Regional Structural Style of the Central and Southern Oman Mountains: Jebel Akhdar, Saih Hatat, and the Northern Ghaba Basin

Total Page:16

File Type:pdf, Size:1020Kb

Regional Structural Style of the Central and Southern Oman Mountains: Jebel Akhdar, Saih Hatat, and the Northern Ghaba Basin GeoArabia, Vol. 3, No. 4, 1998 Structural Style, Central and Southern Oman Mountains Gulf PetroLink, Bahrain Regional Structural Style of the Central and Southern Oman Mountains: Jebel Akhdar, Saih Hatat, and the Northern Ghaba Basin Van S. Mount, ARCO Roderick I.S. Crawford, ARCO Qatar Inc. and Steven C. Bergman, ARCO Exploration and Production Technology Company ABSTRACT Three quantitative regional transects across the Saih Hatat and Jebel Akhdar anticlines in the Central and Southern Oman Mountains and the Northern Ghaba Basin have been constructed based on surface, well and seismic data. Interpreted large-scale structural geometries suggest that the Saih Hatat and Jebel Akhdar anticlines are basement-involved compressional structures, underlain by north-dipping, high-angle, blind, reverse faults located beneath their southern limbs. A compressional deformation event initiated in the Oligocene (constrained by apatite fission track data) involving the high-angle reverse faults is interpreted in which pre-Permian strata and Permian-through-Lower Cretaceous strata, exposed in the Saih Hatat and Jebel Akhdar anticlines, were parautochthonous - uplifted over the underlying reverse faults, and not displaced a great distance laterally. The allochthonous Hawasina and Sumeini sedimentary rocks and the Semail Ophiolite complex are interpreted to have been emplaced onto the carbonate platform during the Late Cretaceous, and have subsequently been parautochthonous during the Tertiary deformation. The upper portion of the pre-Permian section in the Ghaba Basin consists predominantly of a thick (>4 kilometers) sequence of Cambrian-through-Silurian, predominantly non- marine to shallow-marine, clastics of the Haima Supergroup. In contrast, out of the Ghaba Basin proper in the Central Platform or Musallim High region, the Haima Supergroup is generally less than 2 kilometers thick, and interpreted to thin to the north. The fundamental difference in pre-Permian strata exposed in the Saih Hatat and Jebel Akhdar Anticline windows is the thick (>3.4 kilometers) section of Ordovician age, shallow-marine strata (Amdeh Formation) present in the Saih Hatat Anticline, but absent in the Jebel Akhdar Anticline. In our interpretation, the shallow-marine clastics exposed in the Saih Hatat Anticline represent the northern extension of the Early Paleozoic Ghaba Basin, which have been uplifted over a high-angle reverse fault in the Early Tertiary deformation event. The cross-section through Jebel Akhdar is located to the northwest of the Ghaba Salt Basin, along the Musallim High. In this area the thickness of the Ordovician strata deposited is interpreted to be less than in the Ghaba Basin. The Ordovician section is not present in the Jebel Akhdar structure - the thinned section likely eroded in a Late Paleozoic deformation event. INTRODUCTION The Oman Mountains are located on the southeast margin of the Arabian Plate. The mountains extend for over 700 kilometers (km) from the Musandam Peninsula to southeast of Muscat, varying in width from 30 km to greater than 125 km, and reaching elevations of up to 3 km above sea-level (Figure 1). Four major tectono-stratigraphic units have been recognized in the Central and Southern Oman Mountains (Figure 2). The oldest unit is a pre-Permian sequence correlatable to the Huqf and Haima Supergroups. The pre-Permian unit is unconformably overlain by Middle Permian to Cenomanian platform carbonates of the Hajar Supergroup. The third major tectono-stratigraphic unit is the allochthonous Semail Ophiolite Complex, including the Hawasina and Sumeini Nappes, which was emplaced onto the Hajar Supergroup platform carbonate sequence in the Late Cretaceous (Mann and Hanna, 1990). The youngest unit consists of Late Campanian-Maastrichtian to Tertiary sedimentary cover. 475 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/3/4/475/4552843/mount.pdf by guest on 28 September 2021 Mount et al. The frontal thrust sheets of the Hawasina and Sumeini Nappes define the southern boundary of the Central and Southern Oman Mountains (Figure 1). The northeast-southwest trending Ghaba and Fahud Basins are over-thrust by the Hawasina and Sumeini Nappes (Figure 1). The large-scale structural geometry of the Oman Mountains and foreland is a topic which has received considerable attention in the last three decades. This study proposes a new, quantitative, structural framework for the Central and Southern Oman Mountains. The proposed structural framework is constructed using previous studies (Glennie et al., 1974; Michard et al., 1984; Hanna, 1990; Mann and Hanna, 1990; Cawood et al., 1990), updated geologic maps (1992-1993 BRGM, 1:250,000 scale series), updated industry data, new fission track thermo-chronology data, and a new model describing basement-involved foreland structures (Mitra and Mount, 1998). As with previous interpretations, this study does not solve all of the problems or answer all of the questions regarding the structural geology and evolution of the Oman Mountains. However, the interpretation does provide a relatively simple solution for the large-scale structural geometry of the Central and Southern Oman Mountains which honors the bulk of the observed structural relationships and provides a regional, quantitative, structural framework into which more detailed structural and stratigraphic studies can be incorporated. The proposed model for the structural configuration of the Central and Southern Oman Mountains is based on three regional, quantitative, structural transects. The transect locations are shown on the schematic geologic map of Oman in Figure 1. The north-south oriented cross-sections (Transects I and II) extend from the Batinah Coast, across the Central and Southern Oman Mountains, and into the foreland area south of the Hawasina deformation front. The southeast-northwest oriented cross-section (Transect III) extends from the Batain Coast, across the Huqf Arch, and across the Northern Ghaba Basin. In the proposed model, the Saih Hatat and Jebel Akhdar Anticlines are interpreted as large-scale basement-involved compressional structures, underlain by north-dipping, high-angle, blind, reverse faults located beneath their southern limbs. The latest phase of compressional deformation involving the high-angle reverse faults is constrained as Oligocene by apatite fission track data (Appendix). The model proposes that pre-Permian strata and Permian-through-Cretaceous strata, exposed in the Saih Hatat and Jebel Akhdar anticlines, were parautochthonous (uplifted over the reverse fault, but not displaced a great distance laterally) in the Tertiary deformation event. In addition, the allochthonous Hawasina and Sumeini sedimentary rocks and the Ophiolite Complex (which were emplaced onto the carbonate platform in the Late Cretaceous) are interpreted to have also been parautochthonous during the Tertiary deformation event. Although the structural style of the Jebel Akhdar and Saih Hatat structures is interpreted to be similar, the pre-Permian stratigraphy exposed in the structural windows generated by the Tertiary deformation event are different. In the proposed model the primary difference in the stratigraphic succession exposed in the windows is that Saih Hatat structure deforms the northern portion of the Ghaba Basin and associated basin stratigraphy and therefore exposes a different sequence of pre-Permian rocks at the surface than are exposed in the Jebel Akhdar window. STRATIGRAPHY Figure 2 shows a stratigraphic column, on the left (after the excellent summary by Droste, 1997), which is simplified in the column on the right, showing the stratigraphic color scheme used in the structural transects (Figure 3). Precambrian to Ordovician correlations proposed by Mann and Hanna (1990) are utilized, in which the Ordovician Mahatta Humaid Group, exposed in the Huqf Massif, correlates with the Amdeh Formation in Saih Hatat. The Nafun Group, exposed in the Huqf Massif, is interpreted to correlate with the carbonate and siltstone stratigraphy exposed in the Saih Hatat and Jebel Akhdar windows. In the transect interpretations, the stratigraphy beneath the Nafun Group is schematically represented with constant thickness and is meant to include the Abu Mahara Group, and the Mistal and Hatat formations. Correlation of these units from the Huqf Massif to the Jebel Akhdar and Saih Hatat structures is complicated and needs refinement. 476 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/3/4/475/4552843/mount.pdf by guest on 28 September 2021 Structural Style, Central and Southern Oman Mountains 57° 58° 59° 25° GULF OF O OMAN N M B A A 0 100 N T IN M A Km H 24° O CO U AS N T ° T 24 A IN S Barka-1 Muscat Mistal Saih Hatat Window Window Kharus Jebel Window Nakhl Jebel Windows FRONT OF Akhdar HAWASINA & Wadi Amdeh SUMEINI 23° NAPPES Sahtan Window Saih Saiq SEMAIL GAP Hatat Window 23° Ibra Dome Wadi ndam Mi'aidin adi A W Fig. 4 Al-Hammah-1 Jebel Madmar-1 ARCO/ FAHUD PARTEX Jebel Madar SALT BASIN Block 32 Najah-1 Jebel Remlat Ja'alan Shabiyah-1 Al-Wahiba-1 22° Habiba-2 Afar South-1 22° Jebel Fayah-1 CENTRAL PLATFORM MUSALLIM HIGH OMAN AST HUQFFRONT ARCH OF BATAIN OPHIOLITE COMPLEX 21° BATAIN CO 21° GHABA SALT BASIN ARABIAN SEA Semail Ophiolite, Hawasina and Sumeini Complex Jurassic-Cretaceous Permo-Triassic 20° Cambro-Ordovician Subsurface limit of salt basins 20° Precambrian Huqf Supergroup SOUTH OMAN Precambrian Basement SALT BASIN SALT LIMIT GHABA BASIN 57° 58° 59° Figure 1: Regional location map of
Recommended publications
  • Marine Benthic Invertebrates of the Upper Jurassic Tuwaiq Mountain Limestone, Khashm Al-Qaddiyah, Central Saudi Arabia ⇑ Abdelbaset S
    Journal of African Earth Sciences 97 (2014) 161–172 Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci Marine benthic invertebrates of the upper Jurassic Tuwaiq Mountain Limestone, Khashm Al-Qaddiyah, central Saudi Arabia ⇑ Abdelbaset S. El-Sorogy a,b, , Khaled M. Al-Kahtany a, Hesham M. El-Asmar c a Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia b Geology Department, Faculty of Science, Zagazig University, Egypt c Consultant, Vice Rectorate for Education and Academic Affairs, King Saud University, Saudi Arabia article info abstract Article history: 26 species belong to 24 genera and 16 families have been described and illustrated from the Callovian Received 5 August 2013 Tuwaiq Mountain Limestone, Khashm Al-Qaddiyah, central Saudi Arabia. 10 of the identified species Received in revised form 29 March 2014 belong to scleractinian corals, 7 to brachiopods, 4 to bivalves, 4 to gastropods and one to cephalopods. Accepted 4 April 2014 Actinastraea pseudominima, Thamnasteria nicoleti, Enallocoenia crassoramosa, Collignonastraea cf. grossou- Available online 24 April 2014 vrei, Burmirhynchia jirbaensis, Pholadomya (Bucardiomya) somaliensis, Pseudomelania (Rhabdoconcha) raabi and Nautilus giganteus are believed to be recorded for the first time from the Jurassic rocks of central Keywords: Arabia. The identified species have close affinity to Tethyan faunas known from parts in Asia, Africa Invertebrates and Europe. They indicated shoaling of the sea floor persisted throughout the deposition of the Tuwaiq Jurassic Saudi Arabia Mountain Limestone, in water depth ranging from 20 to 30 m. The low diversity of invertebrates in Tuwaiq Mountain Limestone the studied section may attribute to paleoenvironmental conditions prevailed during the Callovian age as high rate of sedimentation.
    [Show full text]
  • Annual Report 2015 201٥
    Annual Report 2015 201٥ Annual Report 2015 201٥ Environment Society of Oman ﺟﻤﻌﻴﺔ اﻟﺒﻴﺌﺔ ُاﻟﻌﻤﺎﻧﻴﺔ www.eso.org.om www.eso.org.om His Majesty Sultan Qaboos bin Said Al Hoota, Raykhut, Ahmed Al Shukailli. Table of Contents MESSAGE FROM THE PRESIDENT 8 INTRODUCTION 9 ESO BOARD 10 ESO STAFF MARINE CONSERVATION PROJECTS 14 Turtle Research and Conservation Renaissance Whale and Dolphin Project TERRESTRIAL CONSERVATION PROJECTS 20 Frankincense Research and Conservation Egyptian Vulture Research and Conservation The Omani Owl Mystery Resolved COMMUNITY OUTREACH PROJECTS 24 ‘Let’s Plant One’ Native Tree Planting Campaign Fourth Inter-College Environmental Public Speaking Competition Earth Hour 2015 Masirah Signage Eco Summer Eco College Chapters Other Outreach Activities in Communities and Schools CAPACITY BUILDING PROGRAM 32 OTHER ACTIVITIES 36 ESO 10 Year Anniversary Celebration ESO Dhofar Office Internship Program ECO BOWL 2015 Ramadhan Quiz Volunteer of the Year Award 2015 Awards, Grants and Donations INTERNATIONAL HIGHLIGHTS 42 Egyptian Vulture Flyway Action Planning Workshop; Sofia, Bulgaria Eye on Earth Summit; Abu Dhabi, UAE COP 21; Paris, France Conferences, Lectures and Workshops attended in 2015 MEMBERSHIP 46 Individual Membership Corporate Membership Affiliations with International Organisations ACKNOWLEDGEMENTS 48 6 Annual Report 2015 Yiti, Talal Abdelsalem. Front Cover: Egyptian vulture, Neophron percnopterus, Al Amerat, Glyn Barrett. PO Box 3955 PC 112 Ruwi Sultanate of Oman T +968 2470 0945 F +968 2479 0986 7 Message from the President 2015 marks the beginning of a second decade in ESO’s life. The past 10 years have been a whirlwind, with many successes and learning experiences. We have achieved significant progress and made strides towards our aim of capacity building young Omanis in the field of environmental conservation.
    [Show full text]
  • The Jabal Akhdar Dome in the Oman Mountains: Evolution of a Dynamic Fracture System
    n Gomez-Rivas, E., Bons, P.D., Koehn, D., Urai, J.L., Arndt, M., Virgo, S., Laurich, B., Zeeb, C., Stark, L., and Blum, P. (2014) The Jabal Akhdar Dome in the Oman Mountains: evolution of a dynamic fracture system. American Journal of Science, 314 (7). pp. 1104-1139. ISSN 0002- 9599 Copyright © 2014 American Journal of Science A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) http://eprints.gla.ac.uk/94553/ Deposited on: 12 November 2014 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 The Jabal Akhdar Dome in the Oman Mountains: evolution of a 2 dynamic fracture system 3 4 E. GOMEZ-RIVAS*, P. D. BONS*, D. KOEHN**, J. L. URAI***, M. ARNDT***, S. 5 VIRGO***, B. LAURICH***, C. ZEEB****, L. STARK* and P. BLUM**** 6 7 * Department of Geosciences, Eberhard Karls University Tübingen, Germany; enrique.gomez-rivas@uni- 8 tuebingen.de 9 ** School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom 10 *** Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Germany 11 **** Institute for Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Germany 12 13 ABSTRACT. The Mesozoic succession of the Jabal Akhdar dome in the Oman Mountains 14 hosts complex networks of fractures and veins in carbonates, which are a clear example of 15 dynamic fracture opening and sealing in a highly overpressured system.
    [Show full text]
  • Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
    GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian.
    [Show full text]
  • Persian Gulf States, Old and New Co-Exist in Innovative and Intriguing Ways
    PERsiAn OMAN, ABU DHABI, GulF QATAR AND DUBAI Aboard the Crystal Esprit CRUISE January 2–12, 2020 DUBAI FEATURING Trevor Marchand Emeritus Professor of Social Anthropology at SOAS, London DEAR TRAVELER, You are invited to join Archaeological Institute of America lecturer and host Trevor Marchand for this compelling cruise aboard the yacht-like, all-suite, 31-cabin Crystal Esprit. In the Persian Gulf states, old and new co-exist in innovative and intriguing ways. During this exploration of Dubai, Qatar, Abu Dhabi, and Oman you will visit the mosques, souks, educational institutions, and museums that reflect a fascinating juxtaposition of past and present that is unique to the Islamic world. Begin your exploration among the dazzling skyscrapers of Dubai, the business and cultural hub of the Middle East and home to some of the most stunning architectural masterpieces of the 20th and 21st centuries. Continue to Qatar, where visits to the old souq and the new Education City illustrate how dramatically change has come to the Gulf States. In the emirate of Abu Dhabi, museums, mosques, and Masdar City amaze with both their sheer grandeur and minute detail. Wrap up your journey with a cruise through the fjord-like waterways of Oman’s Musandam Peninsula and visits to some of the country’s culturally rich museums, mosques, and markets. For those who wish to further explore the region, optional pre- and post-cruise extensions in Dubai and Oman’s interior are also available. You will learn about the cultures, art, architecture, and history of this region on daily shore excursions and during an enriching onboard educational program with AIA lecturer Trevor Marchand and other onboard lecturers.
    [Show full text]
  • The Two Yemens
    1390_A24-A34 11/4/08 5:14 PM Page 543 330-383/B428-S/40005 The Two Yemens 171. Telegram From the Department of State to the Embassy in the People’s Republic of Southern Yemen1 Washington, February 27, 1969, 1710Z. 30762. Subj: US–PRSY Relations. 1. PRSY UN Perm Rep Nu’man,2 who currently in Washington as PRSYG observer at INTELSAT Conference, had frank but cordial talk with ARP Country Director Brewer February 26. 2. In analyzing causes existing coolness in USG–PRSYG relations, Ambassador Nu’man claimed USG failure offer substantial aid at time of independence and subsequent seizure of American arms with clasped hands insignia3 in possession of anti-PRSYG dissidents had led Aden to “natural” conclusion that USG distrusts PRSYG. He specu- lated this due to close US relationship with Saudis whom Nu’man al- leged, somewhat vaguely, had privately conveyed threats to overthrow NLF regime, claiming USG support. Nu’man asserted PRSYG desired good relations with USG and hoped USG would reciprocate. 3. Recalling history of USG attempts to develop good relations with PRSYG, Brewer underlined our feeling it was PRSYG which had not re- ciprocated. He reviewed our position re non-interference PRSY internal affairs, regretting publicity anti-USG charges (e.g. re arms) without first seeking our explanation. Brewer noted USG seeks maintain friendly relations with Saudi Arabia as well as PRSYG but we not responsible for foreign policy of either. 4. Nu’man reiterated SAG responsible poor state Saudi-PRSY con- tacts. Brewer demurred, noting SAG had good reasons be concerned over hostile attitude PRSYG leaders.
    [Show full text]
  • UAE ROCK CLIMBING Five Years Later - an Update
    UAE ROCK CLIMBING five years later - an update 1 UAE Rock Climbing - 2015 update INTRODUCTION pages 6 - 17 Information and Updates The web forum at uaeclimbing.com is no longer in active use. Various Facebook groups exist. Of these, "Real UAE Rock Climbers" is the most credible. It is a closed group - apply to join. Accidents The advice given in the guidebook on accident procedure is still broadly correct. Regrettably the UAE has still not implemented a national rescue service. Abu Dhabi emirate has helicopters with paramedics available but these would not necessarily be available in other emirates. One observation from a serious incident in Oman in 2010 is that it may be hard to direct local police to an accident location. Carrying GPS equipment and knowing how to communicate GPS coordinates would be helpful in those situations. Visiting climbers should of course make sure they have medical insurance. Climbing Walls Two major resources have appeared since the guidebook: Rock Republic in Dubai and the wall at Sorbonne University in Abu Dhabi. The latter has a private registration process. Instruction Courses The advice given in the guidebook on instruction is out of date. Ask for the latest situation at "Real UAE Rock Climbers". 2 UAE Rock Climbing - 2015 update KHASAB pages 23 - 27 Access situation: No substantial change Route development since the guidebook: Nothing new at Khasab Beach. A very strong North Face sponsored team (Alex Honnold, Hazel Findlay, others) toured the Musandam peninsula in a catamaran, recording some mountain routes on Jebel Letub near Sibi village and elsewhere. Also one multi-pitch seacliff route and some DWSing.
    [Show full text]
  • Field Trips Hardground at Al –Ukair Lagoon Complex, Southern Arabian Gulf
    Field Trips Hardground at Al –Ukair Lagoon complex, southern Arabian Gulf. A spit at the southern shore of the Arabian Gulf. Checking modern halite deposit close to Half Moon Bay, southern Arabian Gulf, with Professor John Warren. My field buddies Fadhel (KFUPM) and Emmanuel (Schlumberger Dhahran Carbonate Research) during a field trip to the south shore of the Arabian Gulf, close to the Bahran Cuaseway. (1997) With my friend Professor Paul Bernier of the University of Lyon (France) during a field trip at Qurriyah beach, close to Half Moon Bay, Arabian Gulf. We organized a day-long field trip to the southern shore of the Arabian Gulf close to Jubail during Professor John Waren’s March 2004 visit to our campus. Here is John with some of my KFUPM colleagues and Aramco friends. L-R: Abdallah Dhbeeb(Saudi Aramco), Dr. Adley Saafin (KFUPM), Rami Kamal (Saudi Aramco), me, Dr. Abdul Wahab Abokhodair (KFUPM), Prof. John Warren (University of Brunei), Cecilia McDonald (Saudi Aramco), Dr. Osaman Abdullatif (KFUPM), and Nasser Al-Naji (Saudi Aramco). Investigating Holocene hardground on the beach of the Al Ukair Lagoon. Onlookers are Prof. John Warren, Dr. Osman Abdullatif, Emanuel Bize (Schlumberger), Khalid Ramadan, and Fdhel Al-Khalifa. Three generations (John – my supervisor; me – Emmanuel’s supervisor) during a field trip in a salt mine close to Half-Moon Bay, Qurriayah, northeastern Saudi Arabia. Open-pit salt mining in Qurraiyah area, southern Arabian Gulf. These are high evaporation areas cut-off by spit progradation along the irregular shorelines Spectacular example of Quaternary eolianite from the Arabian Gulf Shoreline, Dammam, northestern Saudi Arabia.
    [Show full text]
  • Late-Stage Tectonic Evolution of the Al-Hajar Mountains
    Geological Magazine Late-stage tectonic evolution of the www.cambridge.org/geo Al-Hajar Mountains, Oman: new constraints from Palaeogene sedimentary units and low-temperature thermochronometry Original Article 1,2 3 4 3 4 5 Cite this article: Corradetti A, Spina V, A Corradetti , V Spina , S Tavani , JC Ringenbach , M Sabbatino , P Razin , Tavani S, Ringenbach JC, Sabbatino M, Razin P, O Laurent6, S Brichau7 and S Mazzoli1 Laurent O, Brichau S, and Mazzoli S (2020) Late-stage tectonic evolution of the Al-Hajar 1 Mountains, Oman: new constraints from School of Science and Technology, Geology Division, University of Camerino. Via Gentile III da Varano, 62032 2 Palaeogene sedimentary units and low- Camerino (MC), Italy; Department of Petroleum Engineering, Texas A&M University at Qatar, Doha, Qatar; temperature thermochronometry. Geological 3Total E&P, CSTJF, Avenue Larribau, 64000 Pau, France; 4DiSTAR, Università di Napoli Federico II, 21 Via vicinale Magazine 157: 1031–1044. https://doi.org/ cupa Cintia, 80126 Napoli, Italy; 5ENSEGID, Institut Polytechnique de Bordeaux, 1 allée Daguin, 33607 Pessac, 10.1017/S0016756819001250 France; 6Total E&P, Paris, France and 7Géosciences Environnement Toulouse (GET), Université de Toulouse, UPS, CNRS, IRD, CNES, 14 avenue E. Belin, 31400, Toulouse, France Received: 8 July 2019 Revised: 5 September 2019 Accepted: 15 September 2019 Abstract First published online: 12 December 2019 Mountain building in the Al-Hajar Mountains (NE Oman) occurred during two major short- – Keywords: ening stages, related to the convergence between Africa Arabia and Eurasia, separated by nearly Oman FTB; Cenozoic deformation; remote 30 Ma of tectonic quiescence. Most of the shortening was accommodated during the Late sensing; thermochronology Cretaceous, when northward subduction of the Neo-Tethys Ocean was followed by the ophio- lites obduction on top of the former Mesozoic margin.
    [Show full text]
  • Geological Passport
    Geological Passport www.moei.gov.ae Contact Details Ministry of Energy & Industry Geology & Mineral Resources Department PO Box 59 - Abu Dhabi United Arab Emirates Phone +971 2 6190000 Toll Free 8006634 Fax +971 2 6190001 Email: [email protected] Website: www.moei.gov.ae © Ministry of Energy & Industry, UAE Geological Setting of the UAE e United Arab Emirates (UAE) are located on the southern side of the Arabian Gulf, at the north-eastern edge of the Arabian Plate. Although large areas of the country are covered in Quaternary sediments. e bedrock geology is well exposed in the Hajar Mountains and the Musandam Peninsula of the eastern UAE, and along the southern side of the Arabian Gulf west of Abu Dhabi. e geology of the Emirates can be divided into ten main components: (1) e Late Cretaceous UAE-Oman ophiolite; (2) A Middle Permian to Upper Cretaceous carbonate platform sequence, exposed in the northern UAE (the Hajar Supergroup); (3) A deformed sequence of thin limestone’s and associated deepwater sediments, with volcanic rocks and mélanges, which occurs in the Dibba and Hatta Zones; Geological map of the UAE (Scale 1:500 000) 1 (4) A ploydeformed sequence of metamorphic rocks, seen in the Masafi – Ismah and Bani Hamid areas; (5) A younger, Late Cretaceous to Palaeogene cover sequence exposed in a foreland basin along the western edge of the Hajar Mountains; (6) An extensive suite of Quaternary fluvial gravels and coalesced alluvial fans extending out from the Hajar Mountains; (7) A sequence of Late Miocene sedimentary rocks exposed in the western Emirates; (8) A number of salt domes forming islands in the Arabian Gulf, characterised by complex dissolution breccias with a varied clast suite of mainly Neoproterozoic (Ediacaran) sedimentary and volcanic rocks; (9) A suite of Holocene marine and near-shore carbonate and evaporate deposits along the southern side of the Arabian Gulf forming the classic Abu Dhabi sabkhas and Extensive Quaternary to recent aeolian sand dunes which underlie the bulk of Abu Dhabi Emirate.
    [Show full text]
  • Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
    Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain).
    [Show full text]
  • Identification and Characterization of Near Surface Cavities in Tuwaiq
    Egyptian Journal of Petroleum (2016) xxx, xxx–xxx HOSTED BY Egyptian Petroleum Research Institute Egyptian Journal of Petroleum www.elsevier.com/locate/egyjp www.sciencedirect.com FULL LENGTH ARTICLE Identification and characterization of near surface cavities in Tuwaiq Mountain Limestone, Riyadh, KSA, ‘‘detection and treatment” Ahmed Abd El Aal * Civil Engineering Department, Faculty of Engineering, Najran University, Najran, Saudi Arabia Geology Department, Faculty of Science, Al Azhar University, Assiut Branch, Assiut, Egypt Received 5 January 2016; revised 17 March 2016; accepted 13 April 2016 KEYWORDS Abstract This study evaluates the capability of surface electrical resistivity technique for identify- Geo hazards; ing the weak zones or subsurface cavities in karst area with limestone rocks. Weak zones or cavities Karsts; near surface can be potentially dangerous and several problems are associated with collapse of Tuwaiq Mountain Lime- roads or buildings accompanied by subsidence phenomena. Karst environments are characterized stone; by distinctive landforms, which are related to dissolution and dominant subsurface drainage. The 2-D ER interaction of limestone with water is able to create karst features such as cavity, pinnacle, boulder and sinkhole through the dissolution process. The existence of subsurface karst features are always a matter of concern to engineers before any development starts because these features could cause disaster in the future. The study was conducted at Tuwaiq Mountain Limestone, Riyadh region, KSA with the objective to detect and treat karst features at limestone rocks. The karst features such as fill cavity, boulder, pinnacle, discontinuity and overhang were detected in the survey lines. The 2-D ER results showed a good correlation with all the borehole records in determining the subsur- face of limestone formation.
    [Show full text]