Cocoa: a Guide to Trade Practices
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Using Macaulay2 Effectively in Practice
Using Macaulay2 effectively in practice Mike Stillman ([email protected]) Department of Mathematics Cornell 22 July 2019 / IMA Sage/M2 Macaulay2: at a glance Project started in 1993, Dan Grayson and Mike Stillman. Open source. Key computations: Gr¨obnerbases, free resolutions, Hilbert functions and applications of these. Rings, Modules and Chain Complexes are first class objects. Language which is comfortable for mathematicians, yet powerful, expressive, and fun to program in. Now a community project Journal of Software for Algebra and Geometry (started in 2009. Now we handle: Macaulay2, Singular, Gap, Cocoa) (original editors: Greg Smith, Amelia Taylor). Strong community: including about 2 workshops per year. User contributed packages (about 200 so far). Each has doc and tests, is tested every night, and is distributed with M2. Lots of activity Over 2000 math papers refer to Macaulay2. History: 1976-1978 (My undergrad years at Urbana) E. Graham Evans: asked me to write a program to compute syzygies, from Hilbert's algorithm from 1890. Really didn't work on computers of the day (probably might still be an issue!). Instead: Did computation degree by degree, no finishing condition. Used Buchsbaum-Eisenbud \What makes a complex exact" (by hand!) to see if the resulting complex was exact. Winfried Bruns was there too. Very exciting time. History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) History: 1978-1983 (My grad years, with Dave Bayer, at Harvard) I tried to do \real mathematics" but Dave Bayer (basically) rediscovered Groebner bases, and saw that they gave an algorithm for computing all syzygies. I got excited, dropped what I was doing, and we programmed (in Pascal), in less than one week, the first version of what would be Macaulay. -
Global Reward Opportunity Plan Rules
Global Reward Opportunity GROPlan Rules 1 Koninklijke Ahold Delhaize N.V. Global Reward Opportunity (GRO) Plan Rules Adopted by the Supervisory Board of Koninklijke Ahold Delhaize N.V. on August 23 2016 Applicable to grants made in and after 2016 2 Contents Rule Page 1. Definitions and interpretation 1 2. Introduction 5 3. Grant of Awards 6 4. Restrictions on the grant of Awards 7 5. Conditions attached to Awards 7 6. Vesting 9 7. Transfer of Shares or cash amount 10 8. Taxes and Costs 11 9. Holding period for Management Board members 12 10. Claw back and ultimum remedium 13 11. Lapse of Awards 13 12. Cessation of employment before the Vesting Date 14 13. Cash equivalent 15 14. Change in Control 15 15. Variation of share capital 16 16. Administration 16 17. Notices and communication 17 18. Data Protection 18 19. General 18 20. Amendments to this Plan 20 21. Governing law 20 COUNTRY SPECIFIC ADDENDA 21 1. Definitions and interpretation 1.1 In this Plan, the following words shall, where the context so permits, have the following meanings: Expression Meaning AGM means the annual general meeting of shareholders of the Company; Ahold Delhaize Group means the Company and the companies of which the Company has Control from time to time; Articles of Association means the articles of association of the Company, as amended from time to time; Auditors means the registered auditors as selected by the Company at any time for the purpose of this Plan; Award means the award of a Performance share or any other instrument as specified in the “Award Certificate”; -
The Effects of Roasting Time of Unfermented Cocoa Liquor Using the Oil Bath Methods on Physicochemical Properties and Volatile Compound Profiles
Agritech, 39 (1) 2019, 36-47 The Effects of Roasting Time of Unfermented Cocoa Liquor Using the Oil Bath Methods on Physicochemical Properties and Volatile Compound Profiles N. Nurhayati1*, Francis Maria Constance Sigit Setyabudi2, Djagal Wiseso Marseno2, S. Supriyanto2 1Department of Agricultural Technology University of Muhammadiyah Mataram, Faculty of Agricultural, Jl. K. H. Ahmad Dahlan No 1 Pagesangan, Mataram, West Nusa Tenggara 83116, Indonesia 2Departement of Food Technology and Agricultural Products, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur, Yogyakarta 55281, Indonesia *Email: [email protected] Submitted: February 6, 2018; Acceptance: February 9, 2019 ABSTRACT This study aimed to measure the effect of roasting time on physicochemical properties and volatile compounds of unfermented cocoa liquor roasted with an oil bath method. Physicochemical properties (pH, temperature, and color), flavor, and volatile compounds were analyzed. The results showed that the longer the roasting time the higher the unfermented cocoa liquor’s temperature, °Hue, and ΔE value, but lower pH and L value. There were 126 volatile compounds obtained by various roasting time, identified as pyrazines (12), aldehydes (16), esters (1), alcohols (31), acids (15), hydrocarbons (11), ketones (19), and others (21). At 15, 20, and 25 minutes of roasting time, 69, 74, and 67 volatile compounds, respectively, were identified. Volatile compounds’ profiles were indicated to be strongly influenced by roasting time. The largest area and highest number of compounds, such as pyrazines and aldehydes, were obtained at 20 minutes, which was also the only time the esters were identified. As well as the time showed a very strong flavor described by panelists. -
Distribution of Sales of Manufacturing Plants
SALESF O MANUFACTURING PLANTS: 1929 5 amounts h ave in most instances been deducted from the h eading, however, are not representative of the the total sales figure. Only in those instances where total amount of wholesaling done by the manufacturers. the figure for contract work would have disclosed data 17. I nterplant transfers—The amounts reported for individual establishments, has this amount been under this heading represent the value of goods trans left in the sales figure. ferred from one plant of a company to another plant 15. I nventory.—The amounts reported under this of the same company, the goods so transferred being head representing greater production than sales, or used by the plant to which they were transferred as conversely, greater sales than goods produced, are so material for further processing or fabrication, as con— listed only for purposes of reconciling sales figures to tainers, or as parts of finished products. production figures, and should not be regarded as 18. S ales not distributed.—In some industries, actual inventories. certain manufacturing plants were unable to classify 16. W holesaling—In addition to the sale of goods their sales by types of customers. The total distrib— of their own manufacture, some companies buy and uted sales figures for these industries do not include sell goods not made by them. In many instances, the sales of such manufacturing plants. In such manufacturers have included the sales of such goods instances, however, the amount of sales not distributed in their total sales. The amounts reported under is shown in Table 3. -
Luis David Garcıa Puente
Luis David Garc´ıa Puente Department of Mathematics and Statistics (936) 294-1581 Sam Houston State University [email protected] Huntsville, TX 77341–2206 http://www.shsu.edu/ldg005/ Professional Preparation Universidad Nacional Autonoma´ de Mexico´ (UNAM) Mexico City, Mexico´ B.S. Mathematics (with Honors) 1999 Virginia Polytechnic Institute and State University Blacksburg, VA Ph.D. Mathematics 2004 – Advisor: Reinhard Laubenbacher – Dissertation: Algebraic Geometry of Bayesian Networks University of California, Berkeley Berkeley, CA Postdoctoral Fellow Summer 2004 – Mentor: Lior Pachter Mathematical Sciences Research Institute (MSRI) Berkeley, CA Postdoctoral Fellow Fall 2004 – Mentor: Bernd Sturmfels Texas A&M University College Station, TX Visiting Assistant Professor 2005 – 2007 – Mentor: Frank Sottile Appointments Colorado College Colorado Springs, CO Professor of Mathematics and Computer Science 2021 – Sam Houston State University Huntsville, TX Professor of Mathematics 2019 – 2021 Sam Houston State University Huntsville, TX Associate Department Chair Fall 2017 – 2021 Sam Houston State University Huntsville, TX Associate Professor of Mathematics 2013 – 2019 Statistical and Applied Mathematical Sciences Institute Research Triangle Park, NC SAMSI New Researcher fellowship Spring 2009 Sam Houston State University Huntsville, TX Assistant Professor of Mathematics 2007 – 2013 Virginia Bioinformatics Institute (Virginia Tech) Blacksburg, VA Graduate Research Assistant Spring 2004 Virginia Polytechnic Institute and State University Blacksburg, -
Chocolate-Slides- V2.Pdf
Chocolate’s journey 600AD ➔ Mayans, Aztec, Incas ➔ Xocolatl ➔ Cocoa drink made of crushed beans, spices and water Chocolate’s journey 1520 - 1660 ➔ Brought to Spain, Italy, France ➔ Added sugar, but still bitter ➔ Drink for the wealthy Chocolate’s journey Early 1700’s ➔ Brought to England ➔ Milk added to the drink ➔ Chocolate houses Chocolate’s journey 1828 ➔ Van Houtens developed Dutching process to better disperse cocoa in hot water and reduce bitter flavor Chocolate’s journey 1847 ➔ First chocolate bar produced in England ➔ Joseph Fry Components of chocolate Sugar Cocoa pod Cocoa bean Cocoa nibs Cocoa Milk Genetic varieties: Criollo, Forastero, Trinitario, Nacional From bean to bar process Cleaning Fermenting & Drying Winnowing Roasting Grinding & Conching ➔ Beans separated from pods and left to ferment at 120C for ~5 days Tempering From bean to bar process Cleaning Fermenting & Drying Winnowing Roasting Grinding & Conching ➔ Beans are dried to bring down moisture content Tempering From bean to bar process Cleaning Fermenting & Drying Winnowing Roasting Grinding & Conching ➔ Beans are ground to remove shell, leaving just the nibs Tempering From bean to bar process Cleaning Fermenting & Drying Winnowing Roasting Grinding & Conching ➔ Nibs are roasted to kill micro-bacteria and remove acidic and bitter flavors Tempering From bean to bar process Cleaning Fermenting & Drying Winnowing Roasting Grinding & Conching ➔ Chocolate liquor is ground to reduce particle size to ~30um. Tempering ➔ Cocoa butter and sugar are added From bean to bar process -
Improving Livelihoods for Cocoa Farmers and Their Communities Cargill Cocoa & Chocolate Improving Livelihoods for Farmers and Their Communities Navigation
The 2015 Cargill Cocoa Promise global report Improving livelihoods for cocoa farmers and their communities Cargill Cocoa & Chocolate Improving livelihoods for farmers and their communities Navigation Navigate through our Cargill Cocoa Promise reporting by downloading individual features and articles, or download the full report. The fast read Feature articles Our performance About our Cargill Cocoa Promise reporting Improving livelihoods for farmers and Planet cocoa B01 A thriving cocoa sector for generations About this report D01 their communities to come A01 Working better together B04 C01 About the Cargill Cocoa Promise evolution A02 Want to make a living from cocoa? Working with farmer organizations and empowering them 2015 highlights A05 Then think “livelihoods” B08 C05 Improving farmer livelihoods Empowering women and supporting children B12 C11 Farmer training From cocoa bean to chocolate bar B16 C14 Does the Cargill Cocoa Promise really work Farm development C16 for farmers and their communities? B20 Improving community livelihoods C24 Cargill Cocoa & Chocolate Improving livelihoods for farmers and their communities A01 The fast read: Improving livelihoods for farmers and their communities Our ambition is to accelerate progress towards a transparent global cocoa supply chain, enable farmers and their communities to achieve better incomes and living standards, and deliver a sustainable supply of cocoa and chocolate products. Cargill Cocoa & Chocolate Improving livelihoods for farmers and their communities A02 About the Cargill Cocoa Promise evolution Our ambition really comes alive through our Cargill Cocoa Promise. This report focuses on the progress we have made this year in improving incomes and living standards, or as we call them, livelihoods, for cocoa farmers and those people living in cocoa farming communities. -
Bespiegeling
| BEDRIJVEN DIE DEELNEMEN IN DE STICHTING DUURZAME VOEDINGSMIDDELENKETEN (DuVo) | BESPIEGELING Albert Heijn, Zaandam Heineken Nederland, Zoeterwoude www.ah.nl www.heineken.nl Albron, de Meern H.J. Heinz, Zeist | 1 www.albron.nl www.hjheinz.com 3 INTER Campina, Zaltbommel Koninklijke Numico, Zoetermeer VIEW www.campina.com www.numico.com S MET MA Cehave Landbouwbelang, Veghel Nutreco, Amersfoort www.chv-lbb.nl www.nutreco.com A T SCHAPPELIJKE SMA Koninklijke Cosun, Breda Sara Lee International, Utrecht www.cosun.com www.saralee-de.com CSM, Amsterdam Unilever Nederland, Rotterdam www.csm.nl www.unilever.com AKMAKER Bespiegeling DSM, Heerlen Koninklijke Wessanen, Utrecht www.dsm.com www.wessanen.com S 13 interviews met maatschappelijke smaakmakers The Greenery, Barendrecht over voeding en duurzaamheid | www.thegreenery.com S tichting DuV O | Stichting DuVo Juji 2006 p/a Prins Hendrikkade 141 1011 AS Amsterdam Zie ook: www.duvo.nl | DUURZAAMHEID IN DE VOEDINGSMIDDELENKETEN Bespiegeling 13 interviews met maatschappelijke smaakmakers over voeding en duurzaamheid Uitgave Stichting DuVo Juli 2006 Stichting DuVo De Stichting Duurzame Voedingsmiddelenketen (DuVo) DuVo bestaat momenteel uit vijftien bedrijven, brengt een aantal gerenomeerde bedrijven uit alle alle vertegenwoordigd zowel in het Bestuurdersoverleg schakels van de keten samen bij hun zoektocht naar (vergadering van bestuursvoorzitters) als in de mogelijkheden om de duurzaamheid van hun handelen Stuurgroep (overleg waar initiatieven worden voorbereid te verbeteren. De resultaten van die inspanningen delen en waarin op de uitvoering wordt toegezien). zij met belangstellenden, door het organiseren van dialoogbijeenkomsten, door het publiceren van artikelen Amsterdam, juli 2006 en door het jaarlijks uitbrengen van een boekje. DuVo ziet als voornaamste doel de leden te inspireren en daardoor te helpen bij het voeren van hun eigen duurzaamheidsbeleid. -
Kinetic Studies and Moisture Diffusivity During Cocoa Bean Roasting
processes Article Kinetic Studies and Moisture Diffusivity During Cocoa Bean Roasting Leydy Ariana Domínguez-Pérez 1, Ignacio Concepción-Brindis 1, Laura Mercedes Lagunes-Gálvez 1 , Juan Barajas-Fernández 2, Facundo Joaquín Márquez-Rocha 3 and Pedro García-Alamilla 1,* 1 División Académica de Ciencias Agropecuarias (DACA), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Villahermosa-Teapa Km 25 Ra. La Huasteca. Centro, Tabasco. C.P. 86280, Mexico; [email protected] (L.A.D.-P.); [email protected] (I.C.-B.); [email protected] (L.M.L.-G.) 2 División Académica de Ingeniería y Arquitectura (DAIA), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Cunduacán-Jalpa de Méndez Km 1. Col. La Esmeralda. Cunduacán, Tabasco. C.P. 86690, Mexico; [email protected] 3 Centro Regional para la Producción más Limpia, Instituto Politecnico Nacional, Tabasco Business Center, Edificio FINTAB, Carretera Reforma-Dos Bocas, Km. 17+920, Ranch. Pechucalco, 2da. sección, Cunduacán, Tabasco, C.P. 86691, Mexico; [email protected] * Correspondence: [email protected] Received: 17 September 2019; Accepted: 18 October 2019; Published: 21 October 2019 Abstract: Cocoa bean roasting allows for reactions to occur between the characteristic aroma and taste precursors that are involved in the sensory perception of chocolate and cocoa by-products. This work evaluates the moisture kinetics of cocoa beans during the roasting process by applying empirical and semi-empirical exponential models. Four roasting temperatures (100, 140, 180, and 220 ◦C) were used in a cylindrically designed toaster. Three reaction kinetics were tested (pseudo zero order, pseudo first order, and second order), along with 10 exponential models (Newton, Page, Henderson and Pabis, Logarithmic, Two-Term, Midilli, Verma, Diffusion Approximation, Silva, and Peleg). -
Fair Trade 1 Fair Trade
Fair trade 1 Fair trade For other uses, see Fair trade (disambiguation). Part of the Politics series on Progressivism Ideas • Idea of Progress • Scientific progress • Social progress • Economic development • Technological change • Linear history History • Enlightenment • Industrial revolution • Modernity • Politics portal • v • t [1] • e Fair trade is an organized social movement that aims to help producers in developing countries to make better trading conditions and promote sustainability. It advocates the payment of a higher price to exporters as well as higher social and environmental standards. It focuses in particular on exports from developing countries to developed countries, most notably handicrafts, coffee, cocoa, sugar, tea, bananas, honey, cotton, wine,[2] fresh fruit, chocolate, flowers, and gold.[3] Fair Trade is a trading partnership, based on dialogue, transparency and respect that seek greater equity in international trade. It contributes to sustainable development by offering better trading conditions to, and securing the rights of, marginalized producers and workers – especially in the South. Fair Trade Organizations, backed by consumers, are engaged actively in supporting producers, awareness raising and in campaigning for changes in the rules and practice of conventional international trade.[4] There are several recognized Fairtrade certifiers, including Fairtrade International (formerly called FLO/Fairtrade Labelling Organizations International), IMO and Eco-Social. Additionally, Fair Trade USA, formerly a licensing -
An Alternative Algorithm for Computing the Betti Table of a Monomial Ideal 3
AN ALTERNATIVE ALGORITHM FOR COMPUTING THE BETTI TABLE OF A MONOMIAL IDEAL MARIA-LAURA TORRENTE AND MATTEO VARBARO Abstract. In this paper we develop a new technique to compute the Betti table of a monomial ideal. We present a prototype implementation of the resulting algorithm and we perform numerical experiments suggesting a very promising efficiency. On the way of describing the method, we also prove new constraints on the shape of the possible Betti tables of a monomial ideal. 1. Introduction Since many years syzygies, and more generally free resolutions, are central in purely theo- retical aspects of algebraic geometry; more recently, after the connection between algebra and statistics have been initiated by Diaconis and Sturmfels in [DS98], free resolutions have also become an important tool in statistics (for instance, see [D11, SW09]). As a consequence, it is fundamental to have efficient algorithms to compute them. The usual approach uses Gr¨obner bases and exploits a result of Schreyer (for more details see [Sc80, Sc91] or [Ei95, Chapter 15, Section 5]). The packages for free resolutions of the most used computer algebra systems, like [Macaulay2, Singular, CoCoA], are based on these techniques. In this paper, we introduce a new algorithmic method to compute the minimal graded free resolution of any finitely generated graded module over a polynomial ring such that some (possibly non- minimal) graded free resolution is known a priori. We describe this method and we present the resulting algorithm in the case of monomial ideals in a polynomial ring, in which situ- ation we always have a starting nonminimal graded free resolution. -
Computations in Algebraic Geometry with Macaulay 2
Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.