Connections of the Multiple Visual Cortical Areas with the Lateral Posterior-Pulvinar Complex and Adjacent Thalamic Nuclei in the Cat’
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Human Thalamus Is an Integrative Hub for Functional Brain Networks
5594 • The Journal of Neuroscience, June 7, 2017 • 37(23):5594–5607 Behavioral/Cognitive The Human Thalamus Is an Integrative Hub for Functional Brain Networks X Kai Hwang, Maxwell A. Bertolero, XWilliam B. Liu, and XMark D’Esposito Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, California 94720 The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivityremainslargelyunknown.Byperforminggraph-theoreticanalysesonthalamocorticalfunctionalconnectivitydatacollected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multi- modal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. Key words: brain networks; diaschisis; functional connectivity; graph theory; thalamus Significance Statement The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate infor- mation processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. -
The Thalamus
212 Neuroanatomy Reflection Corner The Thalamus Sagar Karia1 1Specialty Medical Officer, Department of Psychiatry, Lokmanya Tilak Municipal Medical College, Mumbai. E-mail – [email protected] INTRODUCTION Word Thalamus from Greek origin meaning “inner room” or “chamber”. Is an egg shaped mass of grey matter forming part of Diencephalon and forming lateral wall of 3rd ventricle. Narrow anterior end is directed medially while broad posterior end is directed laterally. Its long axis is 300 oblique to midline. Size is 3.5cm x 1.5cm. Covering its lateral surface is the external medullary lamina consisting of thalamocortical and corticothalamic fibres. Internal medullary lamina consists mainly of internuclear thalamic connections. It is 'Y' shaped and divides thalamus into 3 different nuclear masses. Thalamic Nuclei Anterior Group: portion between diverse limbs of 'Y'. It contains Anterior nuclei. Medial Group: part of thalamus lying on medial side of stem of 'Y'. It contains intralaminar nuclei, centromedian nuclei, medial nuclei and midline nuclei. Lateral Group: part lying on lateral side of stem of 'Y'. It is divided into 2 groups- ventral group and dorsal group. Ventral group contains ventroanterior, venterolateral, and venteroposterior nuclei and most posteriorly medial and lateral geniculate bodies. Venteroposterior nuclei is divided into venteroposteriorlateral and venteroposteriormedial nuclei. Dorsal group contains pulvinar, lateral posterior and lateral dorsal nuclei. Indian Journal of Mental Health 2015; 2(2) 213 Connections of the Thalamus Functionally divided into extrinsic and intrinsic nuclei. Extrinsic nuclei are cortical relay nuclei and receive afferent fibres from extrathalamic sources. Axons of these cells are distributed to primary cortical areas- pre and post central cortices, visual and auditory cortical areas. -
Higher-Order Thalamic Relays Burst More Than First-Order Relays
Higher-order thalamic relays burst more than first-order relays E. J. Ramcharan*, J. W. Gnadt†, and S. M. Sherman‡§ *Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; †Department of Neurobiology, State University of New York, Stony Brook, NY 11794-5230; and ‡Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, MC 0926, 316 Abbott, 947 East 58th Street, Chicago, IL 60637 Edited by Robert H. Wurtz, National Institutes of Health, Bethesda, MD, and approved July 11, 2005 (received for review April 6, 2005) There is a strong correlation between the behavior of an animal trasted with the higher-order relays, such as the pulvinar for and the firing mode (burst or tonic) of thalamic relay neurons. vision, the magnocellular (or ‘‘nonlemniscal’’) portion of the Certain differences between first- and higher-order thalamic relays medial geniculate nucleus for hearing, and the posterior medial (which relay peripheral information to the cortex versus informa- nucleus for somesthesis, which are thought to serve as a link in tion from one cortical area to another, respectively) suggest that cortico-thalamo-cortical pathways that continue to process these more bursting might occur in the higher-order relays. Accordingly, information streams. we recorded bursting behavior in single cells from awake, behav- We thought that it would be useful to extend the observations ing rhesus monkeys in first-order (the lateral geniculate nucleus, of bursting to higher-order thalamic relays in the behaving the ventral posterior nucleus, and the ventral portion of the medial monkey for the following reasons. -
The Primate Pulvinar Nuclei: Vision and Action
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio da Universidade da Coruña Trends in Neurosciences, vol. 23, issue 1: 35-39 The primate pulvinar nuclei: vision and action Kenneth L. Grieve, Carlos Acuña and Javier Cudeiro Abstract The pulvinar nuclei of the thalamus are proportionately larger in higher mammals, particularly in primates, and account for a quarter of the total mass. Traditionally, these nuclei have been divided into oral (somatosensory), superior and inferior (both visual) and medial (visual, multi-sensory) divisions. With reciprocal connections to vast areas of cerebral cortex, and input from the colliculus and retina, they occupy an analogous position in the extra- striate visual system to the lateral geniculate nucleus in the primary visual pathway, but deal with higher-order visual and visuomotor transduction. With a renewed recent interest in this thalamic nuclear collection, and growth in our knowledge of the cortex with which it communicates, perhaps the time is right to look to new dimensions in the pulvinar code. Keywords: Primate; Pulvinar; Reference frame; Salience; Cortico-thalamic; Spatial attention The pulvinar nuclei of the thalamus lie posterior, medial and dorsal to their much better known cousin, the lateral geniculate nucleus, and ‘cover’ the underlying superior colliculus (SC). In the same way as the lateral geniculate (‘knee-like’) nucleus curves around the rising optic tract, the pulvinar (‘cushion’) forms a larger and more-diffuse, but recognizable, mass around the axonal tract that arises from the SC, the brachium of the SC (see Fig. 1). The original four nuclei of the macaque pulvinar were defined in early studies on purely anatomical grounds1 and 2. -
MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire
MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire To cite this version: Jean-Jacques Lemaire. MRI Atlas of the Human Deep Brain. 2019. hal-02116633 HAL Id: hal-02116633 https://hal.uca.fr/hal-02116633 Preprint submitted on 1 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License MRI ATLAS of the HUMAN DEEP BRAIN Jean-Jacques Lemaire, MD, PhD, neurosurgeon, University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA, France This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Terminologia Foundational Model Terminologia MRI Deep Brain Atlas NeuroNames (ID) neuroanatomica usages, classical and french terminologies of Anatomy (ID) Anatomica 1998 (ID) 2017 http://fipat.library.dal.ca In -
Magnetic Resonance Imaging of Mediodorsal, Pulvinar, and Centromedian Nuclei of the Thalamus in Patients with Schizophrenia
ORIGINAL ARTICLE Magnetic Resonance Imaging of Mediodorsal, Pulvinar, and Centromedian Nuclei of the Thalamus in Patients With Schizophrenia Eileen M. Kemether, MD; Monte S. Buchsbaum, MD; William Byne, MD, PhD; Erin A. Hazlett, PhD; Mehmet Haznedar, MD; Adam M. Brickman, MPhil; Jimcy Platholi, MA; Rachel Bloom Background: Postmortem and magnetic resonance im- reduced in all 3 nuclei; differences in relative reduction aging (MRI) data have suggested volume reductions in did not differ among the nuclei. The remainder of the the mediodorsal (MDN) and pulvinar nuclei (PUL) of the thalamic volume (whole thalamus minus the volume of thalamus. The centromedian nucleus (CMN), impor- the 3 delineated nuclei) was not different between schizo- tant in attention and arousal, has not been previously stud- phrenic patients and controls, indicating that the vol- ied with MRI. ume reduction was specific to these nuclei. Volume rela- tive to brain size was reduced in all 3 nuclei and remained Methods: A sample of 41 patients with schizophrenia significant when only patients who had never been ex- (32 men and 9 women) and 60 healthy volunteers (45 posed to neuroleptic medication (n=15) were consid- men and 15 women) underwent assessment with high- ered. For the MDN, women had larger relative volumes resolution 1.2-mm thick anatomical MRI. Images were than men among controls, but men had larger volumes differentiated to enhance the edges and outline of the than women among schizophrenic patients. whole thalamus, and the MDN, PUL, and CMN were out- lined on all slices by a tracer masked to diagnostic Conclusions: Three association regions of the thala- status. -
Learning & Memory
Downloaded from learnmem.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Review Unraveling the contributions of the diencephalon to recognition memory: A review John P. Aggleton,1,3 Julie R. Dumont,1 and Elizabeth Clea Warburton2 1School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom; 2MRC Centre for Synaptic Plasticity, School of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom Both clinical investigations and studies with animals reveal nuclei within the diencephalon that are vital for recognition memory (the judgment of prior occurrence). This review seeks to identify these nuclei and to consider why they might be important for recognition memory. Despite the lack of clinical cases with circumscribed pathology within the diencepha- lon and apparent species differences, convergent evidence from a variety of sources implicates a subgroup of medial dien- cephalic nuclei. It is supposed that the key functional interactions of this subgroup of diencephalic nuclei are with the medial temporal lobe, the prefrontal cortex, and with cingulate regions. In addition, some of the clinical evidence most readily supports dual-process models of recognition, which assume two independent cognitive processes (recollective-based and familiarity-based) that combine to direct recognition judgments. From this array of information a “multi-effect multi- nuclei” model is proposed, in which the mammillary bodies and the anterior thalamic nuclei are of preeminent importance for recollective-based recognition. The medial dorsal thalamic nucleus is thought to contribute to familiarity-based recog- nition, but this nucleus, along with various midline and intralaminar thalamic nuclei, is also assumed to have broader, indirect effects upon both recollective-based and familiarity-based recognition. -
Projections of Auditory Cortex to the Medial Geniculate Body of the Cat
THE JOURNAL OF COMPARATIVE NEUROLOGY 430:27–55 (2001) Projections of Auditory Cortex to the Medial Geniculate Body of the Cat JEFFERY A. WINER,* JAMES J. DIEHL, AND DAVID T. LARUE Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200 ABSTRACT The corticofugal projection from 12 auditory cortical fields onto the medial geniculate body was investigated in adult cats by using wheat germ agglutinin conjugated to horserad- ish peroxidase or biotinylated dextran amines. The chief goals were to determine the degree of divergence from single cortical fields, the pattern of convergence from several fields onto a single nucleus, the extent of reciprocal relations between corticothalamic and thalamocortical connections, and to contrast and compare the patterns of auditory corticogeniculate projec- tions with corticofugal input to the inferior colliculus. The main findings were that (1) single areas showed a wide range of divergence, projecting to as few as 5, and to as many as 15, thalamic nuclei; (2) most nuclei received projections from approximately five cortical areas, whereas others were the target of as few as three areas; (3) there was global corticothalamic- thalamocortical reciprocity in every experiment, and there were also significant instances of nonreciprocal projections, with the corticothalamic input often more extensive; (4) the corti- cothalamic projection was far stronger and more divergent than the corticocollicular projec- tion from the same areas, suggesting that the thalamus and the inferior colliculus receive differential degrees of corticofugal control; (5) cochleotopically organized areas had fewer corticothalamic projections than fields in which tonotopy was not a primary feature; and (6) all corticothalamic projections were topographic, focal, and clustered, indicating that areas with limited cochleotopic organization still have some internal spatial arrangement. -
Amygdalar Interaction with the Mediodorsal Nucleus of the Thalamus and the Ventromedial Prefrontal Cortex in Stimulus-Reward Associative Learning in the Monkey
The Journal of Neuroscience, November 1990, fO(11): 3479-3493 Amygdalar Interaction with the Mediodorsal Nucleus of the Thalamus and the Ventromedial Prefrontal Cortex in Stimulus-Reward Associative Learning in the Monkey David Gaffan’ and Elisabeth A. Murray* ‘Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, England, and *Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland 20892 Cynomolgus monkeys (Macaca fascicularis) were assessed One kind of associative learning in which the amygdala is of for their ability to associate visual stimuli with food reward. central importance is the associationof a sensorystimulus with They learned a series of new 2-choice visual discriminations the incentive value of food reward. In visual-discrimination between colored patterns displayed on a monitor screen. learning for food reward, the role of the amygdala varies ac- The feedback for correct choice was the delivery of food. In cording to the associative structure of the task. If visual dis- order to promote associative learning between the visual criminative stimuli are associateddirectly with the incentive stimuli and the incentive value of the food reward, reward value of the food reward, efficient learning dependson an in- delivery was not accompanied by any distinctive visual feed- trahemispheric interaction between the amygdala and the vi- back on the display screen. The rate of learning new prob- sual-associationcortex ipsilateral to it (E. A. Gaffan et al., 1988). lems was assessed before and after surgery in a total of 16 But when visual discriminative stimuli are associatedwith the monkeys. Three groups of 3 monkeys received bilaterally incentive value indirectly, via the mediation of a direct asso- symmetrical ablations in either the amygdala, the medio- ciation with an auditory or visual secondary reinforcer, visual dorsal nucleus of the thalamus, or the ventromedial pre- interaction with the amygdala is less important (Gaffan and frontal cortex. -
Fmri Assessment of the Pulvinar and Medial Dorsal Nucleus in Normal Volunteers Monte S
Neuroscience Letters 404 (2006) 282–287 Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers Monte S. Buchsbaum a,∗, Bradley R. Buchsbaum b, Sylvie Chokron c,d, Cheuk Tang a,e, Tse-Chung Wei a, William Byne a,f a Department of Psychiatry, Mount Sinai School of Medicine, Box 1505, New York, NY 10029-6574, USA b Unit on Integrative Neuroimaging, Clinical Brain Disorders Branch, NIMH, NIH, Bethesda, MD, USA c Laboratoire de Psychologie Experimentale, CNRS, UMR 5105, Grenoble, France d Service de Neurologie, Fondation Ophtalmologique Rothschild, Paris, France e Department of Radiology, Mount Sinai School of Medicine, New York, NY, USA f Bronx VA Medical Center, Bronx, NY, USA Received 27 September 2005; received in revised form 10 March 2006; accepted 15 May 2006 Abstract This fMRI study investigates the activation of the thalamic nuclei in a spatial focusing-of-attention task previously shown to activate the pulvinar with FDG-PET and assesses the connectivity of the thalamic nuclei with cortical areas. Normal right-handed subjects (eight men, eight women, average age = 32 years) viewed four types of stimuli positioned to the right or left of the central fixation point (left hemifield-large letter, left hemifield-small letter display with flanking letters; right hemifield-large letter, right hemifield-small letter display with flankers). BOLD responses to small letters surrounded by flankers were compared with responses to large isolated letters. To examine maximum functional regional connectivity, we modeled “subject” as a random effect and attained fixed effect parameter estimates and t-statistics for functional connectivity between each of the thalamic nuclei (pulvinar, medial dorsal, and anterior) as the seed region and each non-seed voxel. -
Medial Geniculate Lesions Block Amygdalar and Cingulothalamic Learning-Related Neuronal Activity
The Journal of Neuroscience, November 1, 1997, 17(21):8645–8655 Medial Geniculate Lesions Block Amygdalar and Cingulothalamic Learning-Related Neuronal Activity Amy Poremba1 and Michael Gabriel2 1Department of Psychology and Institute for Neuroscience, Univsity of Texas, Austin, Texas 78712, and 2Department of Psychology and Beckman Institute, University of Illinois, Urbana, Illinois 61801 This study assessed the role of the thalamic medial geniculate anterior-ventral and medial-dorsal thalamic nuclei, and the ba- (MG) nucleus in discriminative avoidance learning, wherein rab- solateral nucleus of the amygdala before training. Learning was bits acquire a locomotory response to a tone [conditioned severely impaired and TIA was abolished in all areas in rabbits stimulus (CS)1] to avoid a foot shock, and they learn to ignore with lesions. Thus learning and TIA require the integrity of the a different tone (CS2) not predictive of foot shock. Limbic MG nucleus. Only damage in the medial MG division was (anterior and medial dorsal) thalamic, cingulate cortical, or significantly correlated with the learning deficit. The lesions amygdalar lesions severely impair acquisition, and neurons in abolished the sensory response of amygdalar neurons, and these areas develop training-induced activity (TIA): more firing they attenuated (but did not eliminate) the sensory response of to the CS1 than to the CS2. MG neurons exhibit TIA during cingulothalamic neurons, suggesting the existence of extra learning and project to the amygdala. The MG neurons may geniculate -
Download English-US Transcript (PDF)
MITOCW | MIT9_14S14_lec29.mp3 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. PROFESSOR: OK, instead of a quiz I'm trying to write some homework. And some of them will be extra credit, some of them will be part of the required homework. Now today we still have a lot to do on chapter 26 concerning core pathways of the limbic system. And this is where we finished last time. We may not even get to the part on hormones and brain development and effects on the brain, but we may just do most of that with the reading because I really need the time to talk to you about the recent changes in understanding of the hippocampus and the pathways related to it. OK, we answered this question with the information about the internal environment in the body reaches the hypothalamus via both the bloodstream and sensory pathways. And then I asked this about, well, how do these molecules even get in the brain? We know that there's a blood-brain barrier. Very small molecules can get in, but not the larger, organic molecules. And yet, things like angiotensin II do get in, but they get in only at certain places. Places where the blood-brain barrier is weak. I think the figure in the book is a little better than this one, but this is a similar one.