IPAM Newsletter Fall 2016 IPAM Newsletter Fall 2016 • 3 UCLA POSTDOC LEADS STUDENTS ACROSS the IPAM BRIDGE

Total Page:16

File Type:pdf, Size:1020Kb

IPAM Newsletter Fall 2016 IPAM Newsletter Fall 2016 • 3 UCLA POSTDOC LEADS STUDENTS ACROSS the IPAM BRIDGE Institute for Pure and Applied Mathematics a National Science Foundation Math Institute ANNUAL at the University of California, Los Angeles FALL 2016 LEADERNEWSLETTER IN NOVEL MATERIALS DISCOVERY ENJOYS INTERDISCIPLINARY SUPPORT AT IPAM The importance of advanced new Pople). A computational method widely Scheffler has been at the center of these materials was recognized by the Obama employed for decades in solid-state physics, advances: His research group in Berlin administration in 2011 when it launched DFT has been refined in recent years to the (together with the group of Volker Blum, the Materials Genome Initiative – a multi- extent that it is now considered an accurate who is now professor at Duke University), agency endeavor aiming to accelerate the and computationally tractable method contributed what is currently the most discovery and deployment of advanced for calculating essentially all properties materials systems. Matthias Scheffler, a of matter. The method is increasingly director of the Fritz Haber Institute in Berlin used in industry, such as in research and and professor at UC Santa Barbara, is among development of pharmaceuticals, chemicals the leaders of the basic science effort to use and catalysts, and diverse engineering computational materials science to solve industries. “We can not only calculate equations that could lead to novel materials existing materials, but also make predictions discovery. Through his involvement with the about completely unknown materials, Institute for Pure and Applied Mathematics their stability and their properties, which (IPAM), Scheffler is building momentum may become experimentally and even for the endeavor by bringing together commercially useful,” Scheffler says. “The colleagues from around the world. number of so far unexplored materials is practically infinite. Thus, there is no doubt Density Functional Theory (DFT) dates that in the next years scientists will identify back more than a half-century to work new materials with novel property profiles by Walter Kohn, together with Pierre that could open new opportunities in fields Hohenberg and Lu Sham, that would later such as energy, mobility, safety, information, Matthias Scheffler earn him a Nobel Prize (shared with John and health.” Fritz Haber Institute (continued on page 7) INGRID DAUBECHIES GIVES GREEN FAMILY LECTURES IPAM’s 2016 Green Family Lecture Series, used to determine whether a painting is an held in May, featured Ingrid Daubechies, original, or whether or not two parts of a James B. Duke Professor of Mathematics painting were painted by the same artist. Her and Electrical and Computer Engineering second talk, “Bones, Teeth, and Animation,” at Duke University. Daubechies was the described how distances between pairs of president of the International Mathematical two-dimensional surfaces (such as teeth) Union from 2011-2014. She has received allow biological morphologists to compare many awards for her pioneering work on different phenotypical structures and to wavelets, digital signal processing, and study relationships of living or extinct time-frequency analysis. Applications of animals with their surroundings and each her work range from fMRI and geophysics other. She also gave a research talk to to paleontology and fine art painting. the participants of the Culture Analytics program. You can watch videos of her Ingrid Daubechies Her first talk, entitled “The Master’s Hand: Duke University talks on IPAM’s YouTube channel or at Can Image Analysis Detect the Hand of the www.ipam.ucla.edu/videos. n Photo by David von Becker Master?” described image processing tools FEATURES REGULARS OTHER New RIPS Program Director 2 Director’s Note 2 Upcoming Programs 6 UCLA Postdoc Leads Students 3 News and Recognition 4 Call for Proposals 6 Big Data Meets Computation 8 Frontiers Society 5 NOTE FROM DIRECTOR RUSSEL CAFLISCH Over the last year, IPAM brought together on innovation. This diversity of topics was of individual workshops, IPAM received mathematical scientists, engineers, social mirrored in IPAM’s one-week workshops on grants from the AFOSR, ARO, ONR and scientists, humanists and artists for two Algebraic Geometry for Coding Theory and the NSF’s Office of International Science long programs on Culture Analytics and Cryptography, Shape Analysis and Learning, and Engineering. In addition, two IPAM Traffic Flow Management. These programs Partial Order, Uncertainty Quantification, workshops were supported by the DOE and put IPAM at the center of the rapidly and Energy Economics. NIH. We are most grateful to the individuals expanding application of mathematics to the and institutions who have contributed to humanities, social sciences and civil systems, This has also been a banner year for this fundraising success. by addressing issues such as the formation IPAM’s fundraising. To support child- and influence of online social networks, the care for participants, renovation of our I hope that you enjoy this Newsletter and representation and analysis of data, and the building and other costs that our main that you will stay involved with IPAM. future of self-driving cars, as well as the routes NSF grant cannot cover, to increase our Participating in a program or workshop, to collaboration among such a diverse group. program offerings, and to diversify our attending a public lecture, joining our The programs were preceded by workshops financial support, IPAM seeks funding Frontiers Society or naming a seat in our on Networks for the Humanities in 2010 and from individuals, corporations, foundations seminar room are just a few of the ways that 2011, Mathematics of Traffic Flow in 2011, and other government agencies. Our 15th you can further engage with IPAM. n and Social Learning in 2014, which helped Anniversary Campaign exceeded its goal IPAM get started in these fields. of $100,000, much of which came through donations to “name a seat” in our seminar Last year was also notable for outstanding room. About thirty seats were named, public lectures, including the 2016 Green leaving sixty remaining seats for anyone Family Lectures by Ingrid Daubechies who missed out on this opportunity! IPAM on mathematics for art and for biological also received a new grant from the Simons morphology, a public lecture by Takashi Foundation for almost $1,000,000 over the Tokieda on the mathematics and art of paper next 5 years to support our video facility and Russel Caflisch folding, and a talk by Sadasivan Shankar senior program participants. For support IPAM Director APPLIED MATHEMATICIAN LEADS IPAM PROGRAM PROVIDING UNDERGRADUATES WITH REAL-WORLD RESEARCH EXPERIENCE program to bring numericists and applied reliable numerical approximations for mathematicians together with physicists to physical models represented by nonlinear gain a better understanding of astrophysical partial differential equations. She has made phenomena. By the time she left, she knew she important contributions to the fields of would be returning regularly. “IPAM has had computational fluid dynamics and plasma a huge impact on my career,” says Serna, an physics through the analysis and development associate professor at Universitat Autònoma of high-order, accurate and non-oscillatory de Barcelona in Barcelona, Spain. “I have met numerical methods for hyperbolic so many interesting people I never would conservation laws and Hamilton-Jacobi have met at the typical meetings I attend, and equations, the characterization and numerical it’s made such a difference in my work.” approximation of the complex wave structure Susana Serna (pictured in center) arising in magnetohydrodynamics (a model Autonomous U. of Barcelona An applied mathematician who specializes in numerical analysis, Serna is particularly describing the dynamics of fluids in the Susana Serna first boarded the long interested in physics and engineering presence of a magnetic field), granular flows, flight to Los Angeles for a meeting at applications. “My goal is to provide accurate and special relativistic flows under non- UCLA’s Institute for Pure and Applied and effective simulations of physical processes standard equations of state. Mathematics in 2005, fresh from having to contribute to a better understanding of the defended her PhD dissertation. Serna phenomena behind them,” she explains. Since visiting IPAM for the first time more participated in Grand Challenge Problems in than a decade ago, Serna has returned seven Computational Astrophysics – the first IPAM To get there, Serna focuses on developing times to participate in a variety of programs, (continued on next page) 2 • IPAM Newsletter Fall 2016 IPAM Newsletter Fall 2016 • 3 UCLA POSTDOC LEADS STUDENTS ACROSS THE IPAM BRIDGE Stephen DeSalvo is a Program in Computing For the advanced programming class, the School of Economics in Moscow. It involved (PIC) instructor in the math department students typically create their own game a relatively small amount of data, which at UCLA over a 6-week period. This time, however, was generally drawn by hand using global I invited the students to meet the IPAM intuition. There were two groups working IPAM is a bridge connecting mathematicians visiting researchers and gave them the independently on this project, one starting and specialists in other fields. I crossed it option to work on the researchers’ projects. from the ground up, and another using black myself numerous times in various stages of box tools like R. Each project provided a my career, first as a participant in Research One of the IPAM
Recommended publications
  • Www .Ima.Umn.Edu
    ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994.
    [Show full text]
  • The Bibliography
    Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies].
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Algorithms for Optimal Paths of One, Many, and an Infinite Number of Agents Permalink https://escholarship.org/uc/item/3qj5d7dj Author Lin, Alex Tong Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Algorithms for Optimal Paths of One, Many, and an Infinite Number of Agents A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Alex Tong Lin 2020 c Copyright by Alex Tong Lin 2020 ABSTRACT OF THE DISSERTATION Algorithms for Optimal Paths of One, Many, and an Infinite Number of Agents by Alex Tong Lin Doctor of Philosophy in Mathematics University of California, Los Angeles, 2020 Professor Stanley J. Osher, Chair In this dissertation, we provide efficient algorithms for modeling the behavior of a single agent, multiple agents, and a continuum of agents. For a single agent, we combine the modeling framework of optimal control with advances in optimization splitting in order to efficiently find optimal paths for problems in very high-dimensions, thus providing allevia- tion from the curse of dimensionality. For a multiple, but finite, number of agents, we take the framework of multi-agent reinforcement learning and utilize imitation learning in order to decentralize a centralized expert, thus obtaining optimal multi-agents that act in a de- centralized fashion. For a continuum of agents, we take the framework of mean-field games and use two neural networks, which we train in an alternating scheme, in order to efficiently find optimal paths for high-dimensional and stochastic problems.
    [Show full text]
  • Boundary Value Problems for Systems That Are Not Strictly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Applied Mathematics Letters 24 (2011) 757–761 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml On mixed initial–boundary value problems for systems that are not strictly hyperbolic Corentin Audiard ∗ Institut Camille Jordan, Université Claude Bernard Lyon 1, Villeurbanne, Rhone, France article info a b s t r a c t Article history: The classical theory of strictly hyperbolic boundary value problems has received several Received 25 June 2010 extensions since the 70s. One of the most noticeable is the result of Metivier establishing Received in revised form 23 December 2010 Majda's ``block structure condition'' for constantly hyperbolic operators, which implies Accepted 28 December 2010 well-posedness for the initial–boundary value problem (IBVP) with zero initial data. The well-posedness of the IBVP with non-zero initial data requires that ``L2 is a continuable Keywords: initial condition''. For strictly hyperbolic systems, this result was proven by Rauch. We Boundary value problem prove here, by using classical matrix theory, that his fundamental a priori estimates are Hyperbolicity Multiple characteristics valid for constantly hyperbolic IBVPs. ' 2011 Elsevier Ltd. All rights reserved. 1. Introduction In his seminal paper [1] on hyperbolic initial–boundary value problems, H.O. Kreiss performed the algebraic construction of a tool, now called the Kreiss symmetrizer, that leads to a priori estimates. Namely, if u is a solution of 8 d X C >@ u C A .x; t/@ u D f ;.t; x/ 2 × Ω; <> t j xj R jD1 (1) C >Bu D g;.t; x/ 2 @ × @Ω; :> R ujtD0 D 0; C Pd where the operator @t jD1 Aj@xj is assumed to be strictly hyperbolic and B satisfies the uniform Lopatinski˘ı condition, there is some γ0 > 0 such that u satisfies the a priori estimate p γ kuk 2 C C kuk 2 C ≤ C kf k 2 C C kgk 2 C ; (2) Lγ .R ×Ω/ Lγ .R ×@Ω/ Lγ .R ×Ω/ Lγ .R ×@Ω/ 2 2 −γ t for γ ≥ γ0.
    [Show full text]
  • Society Reports USNC/TAM
    Appendix J 2008 Society Reports USNC/TAM Table of Contents J.1 AAM: Ravi-Chandar.............................................................................................. 1 J.2 AIAA: Chen............................................................................................................. 2 J.3 AIChE: Higdon ....................................................................................................... 3 J.4 AMS: Kinderlehrer................................................................................................. 5 J.5 APS: Foss................................................................................................................. 5 J.6 ASA: Norris............................................................................................................. 6 J.7 ASCE: Iwan............................................................................................................. 7 J.8 ASME: Kyriakides.................................................................................................. 8 J.9 ASTM: Chona ......................................................................................................... 9 J.10 SEM: Shukla ....................................................................................................... 11 J.11 SES: Jasiuk.......................................................................................................... 13 J.12 SIAM: Healey...................................................................................................... 14 J.13 SNAME: Karr....................................................................................................
    [Show full text]
  • A Free-Space Adaptive Fmm-Based Pde Solver in Three Dimensions M.Harper Langston, Leslie Greengardand Denis Zorin
    Communications in Applied Mathematics and Computational Science A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN vol. 6 no. 1 2011 mathematical sciences publishers COMM. APP. MATH. AND COMP. SCI. Vol. 6, No. 1, 2011 msp A FREE-SPACE ADAPTIVE FMM-BASED PDE SOLVER IN THREE DIMENSIONS M. HARPER LANGSTON, LESLIE GREENGARD AND DENIS ZORIN We present a kernel-independent, adaptive fast multipole method (FMM) of arbi- trary order accuracy for solving elliptic PDEs in three dimensions with radiation and periodic boundary conditions. The algorithm requires only the ability to evaluate the Green’s function for the governing equation and a representation of the source distribution (the right-hand side) that can be evaluated at arbitrary points. The performance is accelerated in three ways. First, we construct a piecewise polynomial approximation of the right-hand side and compute far-field expansions in the FMM from the coefficients of this approximation. Second, we precompute tables of quadratures to handle the near-field interactions on adaptive octree data structures, keeping the total storage requirements in check through the exploitation of symmetries. Third, we employ shared-memory parallelization methods and load-balancing techniques to accelerate the major algorithmic loops of the FMM. We present numerical examples for the Laplace, modified Helmholtz and Stokes equations. 1. Introduction Many problems in scientific computing call for the efficient solution to linear partial differential equations with constant coefficients. On regular grids with separable Dirichlet, Neumann or periodic boundary conditions, such equations can be solved using fast, direct methods.
    [Show full text]
  • Januar 2007 FØRSTE DOKTORGRAD I
    INFOMATJanuar 2007 Kjære leser! FØRSTE DOKTORGRAD I INFOMAT ønsker alle et godt nytt år. MATEMATIKKDIDAKTIKK Det ble aldri noe desember- nummer. Redaktørens harddisk VED HiA hadde et fatalt sammenbrudd like før Jul og slike hendelser er altså nok til at enkelte ting stopper opp. Våre utmerkede dataingeniører ved Matematisk institutt i Oslo klarte å redde ut alle dataene, og undertegnede lærte en lekse om back-up. Science Magazine har kåret beviset for Poincaré-formod- ningen til årets vitenskapelige gjennombrudd i 2006. Aldri før har en matematikkbegiven- het blitt denne æren til del. Men Foto: Torstein Øen hyggelig er det og det er et vik- tig signal om at det ikke bare er Den 27. november disputerte indiske Sharada Gade for doktorgraden anvendt vitenskap som er be- i matematikk-didaktikk ved Høgskolen i Agder. Dette er den første tydningsfullt for samfunnet. matematikkdidaktikk-doktoren høgskolen har kreert etter at studiet ble HiA har fått kreert sin første opprettet i 2002. doktor i matematikkdidaktikk og er på full fart mot universi- Dermed er et viktig krav for å ta steget opp i universitetsklassen opp- tetsstatus! Vi gratulerer både fylt. HiA må levere doktorgrader i andre fag enn nordisk og det sørget høgskolen og den nye doktoren Sharada Gade for. Hennes avhandling dreier seg om viktigheten av Sharada Gade. mening, mål og lærerens rolle i matematikkundervisningen. hilsen Arne B. INFOMAT kommer ut med 11 nummer i året og gis ut av Norsk Matematisk Forening. Deadline for neste utgave er alltid den 10. i neste måned. Stoff til INFOMAT sendes til infomat at math.ntnu.no Foreningen har hjemmeside http://www.matematikkforeningen.no/INFOMAT Ansvarlig redaktør er Arne B.
    [Show full text]
  • Manas Rachh Positions Education Publications
    Manas Rachh AKW 109, 51 Propsect St, Email: [email protected] New Haven CT - 06511 http://gauss.math.yale.edu~/mr2245 Positions Jul 2015 - present Gibbs Assistant Professor, Applied Mathematics Program, Yale University Education 08/2011 - 05/2015 Ph.D. Mathematics, Courant Institute of Mathematical Sciences, New York University, Integral equation methods for problems in electrostatics, elastostics and viscous flow Thesis advisor: Leslie Greengard 08/2006 - 08/2011 B.Tech and M.Tech Aeropsace Engineering, Indian Institute of Technology, Bombay Publications 1. M. Rachh, and K. Serkh, \On the solution of Stokes equation on regions with corners", Technical report YALEU/DCS/TR-1536 (Yale University, New Haven, CT). 2. Y. Bao, M. Rachh, E. Keaveny, L. Greengard, and A. Donev, \A fluctuating boundary inte- gral method for Brownian suspensions", arXiv preprint arXiv:1709.01480 (2017), submitted to Journal of Computational Physics. 3. M. Rachh, and T. Askham, \Integral equation formulation of the biharmonic Dirichlet problem", Journal of Scientific Computing (2017). https://doi.org/10.1007/s10915-017-0559-8. 4. F. Pausinger, M. Rachh, and S. Steinerberger, \Optimal Jittered Sampling for two points in the unit square", (to appear in) Statistics and Probability Letters. 5. X. Cheng, M. Rachh, and S. Steinerberger, \On the Diffusion Geometry of Graph Laplacians and Applications", submitted to Applied Computational Harmonic Analysis. 6. M. Rachh, and S. Steinerberger, \On the location of maxima of solutions of Schr¨odinger'sequa- tion", (to appear in) Communications in Pure and Applied Mathematics. 7. S. Jiang, M. Rachh, and Y. Xiang, \An efficient high order method for dislocation climb in two dimensions", SIAM Journal on Multiscale Modeling and Simulation 15.1 (2017): 235:253.
    [Show full text]
  • 2020-2021 Annual Report
    Institute for Computational and Experimental Research in Mathematics Annual Report May 1, 2020 – April 30, 2021 Brendan Hassett, Director, PI Mathew Borton, IT Director Ruth Crane, Assistant Director and Chief of Staff Juliet Duyster, Assistant Director Finance and Administration Sigal Gottlieb, Deputy Director Jeffrey Hoffstein, Consulting Associate Director Caroline Klivans, Deputy Director Benoit Pausader, co-PI Jill Pipher, Consulting Director Emerita, co-PI Kavita Ramanan, Associate Director, co-PI Bjorn Sandstede, Associate Director, co-PI Ulrica Wilson, Associate Director for Diversity and Outreach Table of Contents Mission ........................................................................................................................................... 5 Annual Report for 2020-2021 ........................................................................................................ 5 Core Programs and Events ............................................................................................................ 5 Participant Summaries by Program Type ..................................................................................... 7 ICERM Funded Participants ................................................................................................................. 7 ICERM Funded Speakers ...................................................................................................................... 9 All Speakers (ICERM funded and Non-ICERM funded) ................................................................
    [Show full text]
  • The Courant Institute of Mathematical Sciences: 75 Years of Excellence by M.L
    Celebrating 75 Years The Courant Institute of Mathematical Sciences at New York University Subhash Khot wins NSF’s Alan T. Waterman Award This award is given annually by the NSF to a single outstanding young researcher in any of the fields of science, engineering, and social science it supports. Subhash joins a very distinguished recipient list; few mathematicians or computer scientists have won this award in the past. Subhash has made fundamental contributions to the understanding of the exact difficulty of optimization problems arising in industry, mathematics and science. His work has created a paradigm which unites a broad range of previously disparate optimization problems and connects them to other fields of study including geometry, coding, learning and more. For the past four decades, complexity theory has relied heavily on the concept of NP-completeness. In 2002, Subhash proposed the Unique Games Conjecture (UGC). This postulates that the task of finding a “good” approximate solution for a variant Spring / Summer 2010 7, No. 2 Volume of the standard NP-complete constraint satisfaction problem is itself NP-complete. What is remarkable is that since then the UGC has Photo: Gayatri Ratnaparkhi proven to be a core postulate for the dividing line In this Issue: between approximability and inapproximability in numerous problems of diverse nature, exactly specifying the limit of efficient approximation for these problems, and thereby establishing UGC as an important new paradigm in complexity theory. As a further Subhash Khot wins NSF’s Alan T. Waterman Award 1 bonus, UGC has inspired many new techniques and results which are valid irrespective of UGC’s truth.
    [Show full text]
  • 19880014833.Pdf
    ;V,45Il t'£- /?~ ~f5-6 NASA Contractor Report 181656 lCASE REPORT NO. 88-24 NASA-CR-181656 19880014833 I I .t. ICASE EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-DSCILLATORY SHOCK CAPTURING SCHEMES, II Chi-nang Shu Stanley Osher Contract No. NASI-18ID7 April 1988 INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665 Operated by the Universities Space Research Association ~r:l·l~~~ H"~) r~R·'-:.v _ ~,1\Uf'i::f},~ . ..... L .... ~ b,i' ~ L 'u~l 1 .,' \c.~:~ NI\SI\ J , "l/\..~' National Aeronautics and L\~!~L::Y nEsr,",I'.:-'~ c~~~~~:" Space Administration I !t ~~~ e," ,I' i \ ~ Langley Research Center Hampton. Virginia 23665 llllmnllllllmrllllllillmlllllllilif NF00885 4B~ EM3287.PRT DISPLAY 22/2/2 88N24217*t ISSUE 17 PAGE 2392 CATEGORY 64 RPT#: NASA-CR-181656 ICASE-88-24 NAS 1.26:181656 CNTt: NAS1-18107 NAGl-270 88/04/00 64 PAGES UNCLASSIFIED DOCUMENT UTTL: Efficient implementation of essentially non-oscillatory shock capturing schemes, 2 TLSP: Final Report AUTH: A/SHU, CHI-WANG; B/OSHER, STANLEY PAA: B/(California Univ., Los Angeles.) CORP: National Aeronautics and Space Administration. Langley Research Center, Hampton, Va. SAP: Avail: NTIS HC A04/MF A01 cro: UNITED STATES Submitted for publication Sponsored in part by Defense Advanced Research Projects Agency, Arlington, Va. MAJS: /*NUMERICAL FLOW VISUALIZATION/*OSCILLATIONS/*SHOCK WAVES MINS: I CONSERVATION LAWS/ EULER EQUATIONS OF MOTION/ RUNGE-KUTTA METHOD ABA: Author ABS: Earlier work on the efficient implementation of ENO (essentially non-oscillatory) shock capturing schemes is continued. Anew simplified expression is provided for the ENa construction procedure based again on numerical fluxes rather than cell averages.
    [Show full text]
  • Final Program
    Final Program The SIAM Conference on the Life Sciences is sponsored by the SIAM Activity Group on Life Sciences (SIAG/LS) The SIAM Activity Group on the Life Sciences was established to foster the application of mathematics to the life sciences and research in mathematics that leads to new methods and techniques useful in the life sciences. The life sciences have become quantitative as new technologies facilitate collection and analysis of vast amounts of data ranging from complete genomic sequences of organisms to satellite imagery of forest landscapes on continental scales. Computers enable the study of complex models of biological processes. The activity group brings together researchers who seek to develop and apply mathematical and computational methods in all areas of the life sciences. It provides a forum that cuts across disciplines to catalyze mathematical research relevant to the life sciences and rapid diffusion of advances in mathematical and computational methods. AN16/LS16 Mobile App Scan the QR code with any QR reader and download the TripBulder EventMobileTM app to your iPhone, iPad, iTouch, or Android devices. You can also visit www.tripbuildermedia.com/apps/siam2016events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215- 386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings 2 2016 SIAM Annual Meeting General Information Table of Contents C. David Levermore SIAM Registration Desk University of Maryland, College Park, USA General Information ...............................2 The SIAM registration desk is located on Rachel Levy Exhibitor and Sponsor Information .6 the Concourse Level of the Westin Boston Harvey Mudd College, USA Waterfront.
    [Show full text]