or TH ". 1. INCREASED BOILER PRESSURE: • an increase in boiler pressure results in a higher TH for the same TL, therefore η ". • but 40 has a lower quality than 4 – wetter steam at the turbine exhaust – results in cavitation of the turbine blades – η # plus " maintenance • quality should be > 80 − 90% at the turbine exhaust 2 2. LOWER TL: • we are generally limited by the T ER (lake, river, etc.) eg. lake @ 15 ◦C + ∆T = 10 ◦C = 25 ◦C | {z } resistance to HT ) Psat = 3:169 kP a. • this is why we have a condenser – the pressure at the exit of the turbine can be less than atmospheric pressure 3. INCREASED TH BY ADDING SUPERHEAT: • the average temperature at which heat is supplied in the boiler can be increased by superheating the steam – dry saturated steam from the boiler is passed through a second bank of smaller bore tubes within the boiler until the steam reaches the required temperature – The value of T H , the mean temperature at which heat is added, increases, while TL remains constant. -
Thermodynamics of Power Generation
THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle ..................................................................................................................................... -
Upgrading Both Geothermal and Solar Energy
GRC Transactions, Vol. 40, 2016 Upgrading Both Geothermal and Solar Energy Kewen Li1,2, Changwei Liu2, Youguang Chen3, Guochen Liu2, Jinlong Chen2 1Stanford University, Stanford Geothermal Program, Stanford CA, USA 2China University of Geosciences, Beijing 3Tsinghua University, Beijing [email protected] Keywords Hybrid solar-geothermal systems, solar energy, geothermal resources, exergy, high efficiency ABSTRACT Geothermal energy has many advantages over solar and other renewables. These advantages include: 1) weather-proof; 2) base-load power; 3) high stability and reliability with a capacity factor over 90% in many cases; 4) less land usage and less ecological effect; 5) high thermal efficiency. The total installed capacity of geothermal electricity, however, is much smaller than those of solar energy. On the other hand, solar energy, including photovoltaic (PV) and concentrated solar power (CSP), has a lot of disadvantages and problems even it has a greater installed power and other benefits. Almost all of the five advantages geothermal has are the disadvantages of solar. Furthermore, solar PV has a high pollution issue during manufacturing. There have been many reports and papers on the combination of geothermal and solar energies in recent decades. This article is mainly a review of these literatures and publications. Worldwide, there are many areas where have both high heat flow flux and surface radiation, which makes it possible to integrate geothermal and solar energies. High temperature geothermal resource is the main target of the geothermal industry. The fact is that there are many geothermal resources with a low or moderate temperature of about 150oC. It is known that the efficiency of power generation from ther- mal energy is directly proportional to the resource temperature in general.