Fecal Elastase-1 Is Superior to Fecal Chymotrypsin in the Assessment of Pancreatic Involvement in Cystic Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

Fecal Elastase-1 Is Superior to Fecal Chymotrypsin in the Assessment of Pancreatic Involvement in Cystic Fibrosis Fecal Elastase-1 Is Superior to Fecal Chymotrypsin in the Assessment of Pancreatic Involvement in Cystic Fibrosis Jaroslaw Walkowiak, MD, PhD*; Karl-Heinz Herzig, MD, PhD§; Krystyna Strzykala, M ChemA, Dr Nat Sci*; Juliusz Przyslawski, M Phar, Dr Phar‡; and Marian Krawczynski, MD, PhD* ABSTRACT. Objective. Exocrine pancreatic function ystic fibrosis (CF) is the most common cause in patients with cystic fibrosis (CF) can be evaluated by of exocrine pancreatic insufficiency in child- direct and indirect tests. In pediatric patients, indirect hood. Approximately 85% of CF patients are tests are preferred because of their less invasive charac- C 1,2 pancreatic insufficient (PI). Thus, the assessment of ter, especially in CF patients with respiratory disease. exocrine pancreatic function in CF patients is of great Fecal tests are noninvasive and have been shown to have clinical importance. For the evaluation, both direct a high sensitivity and specificity. However, there is no 3,4 comparative study in CF patients. Therefore, the aim of and indirect tests are used. The gold standard is the present study was to compare the sensitivity and the the secretin-pancreozymin test (SPT) or one of its specificity of the fecal elastase-1 (E1) test with the fecal modifications. However, this test is invasive, time chymotrypsin (ChT) test in a large cohort of CF patients consuming, expensive, and not well standardized in and healthy subjects (HS). children. Therefore, its use is limited to qualified Design. One hundred twenty-three CF patients and gastroenterologic centers. 105 HS were evaluated. In all subjects, E1 concentration Several indirect tests, such as serum tests—amy- and ChT activity were measured. In the CF group, fecal lase, lipase, trypsin, and the pancreolauryl or benti- fat excretion was also determined. The sensitivity and romide test, 72-hour fecal fat analysis, fecal elastase-1 specificity of the fecal E1 test and ChT test were com- (E1) and chymotrypsin (ChT) analysis, and breath pared. tests—have been developed. The sensitivity of these Results. With a cutoff level of 3 U/g, ChT specificity in HS was similar to that of E1, but E1 sensitivity in CF tests is limited in pancreatic-sufficient (PS) CF pa- 3,4 patients was significantly higher (90.2% vs 81.3%). With tients. The use of the SPT in children, on the other a cutoff level of 6 U/g, ChT and E1 sensitivity in CF hand, is controversial because of its invasive charac- patients was identical, but E1 specificity in HS was again ter, especially in CF patients with pulmonary dis- significantly higher (98.1% vs 90.5%). In all CF patients ease. Thus, in pediatric CF patients, indirect tests are with severe steatorrhea (>15 g/d), E1 concentrations were commonly used. Among the indirect tests, because of abnormal and ChT activity was lower than 3 U/g. In their low invasiveness and high sensitivity and spec- contrast, in pancreatic-sufficient patients and patients ificity, the measurement of pancreatic enzymes in < with mild steatorrhea ( 15 g/d), the E1 sensitivity was feces seems to be the most appropriate one. significantly higher compared with ChT (69.2% vs Determination of fecal ChT has been an accepted 41.0%). indirect test in the pediatric routine for several Conclusions. The fecal E1 test is superior to fecal ChT 5–8 determination in the assessment of CF pancreatic in- years. However, because of the colorimetric volvement in pancreatic-sufficient patients and those pa- method, there is an interference with the enzyme tients with mild steatorrhea. Pediatrics 2002;110(1). URL: substitution therapy.9 Thus, pancreatic enzyme sup- http://www.pediatrics.org/cgi/content/full/110/1/e7; fecal plementation should be stopped for at least 3 days. elastase-1, fecal chymotrypsin, exocrine pancreatic func- On the contrary, fecal E1 test (enzyme-linked immu- tion, cystic fibrosis. nosorbent assay [ELISA]) is specific for the human enzyme and not influenced by exogenous enzyme 9–11 ABBREVIATIONS. CF, cystic fibrosis; PI, pancreatic insufficient; supplementation. In adult chronic pancreatitis SPT, secretin-pancreozymin test; E1, elastase-1; ChT, chymotryp- patients, the determination of E1 and ChT were usu- sin; PS, pancreatic sufficient; ELISA, enzyme-linked immunosor- ally performed in small groups of patients and bent assay; HS, healthy subjects. healthy subjects (HS).9,12–15 Moreover, the statistical analysis was conducted only in 1 of them.15 There- fore, the aim of the study was to compare the sensi- From the *Institute of Pediatrics and ‡Department of Bromatology and tivity and the specificity of the fecal E1 test with the Human Nutrition, Karol Marcinkowski University of Medical Sciences, fecal ChT test in a large cohort of CF patients and HS. Poznan, Poland; and §A.I. Virtanen-Institute for Molecular Sciences, De- partment of Medicine, University of Kuopio, Kupio, Finland. Received for publication Aug 14, 2001; accepted Mar 14, 2002. MATERIALS AND METHODS Reprint requests to (J.W.) Institute of Pediatrics, Karol Marcinkowski Uni- One hundred twenty-three patients with CF (60 females and 63 versity of Medical Sciences, Szpitalna 27/33, 60–572 Poznan, Poland. E- males), aged from 7 months to 25 years (meanϩSEM: 8.8ϩ0.4 mail: [email protected] years), were evaluated during 1997–2000. The diagnosis of the PEDIATRICS (ISSN 0031 4005). Copyright © 2002 by the American Acad- disease was based on clinical manifestation, chloride sweat con- emy of Pediatrics. centration, and confirmed by CFTR gene analysis (29 most com- http://www.pediatrics.org/cgi/content/full/110/1/Downloaded from www.aappublications.org/newse7 by guestPEDIATRICS on September Vol.29, 2021 110 No. 1 July 2002 1of4 mon mutations). In all patients, fecal E1 concentration, ChT activ- cretion lower than 15 g/d, fecal E1 and fecal ChT ity, and fecal fat excretion were measured. During the study, no tests were compared in a similar manner. In 27 patient suffered an acute episode of diarrhea. The control group (69.2%) of 39 selected patients, fecal E1 concentration (HS) consisted of 105 children and adolescents (55 females and 50 ␮ males) aged from 7 months to 40 years (meanϩSEM: 13.3ϩ0.5 was lower than 200 g/g and ChT activity was lower years) without any gastrointestinal diseases. In all HS, E1 concen- than 6 U/g. With a cutoff level of 3 U/g, ChT was trations were determined. The protocol of the investigation was abnormal in 16 (41.0%) patients. The E1 sensitivity in approved by the Ethical Committee of the Medical Faculty, Karol PS patients and patients with mild steatorrhea (Յ15 Marcinkowski University of Medical Sciences in Poznan, Poland. Fecal E1 was measured by an ELISA (ScheBo⅐Tech, Giessen, g/d) was significantly higher than that of ChT with Germany).16 Fecal ChT was measured by colorimetric method a cutoff level of 3 U/g (P Ͻ .006). In all patients with (Roche Diagnostics GmbH, Mannheim, Germany).17 For addi- severe steatorrhea (Ͼ15 g/d), fecal E1 concentration tional analysis, the mean value from 3 nonrelated measurements was abnormal, and ChT activity was lower than 3 was taken. Fecal fat was analyzed according to van de Kamer et al.18 The U/g. diet regimens were standardized for age, weight, and sex before and during the 3-day collection of stool.19 Daily fecal fat excretion was defined as a mean of a 72-hour collection period. According to DISCUSSION fecal fat excretion, CF patients were defined as PI (7 month-10 Fecal ChT activity in randomly collected stool years: Ն5 g/d; above 10 years Ն7 g/d) or PS (7 month-10 years: specimen of CF patients poorly correlates to pancre- Ͻ Ͻ 20–22 5 g/d; above 10 years 7 g/d). In addition, steatorrhea was 7 defined as a mild (Ͻ15 g/d) and severe (Ն15 g/d). Fecal E1 atic output measured by direct stimulation by SPT. concentrations below 200 ␮g/g of feces and ChT activities lower In contrast, the correlation between fecal E1 concen- than 3 U/g were considered to be abnormal. Because fecal ChT tration and single parameters of secretin-cholecysto- activity between 3 U/g and 6 U/g of feces is indicative of exocrine kinin has been shown to be highly significant, both in pancreatic insufficiency, the analysis for cutoff level of 6 U/g was CF patients24 and HS.9 The day-to-day variation in also performed. The sensitivity and specificity of the fecal E1 test and ChT test were compared. For the statistical evaluation of the fecal ChT activity is a disadvantage of this meth- results of fecal tests, the McNemar test was used.23 od,7,14 while fecal E1 concentrations seem to be more stable.14 Moreover, with the use of the fecal E1 test RESULTS (ELISA) exclusively endogenous enzyme release is Fecal E1 concentrations were abnormal in 2 (1.9%) measured. In the ChT test (colorimetric method), out of 105 HS and in 111 (90.2%) of 123 CF patients both endogenous and exogenous enzymes are eval- (Table 1). Fecal ChT activity was abnormal in 3 uated.9,11 The sensitivity of ChT test in CF patients (2.9%) HS and 100 (81.3%) CF patients with 3 U/g as has been shown to be high in PI patients and poor in a lower limit of normal, and in 10 (9.5%) HS and 111 those who are PS.6–8 More recently, fecal E1 test has (90.2%) CF patients with 6 U/g as a lower limit of been demonstrated to have very good sensitivity in normal. With a cutoff level of 3 U/g, ChT specificity PI CF patients.11,25–27 Yet, in milder forms of CF in HS was similar to that of E1, but E1 sensitivity in pancreatic insufficiency, the sensitivity of the test CF patients was significantly higher compared with was reduced.24,27 Therefore, one could expect a ChT (90.2% vs 81.3%; P Ͻ .006).
Recommended publications
  • Purification and Identification of a Binding Protein for Pancreatic
    Biochem. J. (2003) 372, 227–233 (Printed in Great Britain) 227 Purification and identification of a binding protein for pancreatic secretory trypsin inhibitor: a novel role of the inhibitor as an anti-granzyme A Satoshi TSUZUKI*1,2,Yoshimasa KOKADO*1, Shigeki SATOMI*, Yoshie YAMASAKI*, Hirofumi HIRAYASU*, Toshihiko IWANAGA† and Tohru FUSHIKI* *Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and †Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku, Sapporo 060-0818, Japan Pancreatic secretory trypsin inhibitor (PSTI) is a potent trypsin of GzmA-expressing intraepithelial lymphocytes in the rat small inhibitor that is mainly found in pancreatic juice. PSTI has been intestine. We concluded that the PSTI-binding protein isolated shown to bind specifically to a protein, distinct from trypsin, on from the dispersed cells is GzmA that is produced in the the surface of dispersed cells obtained from tissues such as small lymphocytes of the tissue. The rGzmA hydrolysed the N-α- intestine. In the present study, we affinity-purified the binding benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT), and the BLT protein from the 2 % (w/v) Triton X-100-soluble fraction of hydrolysis was inhibited by PSTI. Sulphated glycosaminoglycans, dispersed rat small-intestinal cells using recombinant rat PSTI. such as fucoidan or heparin, showed almost no effect on the Partial N-terminal sequencing of the purified protein gave a inhibition of rGzmA by PSTI, whereas they decreased the inhi- sequence that was identical with the sequence of mouse granzyme bition by antithrombin III.
    [Show full text]
  • Chymotrypsin: a Serine Protease Reaction Mechanism Step
    CHEM464/Medh,J.D. Catalytic Strategies Chymotrypsin: A serine protease • Covalent catalysis: temporary covalent modification of reactive • Hydrolyzes peptide bonds on the carboxyl side of group on enzyme active site Tyr, Phe, Trp, Met, Leu • Acid-Base catalysis: A molecule other than water is proton • Since peptide bond is highly unreactive, a strong donor or acceptor (nucleophilic or electrophilic attack) nucleophile is required for its hydrolysis • Metal ion catalysis: Involvement of metal ion in catalysis. A metal ion is an electrophile and (i) may stabilize a negative • Catalytic strategy is covalent modification and charge on an intermediate; (ii) by attracting electrons from acid-base catalysis water, renders water more acidic (prone to loose a proton); (iii) • Contains catalytic triad of Ser, His and Asp. Ser is may bind to substrate and reduce activation energy a nucleophile and participates in covalent • Catalysis by approximation: In reactions requiring more than modification, His is a proton acceptor (base), Asp one substrate, the enzyme facilitates their interaction by serving stabilizes His (and active site) by electrostatic as an adapter that increases proximity of the substrates to each interactions other Reaction Mechanism Step-wise reaction • Hydrolysis by chymotrypsin is a 2-step process • Enzyme active site is stabilized by ionic interactions • Step 1: serine reacts with substrate to form covalent between Asp and His and H-bond between His and Ser. ES complex • In the presence of a substrate, His accepts a proton from • Step 2: release of products from ES complex and Ser, Ser makes a nucleophilic attack on the peptide’s regeneration of enzyme carbonyl C converting its geometry to tetrahedral.
    [Show full text]
  • NS3 Protease from Flavivirus As a Target for Designing Antiviral Inhibitors Against Dengue Virus
    Genetics and Molecular Biology, 33, 2, 214-219 (2010) Copyright © 2010, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus Satheesh Natarajan Department of Biochemistry, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malayasia. Abstract The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of den- gue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein. Key words: antiviral inhibitor, drug discovery, multifunctional protein, NS3, protease. Received: March 4, 2009; Accepted: November 1, 2009. Introduction seven non-structural proteins involved in viral replication The genus Flavivirus in the family Flaviviridae con- and maturation (Henchal and Putnak, 1990; Kautner et al., tains a large number of viral pathogens that cause severe 1996). The virus-encoded protease complex NS2B-NS3 is morbidity and mortality in humans and animals (Bancroft, responsible for cleaving the NS2A/NS2B, NS2B/NS3, 1996).
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Human Elastase 1: Evidence for Expression in the Skin and the Identi®Cation of a Frequent Frameshift Polymorphism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Human Elastase 1: Evidence for Expression in the Skin and the Identi®cation of a Frequent Frameshift Polymorphism Ulvi Talas, John Dunlop,1 Sahera Khalaf , Irene M. Leigh, and David P. Kelsell Center for Cutaneous Research, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Whitechapel, London, U.K. Human pancreatic elastase 1 is a serine protease individuals with/without the keratoderma revealed a which maps to the chromosomal region 12q13 close sequence variant, which would result in a premature to a locus for an autosomal dominant skin disease, truncation of the protein. This sequence variant, diffuse nonepidermolytic palmoplantar keratoderma, however, did not segregate with the skin disease and, and was investigated as a possible candidate gene for indeed, was found to occur at a relatively high fre- this disorder. Expression of two elastase inhibitors, quency in the population. Individuals homozygous ela®n and SLPI, has been related to several hyper- for the variant do not have any obvious skin proliferative skin conditions. elastase 1 is functionally abnormalities. Based on the analysis of the secondary silent in the human pancreas but elastase 1 expres- structure of the translated putative protein, the sion at the mRNA level was detected in human truncation is unlikely to result in knock-out of the cultured primary keratinocytes. Antibody staining elastase, but may cause destabilization of the localized the protein to the basal cell layer of the enzyme±inhibitor complex. Key words: ela®n/keratino- human epidermis at a number of sites includingthe cyte/protein truncation/serine protease.
    [Show full text]
  • Design of Ultrasensitive Probes for Human Neutrophil Elastase Through Hybrid Combinatorial Substrate Library Profiling
    Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling Paulina Kasperkiewicza, Marcin Porebaa, Scott J. Snipasb, Heather Parkerc, Christine C. Winterbournc, Guy S. Salvesenb,c,1, and Marcin Draga,b,1 aDivision of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland; bProgram in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92024; and cCentre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand Edited* by Vishva M. Dixit, Genentech, San Francisco, CA, and approved January 15, 2014 (received for review October 1, 2013) The exploration of protease substrate specificity is generally possibilities. Here we demonstrate a general approach for the syn- restricted to naturally occurring amino acids, limiting the degree of thesis of combinatorial libraries containing unnatural amino acids, conformational space that can be surveyed. We substantially with subsequent screening and analysis of large sublibraries. We enhanced this by incorporating 102 unnatural amino acids to term this approach the Hybrid Combinatorial Substrate Library explore the S1–S4 pockets of human neutrophil elastase. This ap- (HyCoSuL). We demonstrate the utility of this approach in the proach provides hybrid natural and unnatural amino acid sequen- design of a highly selective substrate and activity-based probe. ces, and thus we termed it the Hybrid Combinatorial Substrate As a target protease, we selected human neutrophil elastase Library. Library results were validated by the synthesis of individ- (EC 3.4.21.37) (NE), a serine protease restricted to neutrophil ual tetrapeptide substrates, with the optimal substrate demon- azurophil granules (14).
    [Show full text]
  • Serine Protease (Chymotrypsin) from Nocardiopsis Prasina Expressed in Bacillus Licheniformis
    SERINE PROTEASE (CHYMOTRYPSIN) FROM NOCARDIOPSIS PRASINA EXPRESSED IN BACILLUS LICHENIFORMIS Chemical and Technical Assessment Prepared by Jannavi R. Srinivasan, Ph.D., Reviewed by Dr. Inge Meyland, Ph. D. 1. Summary This Chemical and Technical Assessment (CTA) summarizes data and information on the serine protease with chymotrypsin specificity from Nocardiopsis prasina expressed in Bacillus Licheniformis enzyme preparation submitted to the Joint FAO/WHO Expert Committee on Food Additives (JECFA) by Novozymes A/S in a dossier dated November 25, 2011 (Novozymes, 2011)a. In this CTA, the expression ‘serine protease (chymotrypsin)’ is used when referring to the serine protease with chymotrypsin specificity enzyme and its amino acid sequence, whereas the expression ‘serine protease (chymotrypsin) enzyme preparation’ is used when referring to the enzyme preparation. This document also discusses published information relevant to serine protease (chymotrypsin), the B. licheniformis production organism, and the N. prasina organism that is the source for the serine protease (chymotrypsin) gene. Serine protease (chymotrypsin) catalyses the hydrolysis of peptide bonds in a protein, preferably at the carboxyl end of Tyr (Tyr-X), Phe (Phe-X), Trp (Trp-X), when X is not proline. It also catalyses the hydrolysis of peptide bonds at the carboxyl end of other amino acids, primarily Met and Leu, albeit at a slower rate. It is intended for use in the production of hydrolysed animal and vegetable proteins including casein, whey, soy isolate, soy concentrate, wheat gluten and corn gluten. These hydrolysed proteins will be used for various applications as ingredients in food, protein-fortified food, and beverages. The serine protease (chymotrypsin) enzyme preparation is expected to be inactivated during food processing.
    [Show full text]
  • Isolation and Characterization of Porcine Ott-Proteinase Inhibitor1),2) Leukocyte Elastase-Inhibitor Complexes in Porcine Blood, I
    Geiger, Leysath and Fritz: Porcine otrproteinase inhibitor 637 J. Clin. Chem. Clin. Biochem. Vol. 23, 1985, pp. 637-643 Isolation and Characterization of Porcine ott-Proteinase Inhibitor1),2) Leukocyte Elastase-Inhibitor Complexes in Porcine Blood, I. By R. Geiger, Gisela Leysath and H. Fritz Abteilung für Klinische Chemie und Klinische Biochemie (Leitung: Prof. Dr. H. Fritz) in der Chirurgischen Klinik Innenstadt der Universität München (Received March 18/June 20, 1985) Summary: arProteinase inhibitor was purified from procine blood by ammonium sulphate and Cibachron Blue-Sepharose fractionation, ion exchange chromatography on DEAE-Cellulose, gel filtration on Sephadex G-25, and zinc chelating chromatography. Thus, an inhibitor preparation with a specific activity of 1.62 lU/mgprotein (enzyme: trypsin; Substrate: BzArgNan) was obtained. In sodium dodecyl sulphate gel electroph- oresis one protein band corresponding to a molecular mass of 67.6 kDa was found. On isoelectric focusing 6 protein bands with isoelectric points of 3.80, 3.90, 4.05, 4.20, 4.25 and 4.45 were separated. The amino acid composition was determined. The association rate constants for the Inhibition of various serine proteinases were measured. Isolierung und Charakterisierung des on-Proteinaseinhibitors des Schweins Leukocyten-oLj-Proteinaseinhibitor-Komplexe in Schweineblut, L Zusammenfassung; arProteinaseinhibitor wurde aus Schweineblut mittels Ammoniumsulfatfallung und Frak- tionierung an Cibachron-Blau-Sepharose, lonenaustauschchromatographie an DEAE-Cellulose, Gelfiltration an Sephadex G-25 und Zink-Chelat-Chromatographie isoliert. Die erhaltene Inhibitor-Präparation hatte eine spezifische Aktivität von 1,62 ITJ/mg Protein (Enzym: Trypsin; Substrat: BzArgNan). In der Natriumdodecyl- sulfat-Elektrophorese wurde eine Proteinbande mit einer dazugehörigen Molekülmasse von 67,6 kDa erhalten.
    [Show full text]
  • A Proteinase 3 Contribution to Juvenile Idiopathic Arthritis-Associated Cartilage Damage
    Brief Report A Proteinase 3 Contribution to Juvenile Idiopathic Arthritis-Associated Cartilage Damage Eric K. Patterson 1 , Nicolas Vanin Moreno 1, Douglas D. Fraser 2,3,4 , Gediminas Cepinskas 1,5, Takaya Iida 1 and Roberta A. Berard 2,4,6,* 1 Centre for Critical Illness Research, Lawson Health Research Institute, London, ON N6A 5W9, Canada; [email protected] (E.K.P.); [email protected] (N.V.M.); [email protected] (G.C.); [email protected] (T.I.) 2 Lawson Health Research Institute, Children’s Health Research Institute, London, ON N6A 5W9, Canada; [email protected] 3 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada 4 Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada 5 Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada 6 Division of Rheumatology, London Health Sciences Centre, Children’s Hospital, London, ON N6A 5W9, Canada * Correspondence: [email protected] Abstract: A full understanding of the molecular mechanisms implicated in the etiopathogenesis of juvenile idiopathic arthritis (JIA) is lacking. A critical role for leukocyte proteolytic activity (e.g., elastase and cathepsin G) has been proposed. While leukocyte elastase’s (HLE) role has been documented, the potential contribution of proteinase 3 (PR3), a serine protease present in abundance Citation: Patterson, E.K.; Vanin in neutrophils, has not been evaluated. In this study we investigated: (1) PR3 concentrations in Moreno, N.; Fraser, D.D.; Cepinskas, the synovial fluid of JIA patients using ELISA and (2) the cartilage degradation potential of PR3 by G.; Iida, T.; Berard, R.A.
    [Show full text]
  • Inhibition of Human Matriptase by Eglin C Variants
    FEBS Letters 580 (2006) 2227–2232 Inhibition of human matriptase by eglin c variants Antoine De´silets, Jean-Michel Longpre´, Marie-E` ve Beaulieu, Richard Leduc* Department of Pharmacology, Faculty of Medicine and Health Sciences, Universite´ de Sherbrooke, Sherbrooke, Que., Canada J1H 5N4 Received 2 February 2006; revised 2 March 2006; accepted 9 March 2006 Available online 20 March 2006 Edited by Michael R. Bubb inhibitor eglin c [14,15]. Further studies based on the three- Abstract Based on the enzyme specificity of matriptase, a type II transmembrane serine protease (TTSP) overexpressed in epi- dimensional structure of eglin c have found that optimization thelial tumors, we screened a cDNA library expressing variants of interaction between enzyme and inhibitor could be ad- of the protease inhibitor eglin c in order to identify potent dressed by screening eglin c cDNA libraries containing ran- 0 matriptase inhibitors. The most potent of these, R1K4-eglin, domly substituted residues within projected adventitious which had the wild-type Pro45 (P1 position) and Tyr49 (P40 posi- contact sites outside the reactive site [16]. The similarity in tion) residues replaced with Arg and Lys, respectively, led to the specificity between matriptase and furin, which preferentially production of a selective, high affinity (Ki of 4 nM) and proteo- recognizes the R–X–X–R (P4 to P1 position) sequence [17], lytically stable inhibitor of matriptase. Screening for eglin c vari- led us to the hypothesis that matriptase and other members ants could yield specific, potent and stable inhibitors to of the TTSP family could be targets of genetically engineered matriptase and to other members of the TTSP family.
    [Show full text]
  • Schneider-Dissertation-2019
    Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Schneider, Benjamin Aaron. 2019. Biosynthetic Investigation, Synthesis, and Bioactivity Evaluation of Putative Peptide Aldehyde Natural Products From the Human Gut Microbiota. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029686 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+ ! "!#$%%&'()($*+!,'&%&+(&#!! -.! /&+0)1$+!")'*+!234+&$#&'! (*! 54&!6&,)'(1&+(!*7!84&1$%('.!)+#!84&1$3)9!/$*9*:.! ! ! $+!,)'($)9!7;97$991&+(!*7!(4&!'&<;$'&1&+(%! 7*'!(4&!#&:'&&!*7! 6*3(*'!*7!=4$9*%*,4.! $+!(4&!%;-0&3(!*7! 84&1$%('.! ! ! >)'?)'#!@+$?&'%$(.! 8)1-'$#:&A!B"! ! ! ",'$9!CDEF! ! ! G!CDEF!/&+0)1$+!")'*+!234+&$#&'! "99!'$:4(%!'&%&'?&#H! ! ! 6$%%&'()($*+!"#?$%*'I!='*7&%%*'!J1$9.!=H!/)9%K;%!! /&+0)1$+!")'*+!234+&$#&'+ ! !"#$%&'()'"*+,&-)$'"./'"#&0+1%&'()$"$0+/&2+!"#/*'"-"'%+3-/45/'"#&+#6+75'/'"-)+7)8'"2)+ 942)(%2)+:/'5;/4+7;#25*'$+6;#<+'()+=5</&+>5'+?"*;#@"#'/+
    [Show full text]
  • Chymotrypsin C (Caldecrin) Promotes Degradation of Human Cationic Trypsin: Identity with Rinderknecht’S Enzyme Y
    Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: Identity with Rinderknecht’s enzyme Y Richa´ rd Szmola and Miklo´ s Sahin-To´ th* Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118 Communicated by Phillips W. Robbins, Boston Medical Center, Boston, MA, May 2, 2007 (received for review March 19, 2007) Digestive trypsins undergo proteolytic breakdown during their further tryptic sites (10). Autolysis was also proposed to play an transit in the human alimentary tract, which has been assumed to essential role in physiological trypsin degradation in the lower occur through trypsin-mediated cleavages, termed autolysis. Au- intestines. A number of studies in humans have demonstrated tolysis was also postulated to play a protective role against that trypsin becomes inactivated during its intestinal transit, and pancreatitis by eliminating prematurely activated intrapancreatic in the terminal ileum only Ϸ20% of the duodenal trypsin activity trypsin. However, autolysis of human cationic trypsin is very slow is detectable (12–14). On the basis of in vitro experiments, a in vitro, which is inconsistent with the documented intestinal theory was put forth that digestive enzymes are generally resis- trypsin degradation or a putative protective role. Here we report tant to each other and undergo degradation through autolysis that degradation of human cationic trypsin is triggered by chymo- only (10, 15). However, human cationic trypsin was shown to be trypsin C, which selectively cleaves the Leu81-Glu82 peptide bond highly resistant to autolysis, and appreciable autodegradation ؉ within the Ca2 binding loop. Further degradation and inactivation was observed only with extended incubation times in the com- of cationic trypsin is then achieved through tryptic cleavage of the plete absence of Ca2ϩ and salts (16–18).
    [Show full text]