Chec List an Update on the Myxomycete Biota (Amoebozoa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Myxomycetes NMW 2012Orange, Updated KS 2017.Docx
Myxomycete (Slime Mould) Collection Amgueddfa Cymru-National Museum Wales (NMW) Alan Orange (2012), updated by Katherine Slade (2017) Myxomycetes (true or plasmodial slime moulds) belong to the Eumycetozoa, within the Amoebozoa, a group of eukaryotes that are basal to a clade containing animals and fungi. Thus although they have traditionally been studied by mycologists they are distant from the true fungi. Arrangement & Nomenclature Slime Mould specimens in NMW are arranged in alphabetical order of the currently accepted name (as of 2012). Names used on specimen packets that are now synonyms are cross referenced in the list below. The collection currently contains 157 Myxomycete species. Specimens are mostly from Britain, with a few from other parts of Europe or from North America. The current standard work for identification of the British species is: Ing, B. 1999. The Myxomycetes of Britain and Ireland. An Identification Handbook. Slough: Richmond Publishing Co. Ltd. Nomenclature follows the online database of Slime Mould names at www.eumycetozoa.com (accessed 2012). This database is largely in line with Ing (1999). Preservation The feeding stage is a multinucleate motile mass known as a plasmodium. The fruiting stage is a dry, fungus-like structure containing abundant spores. Mature fruiting bodies of Myxomycetes can be collected and dried, and with few exceptions (such as Ceratiomyxa) they preserve well. Plasmodia cannot be preserved, but it is useful to record the colour if possible. Semi-mature fruiting bodies may continue to mature if collected with the substrate and kept in a cool moist chamber. Collected plasmodia are unlikely to fruit. Specimens are stored in boxes to prevent crushing; labels should not be allowed to touch the specimen. -
Myxomycetes of Taiwan XXV. the Family Stemonitaceae
Taiwania, 59(3): 210‒219, 2014 DOI: 10.6165/tai.2014.59.210 RESEARCH ARTICLE Myxomycetes of Taiwan XXV. The Family Stemonitaceae Chin-Hui Liu* and Jong-How Chang Institute of Plant Science, National Taiwan University, Taipei, Taiwan 106, R.O.C. * Corresponding author. Email: [email protected] (Manuscript received 22 February 2014; accepted 30 May 2014) ABSTRACT: Species of ten genera of Stemonitaceae, including Collaria, Comatricha, Enerthenema, Lamproderma, Macbrideola, Paradiacheopsis, Stemonaria, Stemonitis, Stemonitopsis, and Symphytocarpus, collected from Taiwan are critically revised. Of the 42 species recorded, Enerthenema intermedium and Stemonitopsis subcaespitosa are new to Taiwan, thus are described and illustrated in this paper. Keys to the species of all genera, and to the genera of the family are also provided. KEY WORDS: Myxomycetes, Stemonitaceae, Taiwan, taxonomy. INTRODUCTION 4’. Fruiting body more than 0.5 mm tall; sporangia cylindrical …..... 5 5. Outermost branches of capillitium united to form a delicate, complete surface net ………………………...…………. Stemonitis The family Stemonitaceae is a monotypic family of 5’. No surface net ………………………………………... Stemonaria the order Stemonitales. It contains 16 genera and 202 6. Peridium persistent, usually iridescent …………….. Lamproderma species in the world (Lado, 2005–2013). In this paper 6’. Peridium disappearing in mature fruiting bodies, at most leaving a collar or a few flakes ……………………………………………... 7 we present a list of 40 taxa including their ecological 7. Capillitium sparse, not anastomosing, with few branches ………… data compiled from the previous records of this family …………………………………………..……….. Paradiacheopsis in Taiwan and 2 new records of Taiwan, Enerthenema 7’. Capillitium usually abundant, anastomosing ……………….....… 8 intermedium and Stemonitopsis subcaespitosa. 8. Surface net of capillitium present, over at least the lower portion; sporangia cylindrical ……………………………….. -
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Yüzüncü Yıl ÜniversitesiFen Bilimleri Enstitüsü Dergisi Cilt 26, Sayı 1 (Nisan), 1-10, 2021 Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi http://dergipark.gov.tr/yyufbed Research Article (Araştırma Makalesi) Myxomycetes Growing on Culture Logs Pleurotus ostreatus (Jacq.) P. Kumm. and Lentinula edodes (Berk.) Pegler Gönül EROĞLU*1, Sinan ALKAN2, Gıyasettin KAŞIK1 1Selçuk University, Faculty of Science, Department of Biology, 42130, Konya, Turkey 2Selçuk University, Çumra School of Applied Sciences, Organic Agriculture Administration Department, 42500, Konya, Turkey Gönül EROĞLU, ORCID No: 0000-0001-6323-2077, Sinan ALKAN, ORCID No: 0000-0001-7725-1957, Gıyasettin KAŞIK, ORCID No: 0000-0001-8304-6554 *Corresponding author e-mail: [email protected] Article Info Abstract: In this study, it was aimed to identify myxomycetes that develop on natural and synthetic logs used in culture mushroom cultivation. For this study, the logs brought Received: 17.07.2020 from three different regions (Sızma village-Konya, Hadim-Konya, Yenice-Karabük) in Accepted: 22.02.2021 2015 and the synthetic logs were applied the procedure required for culture mushroom Published April 2021 cultivation and then the spawn of Pleurotus ostreatus (Jacq.) P. Kumm. and Lentinula DOI: edodes (Berk.) Pegler were inoculated to the logs. The inoculated logs were taken to the Keywords mushroom growing room where climatic conditions such as humidity, temperature and Cultivated mushroom, lighting were provided automatically. While checking the growth of the cultivated Myxomycetes, fungi, it was observed that the myxomycetes plasmodium and sporocarp also developed Moist chamber culture on the culture logs. Myxomycetes develop on organic plant debris, which is their natural environment, and are also developed in the laboratory using the moist chamber technique. -
Biodiversity of Plasmodial Slime Moulds (Myxogastria): Measurement and Interpretation
Protistology 1 (4), 161–178 (2000) Protistology August, 2000 Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation Yuri K. Novozhilova, Martin Schnittlerb, InnaV. Zemlianskaiac and Konstantin A. Fefelovd a V.L.Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia, b Fairmont State College, Fairmont, West Virginia, U.S.A., c Volgograd Medical Academy, Department of Pharmacology and Botany, Volgograd, Russia, d Ural State University, Department of Botany, Yekaterinburg, Russia Summary For myxomycetes the understanding of their diversity and of their ecological function remains underdeveloped. Various problems in recording myxomycetes and analysis of their diversity are discussed by the examples taken from tundra, boreal, and arid areas of Russia and Kazakhstan. Recent advances in inventory of some regions of these areas are summarised. A rapid technique of moist chamber cultures can be used to obtain quantitative estimates of myxomycete species diversity and species abundance. Substrate sampling and species isolation by the moist chamber technique are indispensable for myxomycete inventory, measurement of species richness, and species abundance. General principles for the analysis of myxomycete diversity are discussed. Key words: slime moulds, Mycetozoa, Myxomycetes, biodiversity, ecology, distribu- tion, habitats Introduction decay (Madelin, 1984). The life cycle of myxomycetes includes two trophic stages: uninucleate myxoflagellates General patterns of community structure of terrestrial or amoebae, and a multi-nucleate plasmodium (Fig. 1). macro-organisms (plants, animals, and macrofungi) are The entire plasmodium turns almost all into fruit bodies, well known. Some mathematics methods are used for their called sporocarps (sporangia, aethalia, pseudoaethalia, or studying, from which the most popular are the quantita- plasmodiocarps). -
What Substrate Cultures Can Reveal: Myxomycetes and Myxomycete-Like Organisms from the Sultanate of Oman
Mycosphere 6 (3): 356–384(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/11 What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman Schnittler M1, Novozhilov YK2, Shadwick JDL3, Spiegel FW3, García-Carvajal E4, König P1 1Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, D-17487 Greifswald, Germany 2V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov St. 2, 197376 St. Petersburg, Russia 3University of Arkansas, Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA 4Royal Botanic Garden (CSIC), Plaza de Murillo, 2, Madrid, E-28014, Spain Schnittler M, Novozhilov YK, Shadwick JDL, Spiegel FW, García-Carvajal E, König P 2015 – What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6(3), 356–384, doi 10.5943/mycosphere/6/3/11 Abstract A total of 299 substrate samples collected throughout the Sultanate of Oman were analyzed for myxomycetes and myxomycete-like organisms (MMLO) with a combined approach, preparing one moist chamber culture and one agar culture for each sample. We recovered 8 forms of Myxobacteria, 2 sorocarpic amoebae (Acrasids), 19 known and 6 unknown taxa of protostelioid amoebae (Protostelids), and 50 species of Myxomycetes. Moist chambers and agar cultures completed each other. No method alone can detect the whole diversity of myxomycetes as the most species-rich group of MMLO. A significant overlap between the two methods was observed only for Myxobacteria and some myxomycetes with small sporocarps. -
Eukaryotic Microbiology Protistologists
The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 57(2), 2010 pp. 189–196 r 2010 The Author(s) Journal compilation r 2010 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2009.00466.x Invalidation of Hyperamoeba by Transferring its Species to Other Genera of Myxogastria ANNA MARIA FIORE-DONNO,a AKIKO KAMONO,b EMA E. CHAO,a MANABU FUKUIb and THOMAS CAVALIER-SMITHa aZoology Department, University of Oxford, South Parks Road, OX1 3PS Oxford, United Kingdom, and bThe Institute of Low Temperature Science, Hokkaido University, Kita 19, Nishi 8, Kita-ku, Sapporo, Hokkaido 010-0819, Japan ABSTRACT. The genus Hyperamoeba Alexeieff, 1923 was established to accommodate an aerobic amoeba exhibiting three life stages— amoeba, flagellate, and cyst. As more species/strains were isolated, it became increasingly evident from small subunit (SSU) gene phylo- genies and ultrastructure that Hyperamoeba is polyphyletic and its species occupy different positions within the class Myxogastria. To pinpoint Hyperamoeba strains within other myxogastrid genera we aligned numerous myxogastrid sequences: whole small subunit ribo- somal (SSU or 18S rRNA) gene for 50 dark-spored (i.e. Stemonitida and Physarida) Myxogastria (including a new ‘‘Hyperamoeba’’/ Didymium sequence) and a 400-bp SSU fragment for 147 isolates assigned to 10 genera of the order Physarida. Phylogenetic analyses show unambiguously that the type species Hyperamoeba flagellata is a Physarum (Physarum flagellatum comb. nov.) as it nests among other Physarum species as robust sister to Physarum didermoides. Our trees also allow the following allocations: five Hyperamoeba strains to the genus Stemonitis; Hyperamoeba dachnaya, Pseudodidymium cryptomastigophorum, and three other Hyperamoeba strains to the genus Didymium; and two further Hyperamoeba strains to the family Physaridae. -
Distribution and Diversity of Myxomycetes in Tiantangzhai National Forest Park, China
Distribution and diversity of myxomycetes in Tiantangzhai National Forest Park, China Min Li1,*, Gaowei Wang1,2,*, Yang Gao1,3, Mingzhu Dou1, Ziqi Wang1, Shuzhen Yan1 and Shuanglin Chen1 1 College of Life Sciences, Nanjing Normal University, Nanjing, China 2 Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China 3 Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China * These authors contributed equally to this work. ABSTRACT Although myxomycetes are ubiquitous in terrestrial ecosystems, studies on their distribution and diversity in subtropical humid forests are still lacking. Field collections and moist chamber cultures were conducted from May to October within a two-year period in the Tiantangzhai National Forest Park of China. A total of 1,492 records representing 73 species belonging to 26 genera were obtained, of which 243 records/37 species were from field collections, and 1,249 records/52 species were from moist chamber cultures. Among the specimens obtained by culturing, 896 records/38 species and 353 records/37 species were obtained from living bark and ground litter, respectively. ANOVA showed that the sampling months had significant impacts on collection of myxomycetes from field and those that inhabit litter. An LEfSe analysis indicated that Arcyria was significantly abundant in August, while Stemonitis and Physarum were more abundant in July when collected from field. An RDA analysis showed that temperature was the main factor that affected the Submitted 20 April 2021 litter-inhabiting myxomycetes. The ANOVA indicated that forest type was the Accepted 4 August 2021 significant factor for bark-inhabiting myxomycetes. -
Some Critically Endangered Species from Turkey
Fungal Conservation issue 4: February 2014 Fungal Conservation Note from the Editor This issue of Fungal Conservation is being put together in the glow of achievement associated with the Third International Congress on Fungal Conservation, held in Muğla, Turkey in November 2013. The meeting brought together people committed to fungal conservation from all corners of the Earth, providing information, stimulation, encouragement and general happiness that our work is starting to bear fruit. Especial thanks to our hosts at the University of Muğla who did so much behind the scenes to make the conference a success. This issue of Fungal Conservation includes an account of the meeting, and several papers based on presentations therein. A major development in the world of fungal conservation happened late last year with the launch of a new website (http://iucn.ekoo.se/en/iucn/welcome) for the Global Fungal Red Data List Initiative. This is supported by the Mohamed bin Zayed Species Conservation Fund, which also made a most generous donation to support participants from less-developed nations at our conference. The website provides a user-friendly interface to carry out IUCN-compliant conservation assessments, and should be a tool that all of us use. There is more information further on in this issue of Fungal Conservation. Deadlines are looming for the 10th International Mycological Congress in Thailand in August 2014 (see http://imc10.com/2014/home.html). Conservation issues will be featured in several of the symposia, with one of particular relevance entitled "Conservation of fungi: essential components of the global ecosystem”. There will be room for a limited number of contributed papers and posters will be very welcome also: the deadline for submitting abstracts is 31 March. -
<I>Stemonitaceae, Myxomycetes</I>
MYCOTAXON Volume 108, pp. 205–211 April–June 2009 Stemonaria fuscoides (Stemonitaceae, Myxomycetes): a new record for Brazil Glauciane Damasceno1, Antônia Aurelice Aurélio Costa2, José Zanon De Oliveira Passavante3 & Laise De Holanda Cavalcanti2 [email protected] 1Programa de pós-graduação em Biologia de Fungos, Departamento de Micologia, 2Laboratório de Myxomycetes, Departamento de Botânica, & 3Laboratório de Fitoplâncton, Departamento de Oceanografia Centro de Ciências Biológicas, Universidade Federal de Pernambuco 50.670-420 Recife, PE, Brazil Abstract — Studies are being carried out in Brazilian mangroves with the aim of contributing to the knowledge of myxomycetes from ecosystems associated with the Atlantic forest. A total of 330 moist chamber cultures were prepared with aerial litter, ground litter, tree bark, and small woody twigs of Conocarpus erectus (Combretaceae), Rhizophora mangle (Rhizophoraceae), and Acrostichum aureum (Polypodiaceae). Four specimens of Stemonaria fuscoides were obtained from the cultures prepared with R. mangle and C. erectus. Previously, Stemonaria was represented in Brazil only by S. longa, cited for the North (Amazonas State), Northeast (Bahia, Pernambuco, Ceará and Piauí States), Southeast (Rio de Janeiro and São Paulo States), and South (Paraná State), and S. irregularis, cited for the states of Ceará and Pernambuco. Stemonaria fuscoides is recorded for the first time for the Neotropics and in a mangrove environment. Key words — Stemonitales, taxonomy, myxobiota Introduction The family Stemonitaceae includes 16 genera, of which Stemonitis Gled. and Comatricha Preuss are cited most often in the literature. Stemonaria Nann.- Bremek. et al. was proposed to accommodate those species in the family that were not well placed in Stemonitis, Comatricha, Stemonitopsis (Nann.-Bremek.) Nann.-Bremek., or Symphytocarpus Ing. -
Towards a Phylogenetic Classification of the Myxomycetes
Phytotaxa 399 (3): 209–238 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.399.3.5 Towards a phylogenetic classification of the Myxomycetes DMITRY V. LEONTYEV1*¶, MARTIN SCHNITTLER2¶, STEVEN L. STEPHENSON3, YURI K. NOVOZHILOV4 & OLEG N. SHCHEPIN4 1Department of Botany, H.S. Skovoroda Kharkiv National Pedagogical University, Valentynivska 2, Kharkiv 61168 Ukraine. 2Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, Greifswald 17487, Germany. 3Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA. 4Laboratory of Systematics and Geography of Fungi, The Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Street 2, 197376 St. Petersburg, Russia. * Corresponding author E-mail: [email protected] ¶ These authors contributed equally to this work. In memoriam Irina O. Dudka Abstract The traditional classification of the Myxomycetes (Myxogastrea) into five orders (Echinosteliales, Liceales, Trichiales, Stemonitidales and Physarales), used in all monographs published since 1945, does not properly reflect evolutionary re- lationships within the group. Reviewing all published phylogenies for myxomycete subgroups together with a 18S rDNA phylogeny of the entire group serving as an illustration, we suggest a revised hierarchical classification, in which taxa of higher ranks are formally named according to the International Code of Nomenclature for algae, fungi and plants. In addition, informal zoological names are provided. The exosporous genus Ceratiomyxa, together with some protosteloid amoebae, constitute the class Ceratiomyxomycetes. The class Myxomycetes is divided into a bright- and a dark-spored clade, now formally named as subclasses Lucisporomycetidae and Columellomycetidae, respectively. -
Mixobiota Do Parque Nacional Serra De Itabaiana
Acta bot. bras. 23(3): 644-656. 2009. Mixobiota do Parque Nacional Serra de Itabaiana, SE, Brasil: Stemonitales1 Juciara Gouveia Tenório2,4, Maria de Fátima de Andrade Bezerra2, Antônia Aurelice Aurélio Costa3 e Laise de Holanda Cavalcanti3 Recebido em 14/03/2008. Aceito em 17/09/2008 RESUMO – (Mixobiota do Parque Nacional Serra de Itabaiana, SE, Brasil: Stemonitales). Como parte do inventário da mixobiota do Parque Nacional Serra de Itabaiana, Sergipe, Nordeste do Brasil (10º40’52’’S e 37º25’15’’W, 180-670 m.s.m., 7.966 ha), avaliou-se a riqueza, abundância e constância das Stemonitales presentes em diferentes microhabitats e níveis altitudinais. Esporocarpos foram coletados durante 20 meses consecutivos, desde abril/2002 até dezembro/2003; amostras de substratos foram também coletadas para cultivo em câmara-úmida. Coleções do material estudado foram depositadas no Herbário UFP. Foram identificadas 14 espécies de Stemonitidaceae, pertencentes aos gêneros Collaria, Comatricha, Lamproderma, Stemonitis e Stemonitopsis. As espécies foram organizadas em ordem alfabética em uma lista comentada e apresenta-se sua distribuição geográfica no Brasil. Representantes da ordem estiveram presentes em todos os microhabitats analisados, predominando as lignícolas, seguidas das foliícolas. Stemonitis flavogenita foi a única espécie areícola, comportando-se também como suculentícola. Nos cultivos em câmara-úmida, registrou-se uma espécie fimícola (Comatricha mirabilis) e três suculentícolas (Collaria arcyrionema, Comatricha laxa e Stemonitis fusca). As espécies mais abundantes foram S. fusca (constante), Stemonitis smithii, Stemonitis axifera e Stemonitis splendens (acessórias), presentes nos diferentes níveis altitudinais. Exceto C. mirabilis, todos os gêneros e espécies constituem primeira referência para o estado de Sergipe. Palavras-chave: diversidade, microhabitats, Myxomycetes, Neotrópicos ABSTRACT – (Myxobiota from the Serra de Itabaiana National Park, Sergipe State, Brazil: Stemonitales). -
Plasmodial Slime Molds in Alberta by Jim Posey
Iris No. 70 • March 2013 The Alberta Native Plant Council Newsletter Plasmodial Slime Molds in Alberta by Jim Posey All Elements—the most likely place for a definitive list—and could not find any. Turning to the Web, I found several references to an article by Richardson and Currah, “Myxomycetes of Alberta,” and on the University of Alberta Libraries website I finally tracked down a link to it. It turns out that seventy- some species have been collected here. It is likely that there are more, yet to be documented. These Web resources stand out for the information they provide about these species: • The Eumycetozoan Project at the University of Arkansas: http:// slimemold.uark.edu Fuligo septica growing on forbs Photo D. & M. McIvor (Jan. 18, 2013) Plasmodial slime molds sound lovely, demonstrated the ability to navigate • Lado, C. (2005-2013). An online don’t they? Bob MacDonald, on Quirks mazes or to find the shortest network nomenclatural information system and Quarks, characterized them as of paths connecting multiple points of Eumycetozoa. http://www. single-cell organisms the size of a efficiently, plasmodial slime might nomen.eumycetozoa.com Real pizza. That piqued my interest. If one never have made the news, although Jardín Botánico, CSIC. Madrid species, Physarum polycephalum, had not Fuligo septica, or dog vomit slime mold, © 2005-2013. (Jan. 18, 2013) is popular on the Web and does occur in Alberta. • Mushroom Observer species In this Issue . Interesting! list of Myxomycota: http:// mushroomobserver.org/species_ Whitehorse Wildland Park ............................................. 6 I decided to ask how many Discovery of Impoverished Pinweed .........................