Supplementary Information

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Information Supplementary Information Table S1. The characteristics of known AMPs derived from milk proteins. Boman Net Isoelectric Molecular Instability Aliphatic Sequence AMP Origin/Position GRAVY Half Life Index Charge Point (pH) Mass (Da) Index Index (kcal/mol) Mamalian 1 h RPKHPIK f(1–7) of αS1-casein 3.1 11.17 875.0 −2.029 19.84 55.71 Yeast 2 min 3.68 E.coli 2 min Mamalian 1 h RPKHPIKHQGLPQEVL Isracidin f(1–23) of α -casein 2.2 9.99 2764.2 −0.987 46.49 97.39 Yeast 2 min 2.42 NENLLRF S1 E.coli 2 min Mamalian 10 h GLPQE f(10–14) of αS1-casein −1.0 4.00 542.5 −1.040 123.56 78.00 Yeast >20 h 1.29 E.coli >20 h Mamalian 20 h IKHQGLPQE f(6–14) of αS1-casein 0.1 6.75 1049.1 −1.256 63.66 86.67 Yeast 30 min 1.92 E.coli >10 h Mamalian 100 h VLNENLLR f(15–22) of αS1-casein 0.0 5.97 970.1 0.075 32.83 182.5 Yeast >20 h 2.02 E.coli >10 h Mamalian 5.5 h LRLKKYKVPQL αS1-casein, gen. var. B-8P f(99–109) 4 10.46 1385.7 −0.636 46.18 132.73 Yeast 3 min 1.67 E.coli 2 min Mamalian 1.9 h SDIPNPIGSENSEK f(180–193) of αS1-casein −2 4.14 1486.5 −1.314 32.69 55.71 Yeast >20 h 2.89 E.coli >10 h KTKLTEEEKNRLNFLK Mamalian 1.3 h casocidin-I f(150–188) of α -casein gen. KISQRYQKFALPQYLK S2 7.1 10.08 4869.6 −1.323 27.85 70.00 Yeast 3 min 2.83 var. A TVYQHQK E.coli 2 min Mamalian 100 h VYQHQKAMKPWIQPK f(183–206) α -casein gen. var. A 5.1 10.12 3002.6 −0.783 2.25 72.92 Yeast >20 h 1.37 TKVIPYVRY S2 E.coli >10 h Mamalian 5.5 h LKKISQ f(165–170) of ovine αS2-casein 2.0 10.00 715.8 −0.633 12.13 130.00 Yeast 3 min 1.7 E.coli 2 min Mamalian 100 h VYQHQKAMKPWIQPK f(183–207) of bovine α -casein 5.1 10.12 3115.7 −0.600 2.56 85.60 Yeast >20 h 1.12 TKVIPYVRYL S2 E.coli >10 h S2 Table S1. Cont. Boman Net Isoelectric Molecular Instability Aliphatic Sequence AMP Origin/Position GRAVY Half Life Index Charge Point (pH) Mass (Da) Index Index (kcal/mol) Mamalian 5.5 h LKKISQRYQKFALPQY f(164–179) of bovine αS2-casein 4.0 10.17 2011.4 −0.938 25.45 79.38 Yeast 3 min 2.02 E.coli 2 min Mamalian >20 h PYVRYL f(203–208) of ovine αS2-casein 1.0 9.00 809.9 −0.117 −4.23 113.33 Yeast >20 h 1.04 E.coli ? Mamalian 1.3 h KTVYQHQKAMKPWIQ f(181–207) of ovine α -casein 6.1 10.22 3345.0 −0.726 3.11 79.26 Yeast 3 min 1.33 PKTKVIPYVRYL S2 E.coli 3 min Mamalian 5.5 LKTVYQHQKAMKPWI f(180–207) of ovine α -casein 6.1 10.22 3458.22 −0.564 0.32 90.36 Yeast 3min 1.11 QPKTKVIPYVRYL S2 E.coli 3min ALPQYLKTVYQHQKA Mamalian 4.4 h MKPWIQPKTKVIPYVR f(175–207) of ovine αS2-casein 6.1 10.1 4030.8 −0.503 11.18 91.52 Yeast >20 min 0.91 YL E.coli >10 min QKFALPQYLKTVYQHQ Mamalian 0.8 h KAMKPWIQPKTKVIPY f(172–207) of ovine αS2-casein 7.1 10.17 4434.3 −0.589 11.08 83.89 Yeast 10 min 1.06 VRYL E.coli 10 h LKKISQRYQKFALPQY Mamalian 5.5 h LKTVYQHQKAMKPWI f(164–207) of ovine αS2-casein 10.1 10.35 5451.6 −0.700 9.69 86.36 Yeast 2 min 1.44 QPKTKVIPYVRYL E.coli 2 min Mamalian 5.5 h LKKISQRYQKFALPQ f(164–180) of ovine α -casein 4.0 10.17 2124.5 −0.659 24.54 97.65 Yeast 2 min 1.61 YL S2 E.coli 2 min Mamalian 2.8 h YQEPVLGPVRGPFPI β-casein, gen. var. A2-5P f(193–207) 0 6.00 1668.9 −0.033 80.71 90.67 Yeast 10 min 0.3 E.coli 2 min Mamalian 2.8 h YQEPVLGPVRGPFPIIV β-casein, genetic variant A2-5P f(193–209) 0 6.00 1881.2 0.482 67.4 120.00 Yeast 10 min −0.25 E.coli 2 min MAIPPKKNQDKTEIPTI Mamalian 30 h NTIASGEPTSTPTTEAV Kappacin f(107–169) of κ-casein gen. Yeast 20 h −7.0 4.04 6707.4 −0.370 64.17 77.66 1.55 ESTVATLEDSPEVIESPP var. A E.coli 10 h EINTVQVTSTAV S3 Table S1. Cont. Boman Net Isoelectric Molecular Instability Aliphatic Sequence AMP Origin/Position GRAVY Half Life Index Charge Point (pH) Mass (Da) Index Index (kcal/mol) Mamalian 2.8 h YYQQKPVA f(42–49) of bovine κ-casein 1.0 8.50 996.1 −1.137 62.9 48.75 Yeast 10 min 1.38 E.coli 2 min Mamalian 100 h VQVTSTAV f(162–169) of bovine κ-casein 0.0 5.49 803.9 1.087 −11.29 121.25 Yeast >20 h 0.01 E.coli >10 h Mamalian 1.9 h STVATL f(141–146) of bovine κ-casein 0.0 5.24 590.6 1.267 8.33 130.00 Yeast >20 h −0.37 E.coli >10 h Mamalian 1.1 h FSDKIAK f(18–24) of bovine κ-casein 1.0 8.59 807.9 −0.429 −15.69 70.00 Yeast 3 min 1.93 E.coli 2 min Mamalian 20 h IQY f(28–30) of bovine κ-casein 0.0 6.09 422.79 −0.100 −18.47 130.00 Yeast >30 min 0.25 E.coli >10 h Mamalian 20 h YVL f(30–32) of bovine κ-casein 0.0 6.09 393.51 2.233 6.67 226.67 Yeast 30 min −2.59 E.coli >10 h Mamalian 1 h EIPT f(118–121) of bovine κ-casein −1.0 3.85 458.54 −0.325 3.85 97.50 Yeast 30 min 1.11 E.coli >10 h Mamalian 100 h VESTVATL f(139–146) of bovine κ-casein −1.0 4.00 818.9 1.038 32.83 133.75 Yeast >20 h 0.08 E.coli >10 h Mamalian >20 h PAAVRSPAQILQ f(64–75) of bovine κ-casein 1.0 10.18 1250.4 0.200 157.72 114.17 Yeast >20 h 0.84 E.coli ? Mamalian 4.4 h AVESTVATLEDSPEVIE f(136–156) of bovine κ-casein −6.0 3.40 2199.3 −0.243 134.70 88.10 Yeast >20 h 1.54 SPPE E.coli >10 h Mamalian 1h LTD1-f(1–5) of α-laktoalbumin, gen. EQLTK 0.0 6.10 617.7 −1.560 46.52 78.00 Yeast 30 min 3.11 var. B E.coli >10 h S4 Table S1. Cont. Boman Net Isoelectric Molecular Instability Aliphatic Sequence AMP Origin/Position GRAVY Half Life Index Charge Point (pH) Mass (Da) Index Index (kcal/mol) Mamalian >30 h LDT 2, α-chain f(17–31) of GYGGVSLPEWVCTTF −1.0 4.00 1615.8 0.453 44.95 64.67 Yeast >20 h −0.46 α- laktoalbumin, gen. var. B E.coli >10 h Mamalian 4.4 h LDT 2, β-chain f(109–114) of ALCSEK 0.0 6.04 649.7 −0.017 40.43 81.67 Yeast >20 h 1.29 α-laktoalbumin, . gen. varB E.coli >10 h Mamalian 1.2 h LDC, α-chain f(61–68) of CKDDQNPH −1.0 5.21 956.0 −2.525 5.15 0.00 Yeast >20 h 4.81 α-laktoalbumin, gen. var. B E.coli >10 h Mamalian 20 h LDC, β-chain chain f(75–80) of ISCDKF 0.0 5.83 711.8 0.267 80.62 65.00 Yeast 30 min 1.41 α-laktoalbumin, gen. var. B E.coli >10 h Mamalian 100 h VAGTWY f(15–20) β-laktoglobulin, gen. var. A 0.0 5.49 695.7 0.450 −30.87 65.00 Yeast >20 h −1.06 E.coli >10 h Mamalian 20 h IPAVFK f(78–83) β-laktoglobulin, gen. var. A 1.0 8.75 673.8 1.300 10.58 130.00 Yeast 30 min −1.36 E.coli >10 h Mamalian 4.4 h AASDISLLDAQSAPLR f(25–40) β-laktoglobulin, gen. var. A −1.0 4.21 1627.8 0.256 60.91 122.50 Yeast >20 h 1.32 E.coli >10 h Mamalian 100 h VLVLDTDYK f(92–100) β-laktoglobulin, gen.var. A −1.0 4.21 1065.2 0.344 −7.81 151.11 Yeast >20 h 0.86 E.coli >10 h Mamalian 1.1 h FKCRRWQWRMKKLG bovine lactoferricin B f(17–41) 7.9 11.84 3125.8 −0.576 77.92 50.80 Yeast 3 min 2.75 APSITCVRRAF of lactoferrin E.coli 2 min Mamalian 4.4 h APRKNVRW f(1–8) of lactoferrin 3.0 12.01 1026.2 −1.613 95.00 48.75 Yeast >20 h 4.23 E.coli >10 h Mamalian 1.1 h FKCRRWQWRMKKLG f(17–42) of lactoferrin 7.9 11.84 3196.9 −0.485 75.31 52.69 Yeast 3 min 2.57 APSITCVRRAFA E.coli 2 min S5 Table S1.
Recommended publications
  • Purification and Identification of a Binding Protein for Pancreatic
    Biochem. J. (2003) 372, 227–233 (Printed in Great Britain) 227 Purification and identification of a binding protein for pancreatic secretory trypsin inhibitor: a novel role of the inhibitor as an anti-granzyme A Satoshi TSUZUKI*1,2,Yoshimasa KOKADO*1, Shigeki SATOMI*, Yoshie YAMASAKI*, Hirofumi HIRAYASU*, Toshihiko IWANAGA† and Tohru FUSHIKI* *Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and †Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku, Sapporo 060-0818, Japan Pancreatic secretory trypsin inhibitor (PSTI) is a potent trypsin of GzmA-expressing intraepithelial lymphocytes in the rat small inhibitor that is mainly found in pancreatic juice. PSTI has been intestine. We concluded that the PSTI-binding protein isolated shown to bind specifically to a protein, distinct from trypsin, on from the dispersed cells is GzmA that is produced in the the surface of dispersed cells obtained from tissues such as small lymphocytes of the tissue. The rGzmA hydrolysed the N-α- intestine. In the present study, we affinity-purified the binding benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT), and the BLT protein from the 2 % (w/v) Triton X-100-soluble fraction of hydrolysis was inhibited by PSTI. Sulphated glycosaminoglycans, dispersed rat small-intestinal cells using recombinant rat PSTI. such as fucoidan or heparin, showed almost no effect on the Partial N-terminal sequencing of the purified protein gave a inhibition of rGzmA by PSTI, whereas they decreased the inhi- sequence that was identical with the sequence of mouse granzyme bition by antithrombin III.
    [Show full text]
  • Enzymology of the Nematode Cuticle: a Potential Drug Target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2)
    Page, Antony P., Stepek, Gillian, Winter, Alan D., and Pertab, David (2014) Enzymology of the nematode cuticle: a potential drug target? International Journal for Parasitology: Drugs and Drug Resistance, 4 (2). pp. 133-141. ISSN 2211-3207. Copyright © 2014 The Authors http://eprints.gla.ac.uk/95064/ Deposited on: 14 July 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 133–141 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Invited Review Enzymology of the nematode cuticle: A potential drug target? ⇑ Antony P. Page , Gillian Stepek, Alan D. Winter, David Pertab Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK article info abstract Article history: All nematodes possess an external structure known as the cuticle, which is crucial for their development Received 7 April 2014 and survival. This structure is composed primarily of collagen, which is secreted from the underlying Received in revised form 14 May 2014 hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate Accepted 15 May 2014 that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required Available online 6 June 2014 both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The Keywords: excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine Nematode proteases, and these proteases are conserved across the nematode phylum and many are involved in Cuticle Collagen the moulting/exsheathment process.
    [Show full text]
  • Helical Domain That Prevents Access to the Substrate-Binding Cleft
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Researchprovided Article by Elsevier1193 - Publisher Connector The prosequence of procaricain forms an a-helical domain that prevents access to the substrate-binding cleft Matthew R Groves, Mark AJ Taylor, Mandy Scott, Nicola J Cummings Richard W Pickersgill* and John A Jenkins* Background: Cysteine proteases are involved in a variety of cellular processes Address: Department of Food Macromolecular including cartilage degradation in arthritis, the progression of Alzheimer’s Science, Institute of Food Research, Earley Gate, disease and cancer invasion: these enzymes are therefore of immense biological Whiteknights Road, Reading, RG6 6BZ, UK. importance. Caricain is the most basic of the cysteine proteases found in the *Corresponding authors. latex of Carica papaya. It is a member of the papain superfamily and is E-mail: john.jenkins@bbsrc.ac.uk homologous to other plant and animal cysteine proteases. Caricain is naturally richard.pickersgill@bbsrc.ac.uk expressed as an inactive zymogen called procaricain. The inactive form of the Key words: caricain, cysteine protease, density protease contains an inhibitory proregion which consists of an additional 106 modification, X-ray structure, zymogen N-terminal amino acids; the proregion is removed upon activation. Received: 25 June 1996 Results: The crystal structure of procaricain has been refined to 3.2 Å Revisions requested: 23 July 1996 Revisions received: 12 August 1996 resolution; the final model consists of three non-crystallographically related Accepted: 28 August 1996 molecules. The proregion of caricain forms a separate globular domain which binds to the C-terminal domain of mature caricain.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Chrystelle Bonnart
    UNIVERSITE TOULOUSE III – PAUL SABATIER U.F.R. Sciences T H E S E Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE TOULOUSE III Discipline : Physiopathologie moléculaire, cellulaire et intégrée Présentée et soutenue par Chrystelle Bonnart Le 20 novembre 2007 Etude fonctionnelle de LEKTI et de sa nouvelle cible, l’élastase 2 pancréatique Directeur de thèse : Pr Alain Hovnanian JURY Pr Alain Hovnanian, Président Pr Pierre Dubus, rapporteur Pr Michèle Reboud-Ravaux, rapporteur Dr Heather Etchevers, examinateur 2 Heureux sont les fêlés, car ils laissent passer la lumière… Michel Audiard 3 REMERCIEMENTS Tout d’abord, mes remerciements s’adressent à mon directeur de thèse, Alain Hovnanian, pour m’avoir accueillie dans son équipe, pour m’avoir rapidement fait confiance en me laissant une grande autonomie et pour m’avoir encouragée à participer à des congrès internationaux. Je tiens à remercier Pr Pierre Dubus et Pr Michèle Reboud-Ravaux pour m’avoir fait l’honneur d’évaluer ce travail de thèse. Je remercie également Dr Heather Etchevers pour sa présence dans le jury de thèse. Je remercie vivement les enseignant-chercheurs et professeurs de l’UPS que j’ai eu l’occasion de croiser pendant mon monitorat. Tout d’abord, merci à Estelle Espinos, tu as assumé ton rôle de tutrice avec brio, tu as été à mes côtés dans mes débuts hésitants, merci pour ta disponibilité. Merci à Martine Briet et Pascale Bélenguer, qui m’ont fait bénéficier de leur grande expérience de l’enseignement. Un merci particulier à Nathalie Ortega, que j’ai eu la chance de rencontrer dans ma dernière année de monitorat.
    [Show full text]
  • Guidance for Identification and Naming of Substance Under REACH
    Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 GUIDANCE Guidance for identification and naming of substances under REACH and CLP May 2017 Version 2.1 2 Guidance for identification and naming of substances under REACH and CLP Version 2.1 - May 2017 LEGAL NOTICE This document aims to assist users in complying with their obligations under the REACH and CLP regulations. However, users are reminded that the text of the REACH and CLP Regulations is the only authentic legal reference and that the information in this document does not constitute legal advice. Usage of the information remains under the sole responsibility of the user. The European Chemicals Agency does not accept any liability with regard to the use that may be made of the information contained in this document. Guidance for identification and naming of substances under REACH and CLP Reference: ECHA-16-B-37.1-EN Cat. Number: ED-07-18-147-EN-N ISBN: 978-92-9495-711-5 DOI: 10.2823/538683 Publ.date: May 2017 Language: EN © European Chemicals Agency, 2017 If you have any comments in relation to this document please send them (indicating the document reference, issue date, chapter and/or page of the document to which your comment refers) using the Guidance feedback form. The feedback form can be accessed via the EVHA Guidance website or directly via the following link: https://comments.echa.europa.eu/comments_cms/FeedbackGuidance.aspx European Chemicals Agency Mailing address: P.O. Box 400, FI-00121 Helsinki, Finland Visiting address: Annankatu 18, Helsinki, Finland Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 PREFACE This document describes how to name and identify a substance under REACH and CLP.
    [Show full text]
  • Human Elastase 1: Evidence for Expression in the Skin and the Identi®Cation of a Frequent Frameshift Polymorphism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Human Elastase 1: Evidence for Expression in the Skin and the Identi®cation of a Frequent Frameshift Polymorphism Ulvi Talas, John Dunlop,1 Sahera Khalaf , Irene M. Leigh, and David P. Kelsell Center for Cutaneous Research, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Whitechapel, London, U.K. Human pancreatic elastase 1 is a serine protease individuals with/without the keratoderma revealed a which maps to the chromosomal region 12q13 close sequence variant, which would result in a premature to a locus for an autosomal dominant skin disease, truncation of the protein. This sequence variant, diffuse nonepidermolytic palmoplantar keratoderma, however, did not segregate with the skin disease and, and was investigated as a possible candidate gene for indeed, was found to occur at a relatively high fre- this disorder. Expression of two elastase inhibitors, quency in the population. Individuals homozygous ela®n and SLPI, has been related to several hyper- for the variant do not have any obvious skin proliferative skin conditions. elastase 1 is functionally abnormalities. Based on the analysis of the secondary silent in the human pancreas but elastase 1 expres- structure of the translated putative protein, the sion at the mRNA level was detected in human truncation is unlikely to result in knock-out of the cultured primary keratinocytes. Antibody staining elastase, but may cause destabilization of the localized the protein to the basal cell layer of the enzyme±inhibitor complex. Key words: ela®n/keratino- human epidermis at a number of sites includingthe cyte/protein truncation/serine protease.
    [Show full text]
  • Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
    st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: dusan.turk@ijs.si two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations.
    [Show full text]
  • Peptidoglycan Crosslinking Relaxation Plays An
    Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, Sarah Dubrac To cite this version: Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, et al.. Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Vi- ability. PLoS ONE, Public Library of Science, 2011, 6 (2), pp.e17054. 10.1371/journal.pone.0017054. pasteur-02870016 HAL Id: pasteur-02870016 https://hal-pasteur.archives-ouvertes.fr/pasteur-02870016 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR- Dependent Cell Viability Aurelia Delaune1,2, Olivier Poupel1,2, Adeline Mallet3, Yves-Marie Coic4,5, Tarek Msadek1,2*, Sarah Dubrac1,2 1 Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France, 2 CNRS, URA 2172, Paris, France, 3 Institut Pasteur, Ultrastructural Microscopy Platform, Imagopole, Paris, France, 4 Institut Pasteur, Chemistry of Biomolecules, Department of Structural Biology and Chemistry, Paris, France, 5 CNRS, URA 2128, Paris, France Abstract The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen.
    [Show full text]
  • Design of Ultrasensitive Probes for Human Neutrophil Elastase Through Hybrid Combinatorial Substrate Library Profiling
    Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling Paulina Kasperkiewicza, Marcin Porebaa, Scott J. Snipasb, Heather Parkerc, Christine C. Winterbournc, Guy S. Salvesenb,c,1, and Marcin Draga,b,1 aDivision of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland; bProgram in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92024; and cCentre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand Edited* by Vishva M. Dixit, Genentech, San Francisco, CA, and approved January 15, 2014 (received for review October 1, 2013) The exploration of protease substrate specificity is generally possibilities. Here we demonstrate a general approach for the syn- restricted to naturally occurring amino acids, limiting the degree of thesis of combinatorial libraries containing unnatural amino acids, conformational space that can be surveyed. We substantially with subsequent screening and analysis of large sublibraries. We enhanced this by incorporating 102 unnatural amino acids to term this approach the Hybrid Combinatorial Substrate Library explore the S1–S4 pockets of human neutrophil elastase. This ap- (HyCoSuL). We demonstrate the utility of this approach in the proach provides hybrid natural and unnatural amino acid sequen- design of a highly selective substrate and activity-based probe. ces, and thus we termed it the Hybrid Combinatorial Substrate As a target protease, we selected human neutrophil elastase Library. Library results were validated by the synthesis of individ- (EC 3.4.21.37) (NE), a serine protease restricted to neutrophil ual tetrapeptide substrates, with the optimal substrate demon- azurophil granules (14).
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Midgut proteases from larval spodoptera littoralis (lepidoptera: noctutoae) Lee, Michael James How to cite: Lee, Michael James (1992) Midgut proteases from larval spodoptera littoralis (lepidoptera: noctutoae), Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5739/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk MIDGUT PROTEASES FROM LARVAL SPODOPTERA LITTORALIS (LEPIDOPTERA: NOCTUTOAE) By Michael James Lee B.Sc. (Dunelm) The copyright of this thesis rests with the author. No quotation from it should be pubhshed without his prior written consent and information derived from it should be acknowledged. Being a thesis submitted for the degree of Doctor of Philosophy of the University of Durham. November, 1992 Hatfield College University of Durham 6 APR 1993 DECLARATION I hereby declare that the work presented in this document is based on research carried out by me, and that no part has been previously submitted for a degree in this or any other university.
    [Show full text]
  • Massively Parallel Sequencing and Analysis of the Necator Americanus Transcriptome Cinzia Cantacessi University of Melbourne
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2010 Massively parallel sequencing and analysis of the Necator americanus transcriptome Cinzia Cantacessi University of Melbourne Makedonka Mitreva Washington University School of Medicine in St. Louis Aaron R. Jex University of Melbourne Neil D. Young University of Melbourne Bronwyn E. Campbell University of Melbourne See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Cantacessi, Cinzia; Mitreva, Makedonka; Jex, Aaron R.; Young, Neil D.; Campbell, Bronwyn E.; Hall, Ross S.; Doyle, Maria A.; Ralph, Stuart A.; Rabelo, Elida M.; Ranganathan, Shoba; Sternberg, Paul W.; Loukas, Alex; and Gasser, Robin B., ,"Massively parallel sequencing and analysis of the Necator americanus transcriptome." PLoS Neglected Tropical Diseases.,. e684. (2010). https://digitalcommons.wustl.edu/open_access_pubs/734 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu. Authors Cinzia Cantacessi, Makedonka Mitreva, Aaron R. Jex, Neil D. Young, Bronwyn E. Campbell, Ross S. Hall, Maria A. Doyle, Stuart A. Ralph, Elida M. Rabelo, Shoba Ranganathan, Paul W. Sternberg, Alex Loukas, and Robin B. Gasser This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/734 Massively Parallel Sequencing and Analysis of the Necator americanus Transcriptome Cinzia Cantacessi1, Makedonka Mitreva2*, Aaron R. Jex1, Neil D. Young1, Bronwyn E. Campbell1, Ross S.
    [Show full text]