Thread Scheduling and Related Interfaces in Netbsd 5.0
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Freebsd-And-Git.Pdf
FreeBSD and Git Ed Maste - FreeBSD Vendor Summit 2018 Purpose ● History and Context - ensure we’re starting from the same reference ● Identify next steps for more effective use / integration with Git / GitHub ● Understand what needs to be resolved for any future decision on Git as the primary repository Version control history ● CVS ○ 1993-2012 ● Subversion ○ src/ May 31 2008, r179447 ○ doc/www May 19, 2012 r38821 ○ ports July 14, 2012 r300894 ● Perforce ○ 2001-2018 ● Hg Mirror ● Git Mirror ○ 2011- Subversion Repositories svnsync repo svn Subversion & Git Repositories today svn2git git push svnsync git svn repo svn git github Repositories Today fork repo / Freebsd Downstream svn github github Repositories Today fork repo / Freebsd Downstream svn github github “Git is not a Version Control System” phk@ missive, reproduced at https://blog.feld.me/posts/2018/01/git-is-not-revision-control/ Subversion vs. Git: Myths and Facts https://svnvsgit.com/ “Git has a number of advantages in the popularity race, none of which are really to do with the technology” https://chapmanworld.com/2018/08/25/why-im-now-using-both-git-and-subversion-for-one-project/ 10 things I hate about Git https://stevebennett.me/2012/02/24/10-things-i-hate-about-git Git popularity Nobody uses Subversion anymore False. A myth. Despite all the marketing buzz related to Git, such notable open source projects as FreeBSD and LLVM continue to use Subversion as the main version control system. About 47% of other open source projects use Subversion too (while only 38% are on Git). (2016) https://svnvsgit.com/ Git popularity (2018) Git UI/UX Yes, it’s a mess. -
Privacy in the Domain Name System (DNS): DNS Privacy in Practice
Privacy in the Domain Name System (DNS): DNS Privacy in Practice Sara Dickinson [email protected] https://sinodun.com @SinodunCom TMA Jun 2019 DNS Privacy https://github.com/Sinodun/tma_phd_school Overview • First - lets look at your DNS queries! • Desktop DoT stub resolvers (client) (Stubby) • Set up your own DoT recursive (Unbound) - decrypt DoT • DoH - Clients & Browsers (Firefox) - decrypt DoH Firefox DoH Decryption is • Mobile Apps easier…. • DNS Libraries (getdns) • Routers TMA, Jun 2019 2 DNS Privacy dnsprivacy.org • DNS Privacy Clients • DNS Privacy Servers setup guides Reference material here • DNS Privacy Test and Public resolvers for most setups and recursive resolvers • DNS Privacy Monitoring • DNS Privacy Current work TMA, Jun 2019 3 DNS Privacy DNS Basics TMA, Jun 2019 4 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘dig’ is available on most *nix systems (or ‘drill’) TMA, Jun 2019 5 DNS Privacy DNS Basics - A UDP query ‘nslookup’ is available on Windows order is important! TMA, Jun 2019 6 DNS Privacy DNS Basics -
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware Yanyan Shen Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science and Engineering Faculty of Engineering March 2019 Thesis/Dissertation Sheet Surname/Family Name : Shen Given Name/s : Yanyan Abbreviation for degree as give in the University calendar : PhD Faculty : Faculty of Engineering School : School of Computer Science and Engineering Microkernel Mechanisms for Improving the Trustworthiness of Commodity Thesis Title : Hardware Abstract 350 words maximum: (PLEASE TYPE) The thesis presents microkernel-based software-implemented mechanisms for improving the trustworthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can malfunction when the hardware is impacted by transient hardware faults. The hardware anomalies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, significantly undermining system dependability. Specifically, we adopt the single event upset (SEU) fault model and address transient CPU or memory faults. We take advantage of the functional correctness and isolation guarantee provided by the formally verified seL4 microkernel and hardware redundancy provided by multicore processors, design the redundant co-execution (RCoE) architecture that replicates a whole software system (including the microkernel) onto different CPU cores, and implement two variants, loosely-coupled redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for the ARM and x86 architectures. RCoE treats each replica of the software system as a state machine and ensures that the replicas start from the same initial state, observe consistent inputs, perform equivalent state transitions, and thus produce consistent outputs during error-free executions. -
Getting Started With... Berkeley Software for UNIX† on the VAX‡ (The Third Berkeley Software Distribution)
Getting started with... Berkeley Software for UNIX† on the VAX‡ (The third Berkeley Software Distribution) A package of software for UNIX developed at the Computer Science Division of the University of California at Berkeley is installed on our system. This package includes a new version of the operating sys- tem kernel which supports a virtual memory, demand-paged environment. While the kernel change should be transparent to most programs, there are some things you should know if you plan to run large programs to optimize their performance in a virtual memory environment. There are also a number of other new pro- grams which are now installed on our machine; the more important of these are described below. Documentation The new software is described in two new volumes of documentation. The first is a new version of volume 1 of the UNIX programmers manual which has integrated manual pages for the distributed software and incorporates changes to the system made while introducing the virtual memory facility. The second volume of documentation is numbered volume 2c, of which this paper is a section. This volume contains papers about programs which are in the distribution package. Where are the programs? Most new programs from Berkeley reside in the directory /usr/ucb. A major exception is the C shell, csh, which lives in /bin. We will later describe how you can arrange for the programs in the distribution to be part of your normal working environment. Making use of the Virtual Memory With a virtual memory system, it is no longer necessary for running programs to be fully resident in memory. -
Advanced Operating Systems #1
<Slides download> https://www.pf.is.s.u-tokyo.ac.jp/classes Advanced Operating Systems #2 Hiroyuki Chishiro Project Lecturer Department of Computer Science Graduate School of Information Science and Technology The University of Tokyo Room 007 Introduction of Myself • Name: Hiroyuki Chishiro • Project Lecturer at Kato Laboratory in December 2017 - Present. • Short Bibliography • Ph.D. at Keio University on March 2012 (Yamasaki Laboratory: Same as Prof. Kato). • JSPS Research Fellow (PD) in April 2012 – March 2014. • Research Associate at Keio University in April 2014 – March 2016. • Assistant Professor at Advanced Institute of Industrial Technology in April 2016 – November 2017. • Research Interests • Real-Time Systems • Operating Systems • Middleware • Trading Systems Course Plan • Multi-core Resource Management • Many-core Resource Management • GPU Resource Management • Virtual Machines • Distributed File Systems • High-performance Networking • Memory Management • Network on a Chip • Embedded Real-time OS • Device Drivers • Linux Kernel Schedule 1. 2018.9.28 Introduction + Linux Kernel (Kato) 2. 2018.10.5 Linux Kernel (Chishiro) 3. 2018.10.12 Linux Kernel (Kato) 4. 2018.10.19 Linux Kernel (Kato) 5. 2018.10.26 Linux Kernel (Kato) 6. 2018.11.2 Advanced Research (Chishiro) 7. 2018.11.9 Advanced Research (Chishiro) 8. 2018.11.16 (No Class) 9. 2018.11.23 (Holiday) 10. 2018.11.30 Advanced Research (Kato) 11. 2018.12.7 Advanced Research (Kato) 12. 2018.12.14 Advanced Research (Chishiro) 13. 2018.12.21 Linux Kernel 14. 2019.1.11 Linux Kernel 15. 2019.1.18 (No Class) 16. 2019.1.25 (No Class) Linux Kernel Introducing Synchronization /* The cases for Linux */ Acknowledgement: Prof. -
Process Scheduling Ii
PROCESS SCHEDULING II CS124 – Operating Systems Spring 2021, Lecture 12 2 Real-Time Systems • Increasingly common to have systems with real-time scheduling requirements • Real-time systems are driven by specific events • Often a periodic hardware timer interrupt • Can also be other events, e.g. detecting a wheel slipping, or an optical sensor triggering, or a proximity sensor reaching a threshold • Event latency is the amount of time between an event occurring, and when it is actually serviced • Usually, real-time systems must keep event latency below a minimum required threshold • e.g. antilock braking system has 3-5 ms to respond to wheel-slide • The real-time system must try to meet its deadlines, regardless of system load • Of course, may not always be possible… 3 Real-Time Systems (2) • Hard real-time systems require tasks to be serviced before their deadlines, otherwise the system has failed • e.g. robotic assembly lines, antilock braking systems • Soft real-time systems do not guarantee tasks will be serviced before their deadlines • Typically only guarantee that real-time tasks will be higher priority than other non-real-time tasks • e.g. media players • Within the operating system, two latencies affect the event latency of the system’s response: • Interrupt latency is the time between an interrupt occurring, and the interrupt service routine beginning to execute • Dispatch latency is the time the scheduler dispatcher takes to switch from one process to another 4 Interrupt Latency • Interrupt latency in context: Interrupt! Task -
What Is an Operating System III 2.1 Compnents II an Operating System
Page 1 of 6 What is an Operating System III 2.1 Compnents II An operating system (OS) is software that manages computer hardware and software resources and provides common services for computer programs. The operating system is an essential component of the system software in a computer system. Application programs usually require an operating system to function. Memory management Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If a program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to the computer's memory. Various methods of memory protection exist, including memory segmentation and paging. All methods require some level of hardware support (such as the 80286 MMU), which doesn't exist in all computers. -
Oracle Berkeley DB Installation and Build Guide Release 18.1
Oracle Berkeley DB Installation and Build Guide Release 18.1 Library Version 18.1.32 Legal Notice Copyright © 2002 - 2019 Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third- party use is permitted without the express prior written consent of Oracle. Other names may be trademarks of their respective owners. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
CS 350 Operating Systems Spring 2021
CS 350 Operating Systems Spring 2021 4. Process II Discussion 1: Question? • Why do UNIX OSes use the combination of “fork() + exec()” to create a new process (from a program)? • Can we directly call exec() to create a new process? Or, do you have better ideas/designs for creating a new process? • Hints: To answer this question: think about the possible advantages of this solution. Fork Parent process Child process Exec New program image in execution 2 Discussion 1: Background • Motived by the UNIX shell • $ echo “Hello world!” • $ Hello world! • shell figures out where in the file system the executable “echo” resides, calls fork() to create a new child process, calls exec() to run the command, and then waits for the command to complete by calling wait(). • You can see that you can use fork(), exec() and wait() to implement a shell program – our project! • But what is the benefit of separating fork() and exec() in creating a new process? 3 Discussion 1: Case study • The following program implements the command: • $ wc p3.c > p4.output # wc counts the word number in p3.c • # the result is redirected to p4.output Close default standard output (to terminal) open file p4.output 4 Discussion 1: Case study • $ wc p3.c # wc outputs the result to the default standard output, specified by STDOUT_FILENO • By default, STDOUT_FILENO points to the terminal output. • However, we close this default standard output → close(STDOUT_FILENO ); • Then, when we open the file “p4.output” • A file descriptor will be assigned to this file • UNIX systems start looking for free file descriptors from the beginning of the file descriptor table (i.e., at zero). -
The Dragonflybsd Operating System
1 The DragonFlyBSD Operating System Jeffrey M. Hsu, Member, FreeBSD and DragonFlyBSD directories with slightly over 8 million lines of code, 2 million Abstract— The DragonFlyBSD operating system is a fork of of which are in the kernel. the highly successful FreeBSD operating system. Its goals are to The project has a number of resources available to the maintain the high quality and performance of the FreeBSD 4 public, including an on-line CVS repository with mirror sites, branch, while exploiting new concepts to further improve accessible through the web as well as the cvsup service, performance and stability. In this paper, we discuss the motivation for a new BSD operating system, new concepts being mailing list forums, and a bug submission system. explored in the BSD context, the software infrastructure put in place to explore these concepts, and their application to the III. MOTIVATION network subsystem in particular. A. Technical Goals Index Terms— Message passing, Multiprocessing, Network The DragonFlyBSD operating system has several long- operating systems, Protocols, System software. range technical goals that it hopes to accomplish within the next few years. The first goal is to add lightweight threads to the BSD kernel. These threads are lightweight in the sense I. INTRODUCTION that, while user processes have an associated thread and a HE DragonFlyBSD operating system is a fork of the process context, kernel processes are pure threads with no T highly successful FreeBSD operating system. Its goals are process context. The threading model makes several to maintain the high quality and performance of the FreeBSD guarantees with respect to scheduling to ensure high 4 branch, while exploring new concepts to further improve performance and simplify reasoning about concurrency. -
Unbound: a New Secure and High Performance Open Source DNS Server
New Open Source DNS Server Released Today Unbound – A Secure, High-Performance Alternative to BIND – Makes its Debut within Open Source Community Amsterdam, The Netherlands and Mountain View, CA – May 20, 2008 – Unbound – a new open source alternative to the BIND domain name system (DNS) server– makes its worldwide debut today with the worldwide public release of Unbound 1.0 at http://unbound.net. Released to open source developers by NLnet Labs, VeriSign, Inc. (NASDAQ: VRSN), Nominet, and Kirei, Unbound is a validating, recursive, and caching DNS server designed as a high- performance alternative for BIND (Berkeley Internet Name Domain). Unbound will be supported by NLnet Labs. An essential component of the Internet, the DNS ties domain names (such as www.verisign.com) to the IP addresses and other information that Web browsers need to access and interact with specific sites. Though it is unknown to the vast majority of Web users, DNS is at the heart of a range of Internet-based services beyond Web browsing, including email, messaging and Voice Over Internet Protocol (VOIP) telecommunications. Although BIND has been the de facto choice for DNS servers since the 1980s, a desire to seek an alternative server that excels in security, performance and ease of use prompted an effort to develop an open source DNS implementation. Unbound is the result of that effort. Mostly deployed by ISPs and enterprise users, Unbound will also be available for embedding in customer devices, such as dedicated DNS appliances and ADSL modems. By making Unbound code available to open source developers, its originators hope to enable rapid development of features that have not traditionally been associated with DNS. -
Mullvad DNS Over HTTPS Server Audit
Report Mullvad DNS over HTTPS server audit Wictor Olsson, Emilie Barse, Benjamin Svensson, Johanna Abrahamsson Project Version Date MUL001 v1.0 2021-02-23 REPORT Project Version MUL001 v1.0 Date 2021-02-23 Executive summary Assured was tasked to perform a whitebox system audit of Mullvads DNS over HTTPS servers. The audit focused on configuration in regards to privacy, attack sur- face reduction and security best practices. The server deployment and config- uration displayed a good level of security in general. At the time of the au- dit, the exposed services were running at a good patch level, with no known vul- nerabilities. The most notable findings during the audit was related to a mis- configuration of the DNS service (Unbound), NTP service and iptables egress/ingress configuration, these issues were promptly resolved by the Mullvad team and ver- ified during the audit period. i REPORT Project Version MUL001 v1.0 Date 2021-02-23 Contents 1 Introduction 1 1.1 Background . 1 1.2 Constraints and disclaimer . 1 1.3 Project period and staffing . 1 1.4 Risk rating . 2 2 Scope and methodology 3 2.1 Scope . 3 2.1.1 Audit of Mullvad DNS over HTTPS servers . 3 2.2 Methodology . 3 2.2.1 System audit . 3 2.3 Limitations . 4 3 Observations 5 3.1 Mullvad DNS over HTTPS servers . 5 3.1.1 Low MITIGATED Unbound listening socket misconfigu- ration ......................... 5 3.1.2 Low FIXED Iptables should be more restrictive .. 6 3.1.3 Note FIXED Ntpd listening on all interfaces .... 7 3.1.4 Note Apparmor for exposed services .