Urinary System Objectives

Total Page:16

File Type:pdf, Size:1020Kb

Urinary System Objectives Urinary System Objectives * Describe the histologic features of the kidneys, ureters and bladder. * Describe the structures that comprise the renal filtration barrier and their role in formation of glomerular filtrate (provisional urine). * Describe the role of the loop of Henle in concentrating urine. * Describe how aldosterone and antidiuretic hormone (ADH) affect the renal tubules. * Trace the pathway of urine flow along the nephron and urinary tract. OVERVIEW OF THE URINARY SYSTEM * The urinary system consists of - The paired kidneys; - Paired ureters, which lead from the kidneys to - The urinary bladder; and - The urethra, which leads from the bladder to the exterior of the body. Functions of the Urinary System * Filtration & excretion of cellular wastes from blood * Regulation of fluid and electrolyte balance by selective reabsorption and excretion of water and solutes * Production of the hormones renin and erythropoietin Extend from the 12th thoracic to the 3rd lumbar vertebrae, Reddish, bean-shaped organs Renal hilum The Urinary System Kidney Organization Kidney Organization Parenchyma Renal sinus * Cortex - Renal pelvis - Renal corpuscles - Major and minor calyces - Medullary rays - Nerves and vessels * Medulla - Connective tissues - Renal pyramids * Renal columns Kidney Organization Kidney Organization Kidney Cortex Medullary Rays Kidney Cortex A labyrinth of tubules Kidney Medulla and Renal Papillae Photomicrograph of human kidney capsule. This photomicrograph of a Mallory- Azan–stained section shows the capsule (cap) and part of the underlying cortex. The outer layer of the capsule (OLC ) is composed of dense connective tissue. The fibroblasts in this part of the capsule are relatively few in number; their nuclei appear as narrow, elongate, red-staining profiles against a blue background representing the stained collagen fibers. The inner layer of the capsule (ILC ) consists of large numbers of myofibroblasts whose nuclei appear as round or elongate, red-staining profiles, depending on their orientation within the section. Note that the collagen fibers in this layer are relatively sparse and that the myofibroblast nuclei are more abundant than those of the fibroblasts in the outer layer of the capsule. X180. Cortex Medulla Kidney Cortex Medullary Rays Kidney Cortex Medullary Rays (Collect tubules) Diagram showing standard nomenclature for structures in the kidney. The two types of nephrons in the kidney are shown with their associated duct systems. A long-looped nephron is shown on the left, and a short-looped nephron is shown on the right. The relative position of the cortex, medulla, papilla, and capsule are indicated (not drawn to scale). The inverted cone-shaped area in the cortex represents a medullary ray. The parts of the nephron are indicated by number: 1, renal corpuscle including the glomerulus and Bowman’s capsule; 2, proximal convoluted tubule; 3, proximal straight tubule; 4, descending thin limb; 5, ascending thin limb; 6, thick ascending limb (distal straight tubule); 7, macula densa located in the final portion of the thick ascending limb; 8, distal convoluted tubule; 9, connecting tubule; 9*, connecting tubule of the juxtamedullary nephron that forms an arch (arched connecting tubule); 10, cortical collecting duct; 11, outer medullary collecting duct; and 12, inner medullary collecting duct. (Modified from Kriz W, Bankir L. A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int 1988;33:1–7.) * The renal columns represent cortical tissue contained within the medulla. - The caps of cortical tissue that lie over the pyramids are sufficiently extensive that they extend peripherally around the lateral portion of the pyramid, forming the renal columns (of Bertin). Renal columns contain the same components as the rest of the cortical tissue, they are regarded as part of the medulla. Kidney Lobes and Lobules * The number of lobes in a kidney equals the number of medullary pyramids. - Each medullary pyramid and associated cortical tissue at its base an sides (one half of each adjacent renal column) constitute a lobe of the kidney. - The lobar organization of the kidney is conspicuous in the developing fetal kidney. Each lobe is reflected as a convexity on the outer surface of the organ, but they usually disappear after birth. The surface convexities typical of the fetal kidney may persist, however, until the teenage years and, in some cases, into adulthood. - Each human kidney contains 8 to 18 lobes. - Kidneys of some animals possess only one pyramid; these kidneys are classified as unilobar, in contrast to the multilobar kidney of the human. Photomicrograph of fetal kidney. This photomicrograph of an H&E–stained human fetal kidney shows the cortex, the medulla, and two associated pyramids. Note each surface convexity corresponds to a kidney lobe. During postnatal life, the lobar convexities disappear and the kidney then exhibits a smooth surface. X30. * A lobule consists of a collecting duct and all the nephrons that it drains. - The lobes of the kidney are further subdivided into lobules consisting of a central medullary ray and surrounding cortical material. - the center or axis of a lobule is readily identifiable, the boundaries between adjacent lobules are not obviously . - The concept of the lobule has an important physiologic basis; the medullary ray containing the collecting duct for a group of nephrons. The Urinary System Kidney Circulation Blood Supply to the Kidney Most important for you to know . Approximately 90% to 95% of the blood passing through the kidney is in the cortex; 5% to 10% is in the medulla. Efferent arterioles Afferent arterioles LM – injected kidney vascular system SEM - Ilu, intralobular artery Af, afferent arteriole; Ef, efferent arteriole; Gl, glomerulus Blood Flow in the Kidney Afferent arteriole Glomerular capillaries Efferent arteriole or Peritubular capillaries Vasa recta Supply cortical nephrons and Supply juxtamedullary nephrons, proximal and distal structures in the medulla, and then convoluted tubules loop back to cortex-medullary boundary Blood Supply to a Renal Corpuscle The Nephron * The nephron is the structural and functional unit of the kidney. - The nephron is the fundamental structural and functional unit of the kidney. - Both human kidneys contain approximately 2 million nephrons. - Nephrons are responsible for the production of urine. - A nephron includes: . The renal corpuscle . Tubules - proximal convoluted tubule - loop of Henle - distal convoluted tubule General Organization of the Nephron * The nephron consists of the renal corpuscle and a tubule system. - The renal corpuscle represents the beginning of the nephron. - It consists of the glomerulus, . a tuft of capillaries composed of 10 to 20 capillary loops, surrounded by a double-layered epithelial cup, the renal or Bowman’s capsule. Bowman’s capsule is the initial portion of the nephron, where blood flowing through the glomerular capillaries undergoes filtration to produce the glomerular ultrafiltrate. - The glomerular capillaries are supplied by an afferent arteriole and are drained by an efferent arteriole that then branches, forming a new capillary network to supply the kidney tubules. - The site where the afferent and efferent arterioles penetrate and exit from the parietal layer of Bowman’s capsule is called the vascular pole. - Opposite this site is the urinary pole of the renal corpuscle, where the proximal convoluted tubule begins. Efferent arteriole Bowman’s capsule Afferent arteriole Glomerulus Interlobular artery Arcuate v & a Ascending & descending loops (Henle) Collecting tubule Renal Corpuscle A renal corpuscle consists of three things: Glomerulus - A tuft of capillaries Bowman’s capsule - The container that surrounds the glomerulus - Two layers: visceral (inner) and parietal (outer) Urinary space - The space between the two layers of Bowman’s capsule (where urine collects). Distal tubule Macula densa of distal tubule Afferent arteriole Efferent arteriole Juxtaglomerular cells (modified smooth muscle) Vascular pole Bowman’s capsule (parietal layer) Bowman’s capsule (visceral layer of podocytes) Parietal layer Urinary space Urinary pole Brush border (microvilli) Proximal convoluted tubule Glomerulus Bowman’s capsule (parietal layer) Urinary space Renal corpuscle Vascular and urinary poles Capillaries (blue) and podocytes (green) Podocytes * Podocytes have a central cell body with primary processes. * Each primary process gives rise to secondary processes called pedicels (foot processes) that embrace the glomerular capillaries. * Foot processes from different podocytes interdigitate. * Spaces between pedicels are called filtration slits - A little diaphragm covers each filtration slit. Primary processes Interdigitating secondary foot processes Foot processes Podocyte Glomerular capillaries & podocyte Mesangial Cells * In addition to podocytes and glomerular capillary endothelial cells, mesangial cells are a third cell type present in the glomerulus. * Functions of mesangial cells: - Physical support for glomerulus. - Phagocytosis of proteins and other debris from the glomerular basal lamina. - Secretion of cytokines and other substances for immune defense and repair. Diagram and photomicrograph showing the relationship between the intraglomerular mesangial cells and the glomerular capillaries. a. The mesangial cell and its surrounding matrix are enclosed by the glomerular basement membrane
Recommended publications
  • Urinary System
    URINARY SYSTEM Ján Líška DVM, PhD Institut of Histology and Embryology, Faculty of Medicine, Comenius University Urinary system • The kidneys are the organ with multiple functions: • filtration of the blood • excretion of metabolic waste products and related removal of toxins • maintenance blood volume • regulation of acid-base balance • regulation of fluid and electrolyte balance • production of the hormones The other components of urinary system are accessory. Their function is essentially in order to eliminate urine. Urinary system - anatomy • Kidney are located in the retroperitoneal space • The surface of the kidney is covered by a fibrous capsule of dense connective tissue. • This capsule is coated with adipose capsule. • Each kidney is attached to a ureter, which carries urine to the bladder and urine is discharged out through the urethra. ANATOMIC STRUCTURE OF THE KIDNEY RENAL LOBES CORTEX outer shell columns Excretory portion medullary rays MEDULLA medullary pyramids HILUM Collecting system blood vessels lymph vessels major calyces nerves RENAL PELVIS minor calyces ureter Cortex is the outer layer surrounding the internal medulla. The cortex contains renal corpuscles, convoluted parts of prox. and dist. tubules. Renal column: the renal tissue projection between two medullary pyramids which supports the cortex. Renal pyramids: the conical segments within the medulla. They contain the ductal apparatus and stright parts of the tubules. They posses papilla - having openings through which urine passes into the calyces. Each pyramid together with the associated overlying cortex forms a renal lobe. renal pyramid papilla minor calix minor calyx Medullary rays: are in the middle of cortical part of the renal lobe, consisting of a group of the straight portiones of nephrons and the collec- medullary rays ting tubules (only straight tubules).
    [Show full text]
  • Lab-Renal-2018-Zw4m.Pdf
    Introduction The slides for this lab are located in the “Urinary System” folders on the Virtual Microscope. In this lab, you will learn about the structures within the kidney required to filter the blood and the tubes required to transport the resulting waste products outside the body. The journey begins in the unit of the kidney called the nephron. Here the blood is filtered, products are reabsorbed and then some are secreted again, based on the body’s current state. Dissolved in water, these products then travel through the conducting portion of the kidney to the ureters. The ureters insert on the urinary bladder obliquely and posteriorly. The urinary bladder temporarily stores urine until it can be conveniently evacuated. Urine exits the body through the urethra. Learning objectives and activities Using the Virtual Slidebox: A Outline a renal lobe and identify the structural components of a renal lobule B Examine the components of the renal corpuscle: glomerulus and Bowman’s capsule C Classify the different areas of the renal tubules based upon their histological appearance and location D Compare the structures of the excretory passageways and use this information to identify them E Complete the self-quiz to test your understanding and master your learning Outline a renal lobe and identify the structural components of a renal lobule Examine Slide 1 and approximate a renal lobe in the kidney by identifying the following: Each kidney can be divided into somewhere between 8-15 renal lobes. Each lobe consists of a medullary pyramid capped by the cortex and flanked by renal columns with a renal papilla at its apex.
    [Show full text]
  • Ward's Renal Lobule Model
    Ward’s Renal Lobule Model 470029-444 1. Arcuate artery and vein. 7. Descending thick limb of 12. Collecting tubule. 2. Interlobular artery and vein. Henle's loop. 13. Papillary duct of Bellini. 3. Afferent glomerular arteriole. 8. Thin segment of Henle's 14. Vasa recta. loop. 4. Efferent glomerular arteriole. 15. Capillary bed of cortex (extends 9. Ascending thick limb of through entire cortex). 5. Renal corpuscle (glomerulus Henle's loop. plus Bowman's capsule). 10. Distal convoluted tubule. 16. Capillary bed of medulla (extends 6. Proximal convoluted tubule. 11. Arched connecting tubule. through entire medulla). MANY more banks of glomeruli occur in the cortex than are represented on the model, and the proportionate length of the medullary elements has been greatly reduced. The fundamental physiological unit of the kidney is the nephron, consisting of the glomerulus, Bowman's capsule, the proximal convoluted tubule, Henle's loop, and the distal convoluted tubule. The blood is filtered in the glomerulus, water and soluble substances, except blood proteins, passing into Bowman's capsule in the same proportions as they occur in the blood. In the proximal tubule water and certain useful substances are resorbed from the provisional urine, while some further components may be added to it by secretory activity on the part of the tubular epithelium. In the remainder of the tubule, resorption of certain substances is continued, while the urine is concentrated further by withdrawal of water. The finished urine flows through the collecting tubules without further change. Various kinds of loops occur, varying in length of the thin segment, and in the level to which they descend into the medulla.
    [Show full text]
  • Urinary System
    OUTLINE 27.1 General Structure and Functions of the Urinary System 818 27.2 Kidneys 820 27 27.2a Gross and Sectional Anatomy of the Kidney 820 27.2b Blood Supply to the Kidney 821 27.2c Nephrons 824 27.2d How Tubular Fluid Becomes Urine 828 27.2e Juxtaglomerular Apparatus 828 Urinary 27.2f Innervation of the Kidney 828 27.3 Urinary Tract 829 27.3a Ureters 829 27.3b Urinary Bladder 830 System 27.3c Urethra 833 27.4 Aging and the Urinary System 834 27.5 Development of the Urinary System 835 27.5a Kidney and Ureter Development 835 27.5b Urinary Bladder and Urethra Development 835 MODULE 13: URINARY SYSTEM mck78097_ch27_817-841.indd 817 2/25/11 2:24 PM 818 Chapter Twenty-Seven Urinary System n the course of carrying out their specific functions, the cells Besides removing waste products from the bloodstream, the uri- I of all body systems produce waste products, and these waste nary system performs many other functions, including the following: products end up in the bloodstream. In this case, the bloodstream is ■ Storage of urine. Urine is produced continuously, but analogous to a river that supplies drinking water to a nearby town. it would be quite inconvenient if we were constantly The river water may become polluted with sediment, animal waste, excreting urine. The urinary bladder is an expandable, and motorboat fuel—but the town has a water treatment plant that muscular sac that can store as much as 1 liter of urine. removes these waste products and makes the water safe to drink.
    [Show full text]
  • 8.5 X12.5 Doublelines.P65
    Cambridge University Press 978-0-521-87702-2 - Silva’s Diagnostic Renal Pathology Edited by Xin J. Zhou, Zoltan Laszik, Tibor Nadasdy, Vivette D. D’Agati and Fred G. Silva Excerpt More information CHAPTER 1 CHAPTER Chapter 1 Renal Anatomy William L. Clapp, MD GROSS ANATOMY Glomerulus Location, Size, and Shape General Features Blood Supply Endothelial Cells Mesangium Form of Kidney (Mesangial Cells) NEPHRONS (Mesangial Matrix) Nephron Number GBM Nephron Types Podocytes Glomerular Filtration Barrier ARCHITECTURE Parietal Podocytes Cortex Parietal Epithelial Cells Cortical Labyrinth and Medullary Rays Peripolar Cells Renal Lobule JGA Medulla Tubules Outer Medulla Proximal Tubule Inner Medulla Thin Limbs of Henle’s Loop Algorithm for Architecture Distal Tubule PARENCHYMA (TAL) Vasculature (DCT) Connecting Tubule Macrovasculature Collecting Duct Microvasculature (Cortical Collecting Duct) (Cortex) (OMCD) (Medulla) (IMCD) Lymphatics Interstitium Nerves Knowledge of the elaborate structure of the kidney provides GROSS ANATOMY insight into its functions and facilitates an understanding of renal diseases. One cannot recognize what is abnormal in the Location, Size, and Shape kidney if one does not know what is normal. The following The retroperitoneum is divided into fascia-enclosed compart- sections consider the macroanatomy, functional units, architec- ments, including the anterior pararenal, perirenal, and posterior tural organization, microanatomy, and basic functions of the pararenal spaces. The kidneys lie within the perirenal space, which kidney. Unless otherwise stated, the illustrations will emphasize contains abundant fat and is enclosed by the anterior and posterior the human kidney. For additional information, readers are layers of renal fascia, known as Gerota’s fascia.The kidneys extend referred to several detailed reviews [1–4].
    [Show full text]
  • Ultra-Structure of Kidney the Excretory System Is Responsible for Filtering Wastes from the Blood and Both Forming and Secreting Urine
    Ultra-Structure of kidney The excretory system is responsible for filtering wastes from the blood and both forming and secreting urine. These functions help to maintain the composition and volume of body fluids. Although it has far-reaching effects, the urinary system is relatively simple anatomically and consists of: Kidneys, Ureters, Bladder, and Urethra. The main organs are the kidneys, which filter blood and produce urine. The other parts are simply accessory structures for the transport and storage of urine. During the normal breakdown of protein and nucleic acids, nitrogen is released into the bloodstream. Some of this nitrogen is recycled to make new cellular products, but most of it is disposed of. The body has to have a way to rid itself of this unused nitrogen, as high levels in the blood can be toxic. Most of the nitrogen is bound with hydrogen as NH3 (ammonia), which is readily dissolved in water. For this reason, fish are able to excrete much of their nitrogen by simple diffusion into the surrounding water. Terrestrial animals have a different way of ridding their bodies of excess nitrogen. It is either excreted as uric acid or urea. Animals that are concerned about water loss, such as birds and reptiles, excrete the more concentrated uric acid as a pasty white material. Mammals, on the other hand, can excrete urea, along with more water. The mixture of urea, water, and other wastes is called 'urine.' Urine is still very concentrated in comparison to the blood, and the system that facilitates this concentration is the 'urinary system.
    [Show full text]
  • Functions of Kidney & Artificial Kidneys
    ISSN 2321 – 2004 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING Vol. 1, Issue 1, April 2013 Functions of kidney & artificial kidneys Raghavendra1, Mallikarjun2, Vidya M.J3 Student, Instrumentation Technology, R.V.C.E, Bangalore, India 1 Student, Instrumentation Technology, R.V.C.E, Bangalore, India 2 Assistant Professor, Instrumentation Technology, R.V.C.E, Bangalore, India 3 Abstract: Renal failure is a term to describe a situation when the kidneys fail to work. This may be a permanent or temporary failure. When the kidneys fail, Wastes begin to accumulate in the blood (uremia) As homeostasis is upset within the body, other organs can also begin to shut down – heart, liver, etc. The end result of renal failure is usually death unless the blood is filtered by some other means. The ideal intervention is to replace the failed kidneys with a donor kidney (STSE).While a person waits for a donor kidney, they usually have to undergo dialysis, a method where their blood is filtered and cleaned on a regular basis using machines. Keywords: uraemia, homeostasis, Palpation, Elasticity I. INTRODUCTION The kidneys are organs that serve several essential of kidney stones is a sharp pain in the medial/lateral regulatory roles in most animals, including vertebrates and segments of the lower back. some invertebrates. They are essential in the urinary system and also serve homeostatic functions such as the II. ANATOMY regulation of electrolytes, maintenance of acid–base A. Location balance, and regulation of blood pressure (via maintaining salt and water balance). They serve the body as a natural In humans the kidneys are located in the abdominal cavity, filter of the blood, and remove wastes which are diverted more specifically in the paravertebral gutter and lie in a to the urinary bladder.
    [Show full text]
  • Urinary System
    Urinary System Urinary System Urinary System - Overview: Major Functions: 1) Removal of organic waste products Kidney from fluids (excretion) 2) Discharge of waste products into the environment (elimination) 1 3) Regulation of the volume / [solute] / pH 3 of blood plasma Ureter HOWEVER, THE KIDNEY AIN’T JUST FOR PEE’IN… Urinary bladder • Regulation of blood volume / blood pressure (e.g., renin) • Regulation of red blood cell formation (i.e., erythropoietin) 2 • Metabolization of vitamin D to active form (Ca++ uptake) Urethra • Gluconeogenesis during prolonged fasting Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 25.1 1 Urinary System Renal ptosis: Kidneys drop to lower position due Functional Anatomy - Kidney: to loss of perirenal fat Located in the superior lumbar “Bar of soap” region 12 cm x 6 cm x 3 cm 150 g / kidney Layers of Supportive Tissue: Renal fascia: Peritoneal cavity Outer layer of dense fibrous connective tissue; anchors kidney in place Perirenal fat capsule: Fatty mass surrounding kidney; cushions kidney against blows Fibrous capsule: Transparent capsule on kidney; prevents infection of kidney from local tissues Kidneys are located retroperitoneal Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 25.2 Urinary System Functional Anatomy - Kidney: Pyelonephritis: Inflammation of the kidney Pyramids appear striped due to parallel arrangement of capillaries / collecting tubes Renal cortex Renal medulla Renal pyramids Renal papilla Renal columns Renal hilum Renal pelvis • Entrance for blood vessels
    [Show full text]
  • The Urinary System
    PowerPoint® Lecture Slides The Urinary System prepared by Leslie Hendon • Important functions of the kidneys University of Alabama, Birmingham • Maintain the chemical consistency of blood (water, electrolytes, acid/base balance) • Filter many liters of fluid from blood and send toxins, metabolic wastes, and excess water out of the body C H A P T E R 24 • Main waste products Part 1 • Urea • Uric acid The Urinary • Creatinine System • Contribute to blood pressure control (renin system) • Stimulate rbc production through erythropoietin Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Organs of the Urinary System Organs of the Urinary System Hepatic veins • Kidneys (cut) Esophagus (cut) Ureters Inferior vena • cava Renal artery Adrenal gland Renal hilum • Urinary bladder Aorta Renal vein Kidney • Urethra Iliac crest Ureter Rectum (cut) Uterus Urinary bladder Urethra (a) (b) Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Figure 24.1 Location and External Anatomy of Kidneys Relationship of the Kidneys to Vertebra and Ribs • Located retroperitoneally • Lateral to T12–L3 vertebrae • Average kidney is 12 cm tall, 6 cm wide, 3 cm thick • Hilum • On concave surface • Vessels and nerves enter and exit • Fibrous capsule surrounds the kidney • Perirenal fat—external to renal capsule • Renal fascia—external to perirenal fat 12th rib (b) Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Figure 24.2b 1 Position of the Kidneys with in the Posterior Internal
    [Show full text]
  • URINARY Objectives
    URINARY Objectives Students should be able to: 1. Describe the microscopic structure of the kidney cortex, medulla and renal pelvis; also the ureter and bladder. 2. Identify the histological features of the kidney, ureter and bladder. Kidney H & E stain General Histological Structure Low power magnification. Note the major features of a cross section through the kidney. Identify : renal capsule, cortex (deep staining zone), medulla and renal corpuscles. : renal corpuscles medulla cortex renal capsule 1.0mm Kidney Alkaline phosphatase stain General Histological Structure Identify : cortex , renal corpuscles, convoluted tubules and medullary rays. What does the term medullary rays imply? In the cortex- groups of radially arranged straight tubules form the cortical or medullary rays (pars radiata) section from cortex convoluted tubules renal corpuscle medullary ray 250 µm Kidney Detailed Histology Examine the structure of a renal corpuscle and appreciate how the filtration unit has been constructed. What constitutes the filter here? 1. Porous endothelium of capillaries. 2. Glomerular basement membrane. 3. Podocyte pedicels. U : urinary space Pd : podocyte Pd Pl : parietal layer U Pl proximal tubule 50 µm Kidney Detailed Histology Where does the filtrate collect? In the urinary space. What further changes take place in its composition before it is fully excreted? Extensive re-absorption (66-75%) of this glomerular filtrate in the proximal tubules. U : urinary space U 50 µm Kidney Detailed Histology What is the difference between vascular and urinary poles of the renal corpuscle? Why are they given these names? Vascular pole- with afferent and efferent arteriole blood supply. Urinary pole- with the start of the proximal convoluted tubule.
    [Show full text]
  • Kidney Structure Renal Lobe Renal Lobule
    Kidney Structure Capsule Hilum • ureter → renal pelvis → major and minor calyxes • renal artery and vein → segmental arteries → interlobar arteries → arcuate arteries → interlobular arteries Medulla • renal pyramids • cortical/renal columns Cortex • renal corpuscles • cortical labryinth of tubules • medullary rays Renal Lobe Renal Lobule = renal pyramid & overlying cortex = medullary ray & surrounding cortical labryinth Cortex Medulla Papilla Calyx Sobotta & Hammersen: Histology 1 Uriniferous Tubule Nephron + Collecting tubule Nephron Renal corpuscle produces glomerular ultrafiltrate from blood Ultrafiltrate is concentrated • Proximal tubule • convoluted • straight • Henle’s loop • thick descending • thin • thick ascending • Distal tubule • Collecting tubule Juxtaglomerular apparatus • macula densa in distal tubule •JG cells in afferent arteriole •extraglomerular mesangial cells Glomerulus • fenestrated capillaries • podocytes • intraglomerular mesangial cells 2 Urinary Filtration Urinary Membrane Membrane Podocytes • Endothelial cell • 70-90 nm fenestra restrict proteins > 70kd • Basal lamina • heparan sulfate is negatively charged • produced by endothelial cells & podocytes • phagocytosed by mesangial cells • Podocytes • pedicels 20-40 nm apart • diaphragm 6 nm thick with 3-5 nm slits • podocalyxin in glycocalyx is negatively charged 3 Juxtaglomerular Apparatus Macula densa in distal tubule • monitor Na+ content and volume in DT • low Na+: • stimulates JG cells to secrete renin • stimulates JG cells to dilate afferent arteriole • tall,
    [Show full text]
  • (A) Adrenal Gland Inferior Vena Cava Iliac Crest Ureter Urinary Bladder
    Hepatic veins (cut) Inferior vena cava Adrenal gland Renal artery Renal hilum Aorta Renal vein Kidney Iliac crest Ureter Rectum (cut) Uterus (part of female Urinary reproductive bladder system) Urethra (a) © 2018 Pearson Education, Inc. 1 12th rib (b) © 2018 Pearson Education, Inc. 2 Renal cortex Renal column Major calyx Minor calyx Renal pyramid (a) © 2018 Pearson Education, Inc. 3 Cortical radiate vein Cortical radiate artery Renal cortex Arcuate vein Arcuate artery Renal column Interlobar vein Interlobar artery Segmental arteries Renal vein Renal artery Minor calyx Renal pelvis Major calyx Renal Ureter pyramid Fibrous capsule (b) © 2018 Pearson Education, Inc. 4 Cortical nephron Fibrous capsule Renal cortex Collecting duct Renal medulla Renal Proximal Renal pelvis cortex convoluted tubule Glomerulus Juxtamedullary Ureter Distal convoluted tubule nephron Nephron loop Renal medulla (a) © 2018 Pearson Education, Inc. 5 Proximal convoluted Peritubular tubule (PCT) Glomerular capillaries capillaries Distal convoluted tubule Glomerular (DCT) (Bowman’s) capsule Efferent arteriole Afferent arteriole Cells of the juxtaglomerular apparatus Cortical radiate artery Arcuate artery Arcuate vein Cortical radiate vein Collecting duct Nephron loop (b) © 2018 Pearson Education, Inc. 6 Glomerular PCT capsular space Glomerular capillary covered by podocytes Efferent arteriole Afferent arteriole (c) © 2018 Pearson Education, Inc. 7 Filtration slits Podocyte cell body Foot processes (d) © 2018 Pearson Education, Inc. 8 Afferent arteriole Glomerular capillaries Efferent Cortical arteriole radiate artery Glomerular 1 capsule Three major renal processes: Rest of renal tubule 11 Glomerular filtration: Water and solutes containing smaller than proteins are forced through the filtrate capillary walls and pores of the glomerular capsule into the renal tubule. Peritubular 2 capillary 2 Tubular reabsorption: Water, glucose, amino acids, and needed ions are 3 transported out of the filtrate into the tubule cells and then enter the capillary blood.
    [Show full text]