021 Operational Flight Plans A

Total Page:16

File Type:pdf, Size:1020Kb

021 Operational Flight Plans A EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION EUROCONTROL EUROCONTROL EXPERIMENTAL CENTRE SOFT Study of Operational Flight Plans and Trajectories Requirements for Advanced Flight Plan Information EEC Note No. 14/98 EEC Task R23 EATCHIP Task ODP-5-E3 Issued: June 1998 The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced in any form without the Agency’s permission. The views expressed herein do not necessarily reflect the official views or policy of the Agency. REPORT DOCUMENTATION PAGE Reference: Security Classification: EEC Note No. 14/98 Unclassified Originator: Originator (Corporate Author) Name/Location: EEC - FDR EUROCONTROL Experimental Centre (Flight Data Research) BP15 91222 Brétigny-sur-Orge CEDEX FRANCE Telephone : +33 (0)1 69 88 75 00 Sponsor: Sponsor (Contract Authority) Name/Location: EATCHIP Development Directorate EUROCONTROL Agency DED.2 Rue de la Fusée, 96 B -1130 BRUXELLES Telephone : +32-(0)2-729 90 11 TITLE: SOFT Study of Operational Flight Plans ans Trajectories Requirements for Advanced Flight Plan Information Author Date Pages Figures Tables Appendix References R. Schuppenhauer 6/98 xii + 92 12 13 6 34 EATCHIP Task EEC Task No. Task No. Sponsor Period Specification ODP-5-E3 R23 1997 Distribution Statement: (a) Controlled by: Head of FDR (b) Special Limitations: None (c) Copy to NTIS: YES / NO Descriptors (Keywords): Flight Plan, Business Objects, Trajectory Abstract: This diploma thesis was written in the of a collaboration agreement between the EUROCONTROL Experimental Centre (EEC) in Brétigny-sur-Orge and the research group Computergestützte Informationssysteme (CIS) of Technische Universität Berlin. It proposes the definition of a business object that realises extended flight plan functionality/information. This business object would allow for more precise prediction of aircraft trajectories and thus for optimised use of the already overcrowded airspace in Europe. A flight plan represents the basic contract between a pilot and air traffic control. However, the current format for filed flight plans contains only limited information with equally limited precision about flights, while the airlines have access to significantly more detailed data. This extended flight plan functionality makes use of information about aircraft already available to airline pilots but not communicated to air traffic control. The thesis aims to demonstrate that an enhanced set of flight plan information would assist air traffic control in their tactical decisions and that different analyses of radar data and flight plans might give researchers a better understanding of the causes of discrepancies between predicted and realised trajectories. This document has been collated by mechanical means. Should there be missing pages, please report to: EUROCONTROL Experimental Centre Publications Office B.P. 15 91222 - BRETIGNY-SUR-ORGE CEDEX France REQUIREMENTS DEFINITION FOR ADVANCED FLIGHT PLAN INFORMATION EUROCONTROL CONTENTS ABBREVIATIONS ................................................................................................................. VII LIST OF FIGURES .....................................................................................................................X PREFACE ................................................................................................................................. XI 1. INTRODUCTION...............................................................................................1 1.1 Air Traffic Control and Information Technology............................................ 1 1.2 The SOFT Project ..................................................................................................... 1.3 Business Object Developed in this Paper ......................................................... 4 1.4 Outline of the Thesis ............................................................................................. 5 2. THE PROBLEM DOMAIN 6 2.1 The Situation in Flight Planning Today............................................................ 6 2.2 EUROCONTROL Strategy.......................................................................................... 8 3. BUSINESS OBJECTS: MODULAR REUSABLE STRUCTURES ...........................................................12 4. REQUIREMENTS DEFINITION FOR A FLIGHT PLAN BUSINESS OBJECT ..17 4.1 User Requirements .............................................................................................. 18 4.1.1 Airlines ..................................................................................................... 18 4.1.2 Airports ..................................................................................................... 19 4.1.3 Area Control Centres.............................................................................. 20 4.1.4 BADA ........................................................................................................ 24 4.1.5 CFMU ........................................................................................................ 25 4.1.6 CRCO ........................................................................................................ 27 4.1.7 DIFODAM ................................................................................................ 28 4.1.8 FREER ....................................................................................................... 29 4.1.9 FAA’s “New Age Flight Plan” .............................................................. 30 4.2 Classification of User Requirements ................................................................ 32 5. DEVELOPMENT OF AN XFPL BUSINESS OBJECT ........................................40 5.1 Definition of an XFPL Format ........................................................................... 41 5.2 Mapping the XFPL Object to the Relational Data Model ............................ 52 6. EVALUATION OF THE XFPL BUSINESS OBJECT ........................................70 6.1 Results .................................................................................................................... 70 6.2 Strategies for the Evaluation of the Business Object .................................... 70 6.2.1 Comparison of Trajectories .................................................................... 70 7. CONCLUSION ................................................................................................72 ANNEX I: THE ICAO FILED FLIGHT PLAN FORMAT .................................... 74 ANNEX II: OPERATIONAL FLIGHT PLANS ....................................................75 V REQUIREMENTS DEFINITION FOR ADVANCED FLIGHT PLAN INFORMATION EUROCONTROL ANNEX III: SYSTEM FLIGHT PLANS OF THE AREA CONTROL CENTRES ....78 ANNEX IV: RADAR DATA DESCRIPTION .......................................................80 ANNEX V: METEOROLOGICAL DATA............................................................81 ANNEX VI: CFMU DATA ...............................................................................82 REFERENCES .......................................................................................................................... 84 GLOSSARY ............................................................................................................................. 87 VI REQUIREMENTS DEFINITION FOR ADVANCED FLIGHT PLAN INFORMATION EUROCONTROL ABBREVIATIONS (EC) or (CFMU) after an explanation means the abbreviation is from the EURO- CONTROL or Central Flow Management Unit projects, and is not a common ATC abbreviation. ACC Area Control Centre ADEP Departure airport ADES Destination airport ADEXP ATS Data Exchange Presentation (CFMU) ADS-B Automatic Dependent Surveillance-Broadcast AFTN Aeronautical Fixed Telecommunications Network AOBT Actual Off-Block Time API Application Program Interface ATN Aeronautical Telecommunications Network ATC Air Traffic Control ATFM Air Traffic Flow Management ATM Air Traffic Management ATS Air Traffic Services AWY Airway BADA Base of Aircraft DAta (EC) BO Business object CASE Computer Aided Software Engineering CBO Cooperative business object CEU Central Executive Unit (CFMU) CFMU Central Flow Management Unit (EC) CFPS Collaborative Flight Plan Studies CIS Research group for Computation and Information Structures at Technische Univeristät Berlin CNS Communication-Navigation-Surveillance COBT Calculated Off-Block Time CORBA Common Object Request Broker Architecture CRNA Centre Régional de la Navigation Aérienne CTOT Calculated Take-Off Time CWP Controller Working Position EATCHIP European Air Traffic Control Harmonization and Integration Program (EC) EATMS European Air Traffic Management System (EC) ECAC European Civil Aviation Conference VII REQUIREMENTS DEFINITION FOR ADVANCED FLIGHT PLAN INFORMATION EUROCONTROL EEC EUROCONTROL Experimental Centre, Brétigny-sur-Orge, France (EC) EER Extended Entity-Relationship notation ENV Environment (CFMU) EOBT Estimated Off-Block Time ERD Entity Relationship Diagram ETA Estimated Time of Arrival ETO Estimated Time Over FAA Federal Aviation Agency in the USA FDPS Flight Data Processing System FF Field Flow FIR Flight Information Region FL Flight Level FMS Flight Management System FPL ICAO Filed flight Plan FREER Free Route Experimantal Encounter Resolution (EC) GS Ground Speed HMI Human Machine Interface ICAO International Civil Aviation Organization IDL Interface Description Language IFPL Initial Flight PLan IFPS Initial Flight plan Processing System (CFMU) IFPU Initial Flight
Recommended publications
  • Downloading the Better Data Available in the FMS for All Aircraft Appears to Be Lower
    EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION EUROCONTROL EUROCONTROL EXPERIMENTAL CENTRE STUDY OF THE ACQUISITION OF DATA FROM AIRCRAFT OPERATORS TO AID TRAJECTORY PREDICTION CALCULATION EEC Note No. 18/98 EEC Task R23 EATCHIP Task ODP.ET5.ST03 Issued: September 1998 The information contained in this document is the property of the EUROCONTROL Agency and no part should be reproduced in any form without the Agency’s permission. The views expressed herein do not necessarily reflect the official views or policy of the Agency. REPORT DOCUMENTATION PAGE Reference: Security Classification: EEC Note No. 18/98 Unclassified Originator: Originator (Corporate Author) Name/Location: EEC - FDR EUROCONTROL Experimental Centre (Flight Data Research) B.P.15 F - 91222 Brétigny-sur-Orge CEDEX FRANCE Telephone : +33 (0)1 69 88 75 00 Sponsor: Sponsor (Contract Authority) Name/Location: EUROCONTROL Agency Directorate of EATCHIP Development Rue de la Fusée, 96 - Division DED2 (Peter Bailey) B -1130 BRUXELLES Telephone : +32 2 729 3339 TITLE: STUDY OF THE ACQUISITION OF DATA FROM AIRCRAFT OPERATORS TO AID TRAJECTORY PREDICTION CALCULATION Author Date Pages Figures Tables Appendix References G. Mykoniatis, P. Martin 9/98 xii+96 1+59 4+4 7 13 EATCHIP Task EEC Task No. Task No. Sponsor Period Specification R23 ODP-5-E3 1997 to 1998 ODP.ET5.ST03 Distribution Statement: (a) Controlled by: Head of FDR (b) Special Limitations: None (c) Copy to NTIS: YES / NO Descriptors (keywords): trajectory prediction - aircraft operators - airlines - flight plans - data link - take-off weight - route - flight plan data processing Abstract: Several aircraft operators were consulted to determine if they could supply flight data to ATS which would make a significant difference to the trajectories calculated by flight data processing systems, particularly in the initial climb phase.
    [Show full text]
  • NORWAY LOCAL SINGLE SKY IMPLEMENTATION Level2020 1 - Implementation Overview
    LSSIP 2020 - NORWAY LOCAL SINGLE SKY IMPLEMENTATION Level2020 1 - Implementation Overview Document Title LSSIP Year 2020 for Norway Info Centre Reference 20/12/22/79 Date of Edition 07/04/2021 LSSIP Focal Point Peder BJORNESET - [email protected] Luftfartstilsynet (CAA-Norway) LSSIP Contact Person Luca DELL’ORTO – [email protected] EUROCONTROL/NMD/INF/PAS LSSIP Support Team [email protected] Status Released Intended for EUROCONTROL Stakeholders Available in https://www.eurocontrol.int/service/local-single-sky-implementation- monitoring Reference Documents LSSIP Documents https://www.eurocontrol.int/service/local-single-sky-implementation- monitoring Master Plan Level 3 – Plan https://www.eurocontrol.int/publication/european-atm-master-plan- Edition 2020 implementation-plan-level-3 Master Plan Level 3 – Report https://www.eurocontrol.int/publication/european-atm-master-plan- Year 2020 implementation-report-level-3 European ATM Portal https://www.atmmasterplan.eu/ STATFOR Forecasts https://www.eurocontrol.int/statfor National AIP https://avinor.no/en/ais/aipnorway/ FAB Performance Plan https://www.nefab.eu/docs# LSSIP Year 2020 Norway Released Issue APPROVAL SHEET The following authorities have approved all parts of the LSSIP Year 2020 document and the signatures confirm the correctness of the reported information and reflect the commitment to implement the actions laid down in the European ATM Master Plan Level 3 (Implementation View) – Edition 2020. Stakeholder / Name Position Signature and date Organisation
    [Show full text]
  • TCAS II) by Personnel Involved in the Implementation and Operation of TCAS II
    Preface This booklet provides the background for a better understanding of the Traffic Alert and Collision Avoidance System (TCAS II) by personnel involved in the implementation and operation of TCAS II. This booklet is an update of the TCAS II Version 7.0 manual published in 2000 by the Federal Aviation Administration (FAA). It describes changes to the CAS logic introduced by Version 7.1 and updates the information on requirements for use of TCAS II and operational experience. Version 7.1 logic changes will improve TCAS Resolution Advisory (RA) sense reversal logic in vertical chase situations. In addition all “Adjust Vertical Speed, Adjust” RAs are converted to “Level-Off, Level-Off” RAs to make it more clear that a reduction in vertical rate is required. The Minimum Operational Performance Standards (MOPS) for TCAS II Version 7.1 were approved in June 2008 and Version 7.1 units are expected to be operating by 2010-2011. Version 6.04a and 7.0 units are also expected to continue operating for the foreseeable future where authorized. 2 Preface................................................................................................................................. 2 The TCAS Solution............................................................................................................. 5 Early Collision Avoidance Systems................................................................................ 5 TCAS II Development .................................................................................................... 6 Initial
    [Show full text]
  • FSF ALAR Briefing Note 3.2 -- Altitude Deviations
    Flight Safety Foundation Approach-and-landing Accident Reduction Tool Kit FSF ALAR Briefing Note 3.2 — Altitude Deviations Altitude deviations may result in substantial loss of aircraft • The pilot-system interface: vertical separation or horizontal separation, which could cause – Altimeter setting, use of autopilot, monitoring of a midair collision. instruments and displays; or, Maneuvers to avoid other aircraft often result in injuries to • The pilot-controller interface: passengers, flight crewmembers and, particularly, to cabin crewmembers. – Communication loop (i.e., the confirmation/ correction process). Statistical Data Altitude deviations occur usually as the result of one or more of the following conditions: An analysis by the U.S. Federal Aviation Administration (FAA) and by USAir (now US Airways) of altitude-deviation events1 • The controller assigns an incorrect altitude or reassigns showed that: a flight level after the pilot was cleared to an altitude; • Approximately 70 percent of altitude deviations were the • Pilot-controller communication breakdown — mainly result of a breakdown in pilot-controller communication; readback/hearback errors such as the following: and, – Controller transmits an incorrect altitude, the pilot • Nearly 40 percent of altitude deviations resulted when does not read back the altitude and the controller does air traffic control (ATC) assigned 10,000 feet and the not challenge the absence of a readback; flight crew set 11,000 feet in the selected-altitude – Pilot reads back an incorrect altitude, but the window, or when ATC assigned 11,000 feet and the flight controller does not hear the erroneous readback and crew set 10,000 feet in the selected-altitude window. does not correct the pilot’s readback; or, Defining Altitude Deviations – Pilot accepts an altitude clearance intended for another aircraft (confusion of call signs); An altitude deviation is a deviation from the assigned altitude • Pilot receives, understands and reads back the correct (or flight level) equal to or greater than 300 feet.
    [Show full text]
  • FLIGHT PLAN DATA .// L.'- and FLIGHT SCHEDULING ACCURACY Q .~
    • REPORT NO. DOT-TSC-FAA-72-10 ~ I (.0 l'- ~ A SURVEY TO DETERMINE ~ FLIGHT PLAN DATA .// l.'- AND FLIGHT SCHEDULING ACCURACY Q .~ JOHN R. COONAN TRANSPORTATION SYSTEMS CENTER 55 BROADWAY CAMBRIDGE, MA. 02142 transpoS . u. S. Internati ona I Transportati on Exposi ti on Dulles International Airport Washington, D.C. :~ . JANUARY 1972 May 27-June 4, 1972 . TECHNICAL REPORT . .. Availability is Unlimited. Document may be Released To the National Technical Information Service, Springfield, Virginia 22151. for Sale to the Public. Prepared for , DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION WASHINGTON, D. C. 20591 • The contents of this report reflect the views of the Transportation Systems Center which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation. 1. Report No. 12. Government Acce ..ion No. 3. Recipient's Catalog No, DOT-TSC-FAA-72-l0 4. Ti tie and Subtitle 5. Report Date A SURVEY TO DETERMINE FLIGHT PLAN January 1972 DATA AND FLIGHT SCHEDULE ACCURACY 6. Performing Orgonization Code 8. Performing Organi zatian Report No. 7. Author(s) John R. Coonan 9. PerfQrming Organization Name and Address 10. Work Unit No. Department of Transportation R2l37 Transportation Systems Center 11. Contract or Grant No. FA206 55 Broadway, Cambridge, MA 02142 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Addr.ss Technical Department of Transportation Report Federal Aviation Administration Washington, D.C. 20590 14. Sponsoring Agency Code 15.
    [Show full text]
  • Chapter: 2. En Route Operations
    Chapter 2 En Route Operations Introduction The en route phase of flight is defined as that segment of flight from the termination point of a departure procedure to the origination point of an arrival procedure. The procedures employed in the en route phase of flight are governed by a set of specific flight standards established by 14 CFR [Figure 2-1], FAA Order 8260.3, and related publications. These standards establish courses to be flown, obstacle clearance criteria, minimum altitudes, navigation performance, and communications requirements. 2-1 fly along the centerline when on a Federal airway or, on routes other than Federal airways, along the direct course between NAVAIDs or fixes defining the route. The regulation allows maneuvering to pass well clear of other air traffic or, if in visual meteorogical conditions (VMC), to clear the flightpath both before and during climb or descent. Airways Airway routing occurs along pre-defined pathways called airways. [Figure 2-2] Airways can be thought of as three- dimensional highways for aircraft. In most land areas of the world, aircraft are required to fly airways between the departure and destination airports. The rules governing airway routing, Standard Instrument Departures (SID) and Standard Terminal Arrival (STAR), are published flight procedures that cover altitude, airspeed, and requirements for entering and leaving the airway. Most airways are eight nautical miles (14 kilometers) wide, and the airway Figure 2-1. Code of Federal Regulations, Title 14 Aeronautics and Space. flight levels keep aircraft separated by at least 500 vertical En Route Navigation feet from aircraft on the flight level above and below when operating under VFR.
    [Show full text]
  • FAA-H-8083-15, Instrument Flying Handbook -- 1 of 2
    i ii Preface This Instrument Flying Handbook is designed for use by instrument flight instructors and pilots preparing for instrument rating tests. Instructors may find this handbook a valuable training aid as it includes basic reference material for knowledge testing and instrument flight training. Other Federal Aviation Administration (FAA) publications should be consulted for more detailed information on related topics. This handbook conforms to pilot training and certification concepts established by the FAA. There are different ways of teaching, as well as performing, flight procedures and maneuvers and many variations in the explanations of aerodynamic theories and principles. This handbook adopts selected methods and concepts for instrument flying. The discussion and explanations reflect the most commonly used practices and principles. Occasionally the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). All of the aeronautical knowledge and skills required to operate in instrument meteorological conditions (IMC) are detailed. Chapters are dedicated to human and aerodynamic factors affecting instrument flight, the flight instruments, attitude instrument flying for airplanes, basic flight maneuvers used in IMC, attitude instrument flying for helicopters, navigation systems, the National Airspace System (NAS), the air traffic control (ATC) system, instrument flight rules (IFR) flight procedures, and IFR emergencies. Clearance shorthand and an integrated instrument lesson guide are also included. This handbook supersedes Advisory Circular (AC) 61-27C, Instrument Flying Handbook, which was revised in 1980.
    [Show full text]
  • Introduction of RVSM in the Airspace of the Russian Federation and Adjacent Territories
    12ATSBL06 November 2011 Introduction of RVSM in the airspace of the Russian Federation and adjacent territories Summary At 0001 UTC 17 November RVSM was introduced in the FIRs of the Russian Federation as well as those of Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Russian Federation, Tajikistan, Turkmenistan and Uzbekistan between FL291 FL510 FL410. FL490 FL470 Background Reduced Vertical Separation Minima (RVSM) operations are due to be intro- FL450 duced into the airspace of the FIR/UIRs of the following countries: Afghanistan, Kazakhstan, Kyrgyzstan, Mongolia, Russian Federation, Tajikistan, Turkmeni- FL430 stan and Uzbekistan at 00:01UTC 17 November 2011. The changeover is a land- mark not only since it is geographically the largest RVSM changeover but also FL410 because it will see vertical positioning referenced as a Flight Level throughout FL400 the affected airspace (above transition altitude) rather than in metres. The excep- tion to this is in the Ulaanbataar FIR, (see 12ATSBL07 click here) which will FL390 continue to use metric references. The information contained in this briefing leaf- FL380 let is derived from information contained in AICs issued by the Russian Federal FL370 Air Transport Agency as well as data from the Kazakh Air Navigation Service FL360 Provider (ANSP) however the procedures described in the Russian AIC will be FL350 also applied in Afghanistan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan FL340 and Uzbekistan. FL330 FL320 Normal procedures FL310 RVSM Flight Levels FL300 RVSM will be applied to airspace between FL290 (8,550m) and FL410 (12,500m) FL290 inclusive. It is important to note that above transition altitude assignments in the FL280 vertical plane will be given in FL.
    [Show full text]
  • Key Tips - Altimetry
    Avoiding airspace infringements Key tips - Altimetry A significant number of airspace infringements are caused by pilots using an incorrect altimeter setting. The pilot may believe that they are remaining outside notified airspace, but they are actually flying higher or lower. QFE (the atmospheric pressure at aerodrome elevation) When QFE is set, your altimeter will indicate your height above the elevation of the aerodrome. This is useful in the visual circuit environment and in the ATZ. QFE should not be used elsewhere. QNH (the atmospheric pressure at mean sea level) When QNH is set your altimeter will indicate your altitude above mean sea level. When the Airfield QNH is set, the altimeter will indicate the elevation of the airfield correctly at the airfield reference point. QNH is essential for avoiding airspace which has a base defined as an altitude, and any Prohibited, Restricted or Danger Areas that have an upper limit defined as an altitude. When flying, remember to check (and update if necessary) the QNH value that you have set. This can easily be done by calling an ATSU or listening to ATIS or VOLMET broadcasts. airspacesafety.com Illustrations courtesy of NATS. Regional Pressure Setting (RPS) RPS is a forecast (not an actual) value of the lowest atmospheric pressure at mean sea level (MSL) within an Altimeter Setting Region (ASR). • When an RPS is set your altimeter will indicate your altitude above the forecast setting. • Aircraft using this setting will never be lower than the indicated altitude. RPS were introduced in the past to aid terrain clearance in large areas where there was no local QNH reporting station, or where communications were poor.
    [Show full text]
  • 14 CFR Ch. I (1–1–14 Edition)
    § 91.179 14 CFR Ch. I (1–1–14 Edition) be crossed at or above the applicable duced Vertical Separation Minimum MCA. (RVSM) airspace and— [Doc. No. 18334, 54 FR 34294, Aug. 18, 1989, as (i) On a magnetic course of zero de- amended by Amdt. 91–296, 72 FR 31678, June grees through 179 degrees, any odd 7, 2007; Amdt. 91–315, 75 FR 30690, June 2, 2010] flight level, at 2,000-foot intervals be- ginning at and including flight level 290 § 91.179 IFR cruising altitude or flight (such as flight level 290, 310, 330, 350, level. 370, 390, 410); or Unless otherwise authorized by ATC, (ii) On a magnetic course of 180 de- the following rules apply— grees through 359 degrees, any even (a) In controlled airspace. Each person flight level, at 2000-foot intervals be- operating an aircraft under IFR in ginning at and including flight level 300 level cruising flight in controlled air- (such as 300, 320, 340, 360, 380, 400). space shall maintain the altitude or [Doc. No. 18334, 54 FR 34294, Aug. 18, 1989, as flight level assigned that aircraft by amended by Amdt. 91–276, 68 FR 61321, Oct. ATC. However, if the ATC clearance as- 27, 2003; 68 FR 70133, Dec. 17, 2003; Amdt. 91– signs ‘‘VFR conditions on-top,’’ that 296, 72 FR 31679, June 7, 2007] person shall maintain an altitude or flight level as prescribed by § 91.159. § 91.180 Operations within airspace (b) In uncontrolled airspace. Except designated as Reduced Vertical while in a holding pattern of 2 minutes Separation Minimum airspace.
    [Show full text]
  • NF-2007 Occurrence Reporting in Civil Aviation
    NF-2007 Occurrence reporting in civil aviation This form is to be used for reporting occurrences according to Norwegian Aviation Act § 12-10 which implement EU regulation No.376/2014 on the reporting, analysis and follow-up of occurences in civil aviation. Regulation BSL A 1-3 implement EU regulation 2015/1018 laying down a list classifying occurrences in civil aviation to be mandatorily reported. An electronic version of NF-2007 with help-texts and guidance is available on www.altinn.no. The Civil Aviation Authority - Norway (CAA-N) and the Accident Investigation Board Norway (AIBN) highly recommends using the electronic version to anyone who have internet access since this is more secure and simplifies the case handling considerably. Norwegian identity number and/or pin-codes are no longer necessary to report civil aviation occurrences via Altinn. Reports about accidents and serious incidents shall be sent both to the CAA-N and AIBN. Other occurrence reports – i.e. incidents that are not serious – shall only be sent to the CAA-N. The objective of this reporting is to prevent accidents and improve flight safety, not to apportion blame or liability. Sections 0 (entry page), 1.0 (General information) and 9 (Narrative) are mandatory for all reports. In addition, the following sections are applicable to the different reporting groups respectively: - Flight-crew members: 1.1 (accidents and serious incidents only) 2, 3, 4, 7 and 8 - ANS-personell: 3, 4, 5 and 7 - Airport personnel/Ground operations: 2.0, 3, 4, 7 and 8 - Constructors/Manufacturers/Modifiers: 2.0 and 2.4 - Maintenance personnel: 2.0 and 2.4 Enter all information that might be relevant to the occurrence.
    [Show full text]
  • Final Report Boeing 747-412F TC-MCL 1
    Final Report Boeing 747-412F TC-MCL 1 This document is an English translation of the Final Report on the fatal accident involving the Boeing 747-412F aircraft registered TC-MCL that occurred on January 16th, 2017 at Manas International Airport, Bishkek, Kyrgyz Republic. The translation was done as accurate as a translation may be to facilitate the understanding of the Final Report for non-Russian-speaking people. The use of this translation for any purpose other than for the prevention of future accidents could lead to erroneous interpretations. In case of any inconsistence or misunderstanding, the original text in Russian shall be used as the work of reference. INTERSTATE AVIATION COMMITTEE AIR ACCIDENT INVESTIGATION COMMISSION FINAL REPORT ON RESULTS OF THE AIR ACCIDENT INVESTIGATION Type of occurrence Fatal accident Type of aircraft Boeing 747-412F Registration mark TC-MCL Owner LCI Freighters One Limited (Ireland) Operator ACT Airlines Aviation Authority Directorate General of Civil Aviation of Turkey (Turkish DGCA) Place of occurrence Near Manas International Airport, Bishkek, Kyrgyz Republic, coordinates: N 43°03.248' E 074°2.271' Date and time 16.01.2017, 07:17 local time (01:17 UTC), night time INTERSTATE AVIATION COMMITTEE Final Report Boeing 747-412F TC-MCL 2 1. FACTUAL INFORMATION ..................................................................................................................... 10 1.1. HISTORY OF FLIGHT ...................................................................................................................................
    [Show full text]