TABLE 5: Effective Surface Brightnesses

Total Page:16

File Type:pdf, Size:1020Kb

TABLE 5: Effective Surface Brightnesses TABLE 5: Effective Surface Brightnesses Name ¹e(B) ¹e(V ) ¹e(R) ¹e(I) 2 2 2 2 (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (1) (2) (3) (4) (5) ESO 009-G010 22.99 0.026 22.31 0.022 21.64 0.021 20.86 0.024 ESO 027-G001 22.89§0.031 22.25§0.028 21.69§0.027 20.95§0.027 ESO 027-G008 22.43§0.044 21.64§0.039 20.95§0.037 20.30§0.036 ESO 056-G115 § § § § ESO 060-G019 22.93¢ ¢ ¢0.054 22.48¢ ¢ ¢0.051 22.01¢ ¢ ¢0.045 21.32¢ ¢ ¢0.049 ESO 091-G003 22.66§0.016 21.63§0.011 20.84§0.010 20.01§0.015 ESO 097-G013 § § § § ESO 121-G006 23.53¢ ¢ ¢0.059 22.69¢ ¢ ¢0.056 21.85¢ ¢ ¢0.064 20.98¢ ¢ ¢0.057 ESO 121-G026 22.51§0.027 21.77§0.025 21.16§0.021 20.43§0.014 ESO 136-G012 23.79§0.106 23.44§0.106 22.65§0.096 21.93§0.160 ESO 137-G018 23.14§0.052 22.50§0.051 21.91§0.058 20.94§0.101 ESO 137-G034 23.03§0.039 22.03§0.028 21.17§0.027 20.01§0.042 ESO 137-G038 23.05§0.111 22.22§0.090 21.47§0.090 20.67§0.088 ESO 138-G005 22.31§0.064 21.17§0.027 20.42§0.031 19.84§0.037 ESO 138-G010 24.09§0.062 23.15§0.052 22.39§0.048 21.45§0.073 ESO 138-G029 § § § § ESO 183-G030 21.76¢ ¢ ¢0.007 20.82¢ ¢ ¢0.005 20.15¢ ¢ ¢0.005 19.38¢ ¢ ¢0.007 ESO 185-G054 23.22§0.012 22.10§0.016 21.50§0.013 20.20§0.012 ESO 186-G062 23.23§0.033 22.64§0.024 22.13§0.023 21.59§0.027 ESO 208-G021 22.52§0.015 21.33§0.016 20.65§0.018 19.67§0.016 ESO 209-G009 23.49§0.055 22.66§0.047 21.97§0.042 21.13§0.044 ESO 213-G011 23.61§0.043 22.75§0.040 22.05§0.042 21.23§0.049 ESO 219-G021 23.30§0.039 22.61§0.033 22.01§0.031 21.23§0.038 ESO 221-G026 21.82§0.024 21.01§0.024 20.39§0.024 19.63§0.021 ESO 221-G032 22.80§0.041 22.08§0.035 21.44§0.032 20.67§0.039 ESO 265-G007 22.17§0.028 21.59§0.025 21.00§0.023 20.31§0.023 ESO 269-G057 24.19§0.068 22.22§0.036 21.24§0.037 20.24§0.035 ESO 270-G017 24.18§0.044 23.86§0.060 23.16§0.063 22.23§0.086 ESO 271-G010 22.85§0.026 22.38§0.024 21.92§0.025 21.30§0.035 ESO 273-G014 24.51§0.225 23.68§0.186 23.54§0.324 22.41§0.209 ESO 274-G001 23.79§0.065 23.05§0.064 22.35§0.069 21.39§0.084 ESO 311-G012 21.49§0.023 20.33§0.023 19.56§0.022 18.91§0.022 ESO 320-G026 22.22§0.032 21.46§0.023 20.77§0.018 20.00§0.014 ESO 321-G025 22.48§0.036 22.04§0.032 21.54§0.030 21.07§0.029 ESO 351-G030 21.07§0.029 21.07§0.029 21.07§0.029 21.07§0.029 ESO 356-G004 21.07§0.029 21.07§0.029 21.07§0.029 21.07§0.029 ESO 358-G063 23.08§0.035 22.37§0.037 21.72§0.037 20.91§0.036 ESO 362-G011 23.23§0.034 22.50§0.032 21.83§0.032 21.04§0.033 ESO 373-G008 23.21§0.045 22.54§0.035 21.92§0.028 21.29§0.041 ESO 380-G001 23.35§0.042 22.54§0.041 21.88§0.041 21.04§0.040 ESO 380-G006 22.74§0.013 21.72§0.011 21.06§0.009 20.14§0.008 ESO 383-G087 23.45§0.028 23.00§0.035 22.52§0.028 21.82§0.027 ESO 384-G002 24.46§0.201 24.02§0.186 23.69§0.182 23.17§0.168 ESO 436-G027 22.81§0.025 21.88§0.023 21.22§0.022 20.31§0.026 ESO 440-G011 23.57§0.040 23.04§0.035 22.49§0.033 21.84§0.034 ESO 442-G026 21.63§0.019 20.62§0.024 19.96§0.025 19.26§0.019 § § § § TABLE 5: Effective Surface Brightnesses|Continued Name ¹e(B) ¹e(V ) ¹e(R) ¹e(I) 2 2 2 2 (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (1) (2) (3) (4) (5) ESO 445-G089 23.49 0.046 22.84 0.038 22.33 0.034 21.60 0.037 ESO 479-G004 22.16§0.036 21.79§0.032 21.47§0.029 21.00§0.024 ESO 494-G026 24.52§0.059 23.55§0.064 22.75§0.054 21.77§0.079 ESO 495-G021 20.26§0.124 20.00§0.121 19.46§0.095 19.32§0.048 ESO 506-G004 22.51§0.029 21.63§0.023 20.94§0.024 20.22§0.020 ESO 507-G025 21.98§0.014 21.17§0.010 20.51§0.008 19.73§0.007 ESO 556-G015 23.04§0.048 22.30§0.046 21.59§0.046 20.85§0.043 ESO 582-G012 22.88§0.035 22.23§0.028 21.62§0.024 20.89§0.023 IC 438 22.85§0.038 22.10§0.041 21.55§0.038 20.96§0.029 IC 764 23.41§0.043 22.77§0.037 22.17§0.034 21.42§0.029 IC 1459 22.32§0.005 21.26§0.005 20.62§0.005 19.79§0.004 IC 1633 23.58§0.020 22.64§0.014 22.03§0.017 21.08§0.017 IC 1953 22.72§0.036 22.24§0.029 21.76§0.026 21.18§0.024 IC 1954 21.88§0.022 21.56§0.017 21.10§0.016 20.40§0.014 IC 1993 22.56§0.019 22.25§0.014 21.72§0.012 21.05§0.013 IC 2000 22.72§0.032 22.21§0.024 21.70§0.020 21.11§0.019 IC 2006 21.93§0.004 20.89§0.003 20.25§0.002 19.57§0.003 IC 2035 19.46§0.020 18.75§0.020 18.28§0.018 17.83§0.012 IC 2051 21.50§0.029 21.11§0.023 20.73§0.022 20.22§0.021 IC 2056 20.33§0.042 19.98§0.032 19.51§0.026 18.99§0.020 IC 2150 22.57§0.033 21.94§0.026 21.35§0.024 20.66§0.022 IC 2163 § § § § IC 2311 22.74¢ ¢ ¢0.010 21.65¢ ¢ ¢0.015 20.85¢ ¢ ¢0.013 20.13¢ ¢ ¢0.019 IC 2367 22.66§0.023 21.78§0.020 21.14§0.018 20.28§0.018 IC 2469 22.40§0.049 21.32§0.045 20.64§0.038 19.73§0.029 IC 2522 22.39§0.060 21.93§0.048 21.45§0.043 20.83§0.041 IC 2531 22.52§0.072 21.58§0.076 20.83§0.076 20.02§0.074 IC 2537 22.78§0.025 22.07§0.021 21.45§0.020 20.70§0.019 IC 2554 22.28§0.109 21.71§0.100 21.05§0.093 20.33§0.087 IC 2560 23.32§0.044 22.03§0.026 21.37§0.026 20.55§0.026 IC 2597 23.27§0.015 22.41§0.011 21.72§0.010 20.87§0.018 IC 2627 22.68§0.059 22.06§0.048 21.50§0.045 20.83§0.038 IC 2764 22.55§0.013 21.74§0.010 21.11§0.008 20.37§0.009 IC 2995 22.51§0.044 22.01§0.036 21.50§0.034 20.91§0.029 IC 3253 22.22§0.034 21.61§0.029 21.01§0.026 20.32§0.023 IC 3370 22.69§0.014 21.60§0.014 21.02§0.015 20.12§0.015 IC 3896 23.06§0.019 21.99§0.017 21.25§0.015 20.23§0.017 IC 4214 22.12§0.058 21.13§0.048 20.43§0.042 19.68§0.038 IC 4296 23.78§0.034 22.83§0.030 22.22§0.022 20.91§0.017 IC 4329 24.52§0.057 23.50§0.063 22.44§0.030 21.24§0.025 IC 4351 22.59§0.057 21.81§0.072 21.09§0.068 20.26§0.056 IC 4402 22.04§0.051 21.18§0.047 20.45§0.045 19.64§0.043 IC 4444 21.79§0.049 21.23§0.037 20.58§0.035 19.89§0.029 IC 4538 23.28§0.028 22.64§0.024 22.03§0.022 21.29§0.024 IC 4618 22.34§0.042 21.80§0.039 21.24§0.038 20.62§0.036 IC 4646 22.89§0.049 22.20§0.047 21.61§0.045 20.98§0.056 § § § § TABLE 5: Effective Surface Brightnesses|Continued Name ¹e(B) ¹e(V ) ¹e(R) ¹e(I) 2 2 2 2 (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (1) (2) (3) (4) (5) IC 4662 20.92 0.113 20.66 0.109 20.62 0.076 20.46 0.046 IC 4710 23.59§0.042 23.09§0.044 22.65§0.048 21.96§0.072 IC 4721 23.06§0.041 22.41§0.039 21.78§0.046 21.00§0.060 IC 4742 22.94§0.015 21.86§0.013 21.01§0.086 20.25§0.018 IC 4765 24.66§0.056 23.29§0.036 22.47§0.030 21.64§0.047 IC 4797 21.65§0.017 20.70§0.019 19.95§0.019 19.11§0.018 IC 4808 22.23§0.048 21.61§0.045 21.00§0.042 20.33§0.036 IC 4831 22.65§0.045 21.28§0.052 20.36§0.051 19.55§0.051 IC 4837A 21.67§0.085 20.68§0.089 19.92§0.084 19.16§0.071 IC 4845 22.51§0.020 21.87§0.017 21.26§0.016 20.06§0.020 IC 4889 21.77§0.009 20.83§0.008 20.16§0.007 19.38§0.006 IC 4901 23.31§0.026 22.56§0.021 21.89§0.026 21.17§0.031 IC 4946 21.63§0.023 20.75§0.022 20.07§0.023 19.57§0.015 IC 4991 23.02§0.015 22.46§0.015 21.72§0.013 20.47§0.018 IC 5011 20.82§0.013 19.84§0.014 19.38§0.015 18.66§0.016 IC 5052 22.87§0.041 22.52§0.041 21.93§0.043 21.20§0.069 IC 5152 22.40§0.029 21.92§0.026 21.55§0.025 20.94§0.025 IC 5181 20.36§0.039 19.37§0.044 18.86§0.044 18.21§0.036 IC 5201 23.81§0.122 23.55§0.054 23.06§0.089 22.37§0.100 IC 5240 22.41§0.028 21.79§0.032 21.20§0.036 20.44§0.034 IC 5250 20.44§0.034 20.44§0.034 20.44§0.034 20.44§0.034 IC 5267 22.99§0.011 21.87§0.012 21.27§0.010 20.12§0.006 IC 5273 21.75§0.040 21.33§0.029 20.82§0.026 20.22§0.021 IC 5325 22.05§0.022 21.43§0.018 20.89§0.016 20.32§0.014 IC 5328 22.76§0.009 21.63§0.008 20.77§0.010 19.86§0.012 IC 5332 24.04§0.198 23.50§0.314 22.68§0.271 22.18§0.329 NGC 24 22.30§0.028 21.72§0.025 21.16§0.024 20.52§0.020 NGC 45 23.67§0.029 23.43§0.042 23.20§0.037 22.61§0.052 NGC 55 22.14§0.045 21.82§0.055 21.35§0.063 20.70§0.075 NGC 134 21.91§0.031 21.16§0.036 20.50§0.032 19.68§0.024 NGC 150 21.47§0.038 20.93§0.035 20.37§0.034 19.73§0.031 NGC 151 22.24§0.026 21.48§0.021 20.88§0.024 20.12§0.030 NGC 157 -3.35§0.043 -3.85§0.038 -4.74§0.036 -4.73§0.033 NGC 210 23.97§0.037 22.18§0.038 21.22§0.036 20.33§0.030 NGC 245 21.61§0.046 21.04§0.037 20.50§0.036 20.03§0.031 NGC 247 22.85§0.071 22.53§0.064 21.87§0.098 21.50§0.109 NGC 253 21.58§0.049 20.90§0.036 20.08§0.038 19.05§0.032 NGC 254 21.86§0.019 20.90§0.017 20.27§0.016 19.52§0.015 NGC 255 22.06§0.019 21.59§0.017 21.17§0.019 20.89§0.019 NGC 275 21.83§0.029 21.73§0.020 21.36§0.019 20.79§0.021 NGC 289 21.77§0.024 21.09§0.019 20.45§0.018 19.77§0.013 NGC 300 22.91§0.077 22.22§0.061 21.76§0.099 21.19§0.159 NGC 337 21.24§0.064 20.85§0.058 20.43§0.056 20.17§0.045 NGC 434 21.83§0.022 21.16§0.026 20.58§0.030 19.92§0.023 NGC 578 22.65§0.062 22.20§0.045 21.71§0.036 21.19§0.028 NGC 584 21.45§0.010 20.37§0.012 20.01§0.011 19.37§0.010 § § § § TABLE 5: Effective Surface Brightnesses|Continued Name ¹e(B) ¹e(V ) ¹e(R) ¹e(I) 2 2 2 2 (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (mag arcsec¡ ) (1) (2) (3) (4) (5) NGC 596 21.87 0.011 21.33 0.011 20.70 0.011 19.95 0.012 NGC 613 22.22§0.067 21.56§0.055 20.96§0.050 20.21§0.046 NGC 615 22.09§0.025 21.14§0.027 20.50§0.030 19.79§0.018 NGC 625 -2.45§0.014 -3.09§0.012 -3.89§0.014 -3.82§0.017 NGC 636 22.64§0.013 21.77§0.015 20.95§0.013 20.18§0.013 NGC 681 22.83§0.028 22.02§0.018 21.38§0.017 20.51§0.017 NGC 685 23.14§0.032 22.67§0.026 22.18§0.023 21.57§0.024 NGC 701 21.87§0.049 21.35§0.038 20.80§0.035 20.18§0.027 NGC 720 22.17§0.009 21.31§0.013 20.93§0.007 19.74§0.011 NGC 779 21.27§0.026 20.44§0.024 19.78§0.021 19.13§0.015 NGC 782 22.36§0.048 21.82§0.037 21.25§0.032 20.66§0.026 NGC 895 22.86§0.061 22.46§0.046 21.97§0.041 21.16§0.041 NGC 908 21.84§0.033 21.31§0.029 20.71§0.029 20.00§0.027 NGC 922 21.41§0.052 21.35§0.049 21.29§0.045 20.99§0.038 NGC 936 21.93§0.036 21.09§0.039 20.53§0.038 19.76§0.038 NGC 945 22.95§0.042 22.30§0.038 21.74§0.038 21.02§0.034 NGC 958 21.95§0.041 21.27§0.041 20.60§0.042 19.73§0.039 NGC 986 22.23§0.084 21.74§0.074 21.24§0.071 20.56§0.069 NGC 988
Recommended publications
  • Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
    The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Southern Arp - AM # Order
    Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC
    [Show full text]
  • Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
    Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten.
    [Show full text]
  • Optical BVI Imaging and HI Synthesis Observations of the Dwarf Irregular
    Astronomy & Astrophysics manuscript no. ms December 4, 2018 (DOI: will be inserted by hand later) Optical BVI Imaging and H i Synthesis Observations of the Dwarf Irregular Galaxy ESO 364-G029 M. B. N. Kouwenhoven1,2,3, M. Bureau4, S. Kim5, and P. T. de Zeeuw2 1 Department of Physics and Astrophysics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom (t.kouwenhoven@sheffield.ac.uk) 2 Sterrewacht Leiden, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands ([email protected]) 3 Astronomical Institute Anton Pannekoek, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 4 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom ([email protected]) 5 Astronomy & Space Science Department, Sejong University, 98 Kwangjin-gu, Kunja-dong, Seoul, 143-747, Korea ([email protected]) Received / Accepted Abstract. As part of an effort to enlarge the number of well-studied Magellanic-type galaxies, we obtained broadband op- tical imaging and neutral hydrogen radio synthesis observations of the dwarf irregular galaxy ESO 364-G029. The optical morphology characteristically shows a bar-like main body with a one-sided spiral arm, an approximately exponential light distribution, and offset photometric and kinematic centers. The H i distribution is mildly asymmetric and, although slightly offset from the photometric center, roughly follows the optical brightness distribution, extending to over 1.2 Holmberg radii −2 (where µB = 26.5 mag arcsec ). In particular, the highest H i column densities closely follow the bar, one-arm spiral, and a third optical extension. The rotation is solid-body in the inner parts but flattens outside of the optical extent.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • TSP 2004 Telescope Observing Program
    THE TEXAS STAR PARTY 2004 TELESCOPE OBSERVING CLUB BY JOHN WAGONER TEXAS ASTRONOMICAL SOCIETY OF DALLAS RULES AND REGULATIONS Welcome to the Texas Star Party's Telescope Observing Club. The purpose of this club is not to test your observing skills by throwing the toughest objects at you that are hard to see under any conditions, but to give you an opportunity to observe 25 showcase objects under the ideal conditions of these pristine West Texas skies, thus displaying them to their best advantage. This year we have planned a program called “Starlight, Starbright”. The rules are simple. Just observe the 25 objects listed. That's it. Any size telescope can be used. All observations must be made at the Texas Star Party to qualify. All objects are within range of small (6”) to medium sized (10”) telescopes, and are available for observation between 10:00PM and 3:00AM any time during the TSP. Each person completing this list will receive an official Texas Star Party Telescope Observing Club lapel pin. These pins are not sold at the TSP and can only be acquired by completing the program, so wear them proudly. To receive your pin, turn in your observations to John Wagoner - TSP Observing Chairman any time during the Texas Star Party. I will be at the outside door leading into the TSP Meeting Hall each day between 1:00 PM and 2:30 PM. If you finish the list the last night of TSP, or I am not available to give you your pin, just mail your observations to me at 1409 Sequoia Dr., Plano, Tx.
    [Show full text]
  • Minor-Axis Velocity Gradients in Spirals and the Case of Inner Polar Disks?,??
    A&A 408, 873–885 (2003) Astronomy DOI: 10.1051/0004-6361:20030951 & c ESO 2003 Astrophysics Minor-axis velocity gradients in spirals and the case of inner polar disks?;?? E. M. Corsini, A. Pizzella, L. Coccato, and F. Bertola Dipartimento di Astronomia, Universit`a di Padova, vicolo dell’Osservatorio 2, 35122 Padova, Italy Received 4 March 2003 / Accepted 3 June 2003 Abstract. We measured the ionized-gas and stellar kinematics along the major and minor axis of a sample of 10 early-type spirals. Much to our surprise we found a remarkable gas velocity gradient along the minor axis of 8 of them. According to the kinematic features observed in their ionized-gas velocity fields, we divide our sample galaxies in three classes of objects. (i) NGC 4984, NGC 7213, and NGC 7377 show an overall velocity curve along the minor axis without zero-velocity points, out to the last measured radius, which is interpreted as due to the warped structure of the gaseous disk. (ii) NGC 3885, NGC 4224, and NGC 4586 are characterized by a velocity gradient along both major and minor axis, although non-zero velocities along the minor axis are confined to the central regions. Such gas kinematics have been explained as being due to non-circular motions induced by a triaxial potential. (iii) NGC 2855 and NGC 7049 show a change of slope of the velocity gradient measured along the major axis (which is shallower in the center and steeper away from the nucleus), as well as non-zero gas velocities in the central regions of the minor axis.
    [Show full text]
  • Dark Energy and Extending the Geodesic Equations of Motion: Connecting the Galactic and Cosmological Length Scales
    General Relativity and Gravitation (2011) DOI 10.1007/s10714-010-1043-z RESEARCHARTICLE A. D. Speliotopoulos Dark energy and extending the geodesic equations of motion: connecting the galactic and cosmological length scales Received: 23 May 2010 / Accepted: 16 June 2010 c The Author(s) 2010 Abstract Recently, an extension of the geodesic equations of motion using the Dark Energy length scale was proposed. Here, we apply this extension to analyz- ing the motion of test particles at the galactic scale and longer. A cosmological check of the extension is made using the observed rotational velocity curves and core sizes of 1,393 spiral galaxies. We derive the density profile of a model galaxy using this extension, and with it, we calculate σ8 to be 0.73±0.12; this is within +0.049 experimental error of the WMAP value of 0.761−0.048. We then calculate R200 to be 206±53 kpc, which is in reasonable agreement with observations. Keywords Dark energy, Galactic density profile, Density fluctuations, Extensions of the geodesic equations of motion, Galactic rotation curves 1 Introduction In a previous paper [1], we constructed an extension of the geodesic equations of motion (GEOM). This construction is possible because with the discovery of +0.82 −30 3 Dark Energy, ΛDE = (7.21−0.84) × 10 g/cm [2; 3; 4], there is now a length 1/2 scale, λDE = c/(ΛDEG) , associated with the universe. As this length scale is also not associated with the mass of any known particle, this extension does not violate various statements of the equivalence principle.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]
  • Exploding Star in NGC 2397 31 March 2008
    Exploding star in NGC 2397 31 March 2008 Camera for Surveys (ACS). One atypical feature of this Hubble image is the view of supernova SN 2006bc taken when it was still fairly faint and its brightness on the increase. Astronomers from Queen's University Belfast in Northern Ireland, led by Professor of Astronomy Stephen J. Smartt, requested the image as part of a long project studying the massive exploding stars — supernovae. Exactly which types of star will explode and the lowest mass of star that can produce a supernova are not known. When a supernova is discovered in a nearby galaxy the group begins a painstaking search of earlier Hubble images of the same galaxy to locate the NGC 2397, pictured in this image from Hubble, is a star that later exploded; often one of hundreds of classic spiral galaxy with long prominent dust lanes millions of stars in the galaxy. This is a little like along the edges of its arms, seen as dark patches and sifting through days of CCTV footage to find one streaks silhouetted against the starlight. Hubble's frame showing a suspect. If the astronomers find a exquisite resolution allows the study of individual stars in star at the location of the later explosion, they may nearby galaxies. Located nearly 60 million light-years work out the mass and type of star from its away from Earth, the galaxy NGC 2397 is typical of most spirals, with mostly older, yellow and red stars in its brightness and colour. Only six such stars have central portion, while star formation continues in the been identified before they exploded and the outer, bluer spiral arms.
    [Show full text]
  • Annual Report / Rapport Annuel / Jahresbericht 1996
    Annual Report / Rapport annuel / Jahresbericht 1996 ✦ ✦ ✦ E U R O P E A N S O U T H E R N O B S E R V A T O R Y ES O✦ 99 COVER COUVERTURE UMSCHLAG Beta Pictoris, as observed in scattered light Beta Pictoris, observée en lumière diffusée Beta Pictoris, im Streulicht bei 1,25 µm (J- at 1.25 microns (J band) with the ESO à 1,25 microns (bande J) avec le système Band) beobachtet mit dem adaptiven opti- ADONIS adaptive optics system at the 3.6-m d’optique adaptative de l’ESO, ADONIS, au schen System ADONIS am ESO-3,6-m-Tele- telescope and the Observatoire de Grenoble télescope de 3,60 m et le coronographe de skop und dem Koronographen des Obser- coronograph. l’observatoire de Grenoble. vatoriums von Grenoble. The combination of high angular resolution La combinaison de haute résolution angu- Die Kombination von hoher Winkelauflö- (0.12 arcsec) and high dynamical range laire (0,12 arcsec) et de gamme dynamique sung (0,12 Bogensekunden) und hohem dy- (105) allows to image the disk to only 24 AU élevée (105) permet de reproduire le disque namischen Bereich (105) erlaubt es, die from the star. Inside 50 AU, the main plane jusqu’à seulement 24 UA de l’étoile. A Scheibe bis zu einem Abstand von nur 24 AE of the disk is inclined with respect to the l’intérieur de 50 UA, le plan principal du vom Stern abzubilden. Innerhalb von 50 AE outer part. Observers: J.-L. Beuzit, A.-M.
    [Show full text]