Space Shuttle Program Primary Avionics Software System (PASS) Y Y ( ) Success Legacy – Major Accomplishments and Lessons Learn
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The "Bug" Heard 'Round the World
ACM SIGSOFT SOFTWAREENGINEERING NOTES, Vol 6 No 5, October 1981 Page 3 THE "BUG" HEARD 'ROUND THE WORLD Discussion of the software problem which delayed the first Shuttle orbital flight JohnR. Garman Cn April 10, 1981, about 20 minutes prior to the scheduled launching of the first flight of America's Space Transportation System, astronauts and technicians attempted to initialize the software system which "backs-up" the quad-redundant primary software system ...... and could not. In fact, there was no possible way, it turns out, that the BFS (Backup Flight Control System) in the fifth onboard computer could have been initialized , Froperly with the PASS (Primary Avionics Software System) already executing in the other four computers. There was a "bug" - a very small, very improbable, very intricate, and very old mistake in the initialization logic of the PASS. It was the type of mistake that gives programmers and managers alike nightmares - and %heoreticians and analysts endless challenge. I% was the kind of mistake that "cannot happen" if one "follows all the rules" of good software design and implementation. It was the kind of mistake that can never be ruled out in the world of real systems development: a world involving hundreds of programmers and analysts, thousands of hours of testing and simulation, and millions of pages of design specifications, implementation schedules, and test plans and reports. Because in that world, software is in fact "soft" - in a large complex real time control system like the Shuttle's avionics system, software is pervasive and, in virtually every case, the last subsystem to stabilize. -
An Assessment of Aerocapture and Applications to Future Missions
Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission. -
Magnetoshell Aerocapture: Advances Toward Concept Feasibility
Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics. -
The International Space Station and the Space Shuttle
Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17. -
Minotaur I User's Guide
This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman -
Cosmos: a Spacetime Odyssey (2014) Episode Scripts Based On
Cosmos: A SpaceTime Odyssey (2014) Episode Scripts Based on Cosmos: A Personal Voyage by Carl Sagan, Ann Druyan & Steven Soter Directed by Brannon Braga, Bill Pope & Ann Druyan Presented by Neil deGrasse Tyson Composer(s) Alan Silvestri Country of origin United States Original language(s) English No. of episodes 13 (List of episodes) 1 - Standing Up in the Milky Way 2 - Some of the Things That Molecules Do 3 - When Knowledge Conquered Fear 4 - A Sky Full of Ghosts 5 - Hiding In The Light 6 - Deeper, Deeper, Deeper Still 7 - The Clean Room 8 - Sisters of the Sun 9 - The Lost Worlds of Planet Earth 10 - The Electric Boy 11 - The Immortals 12 - The World Set Free 13 - Unafraid Of The Dark 1 - Standing Up in the Milky Way The cosmos is all there is, or ever was, or ever will be. Come with me. A generation ago, the astronomer Carl Sagan stood here and launched hundreds of millions of us on a great adventure: the exploration of the universe revealed by science. It's time to get going again. We're about to begin a journey that will take us from the infinitesimal to the infinite, from the dawn of time to the distant future. We'll explore galaxies and suns and worlds, surf the gravity waves of space-time, encounter beings that live in fire and ice, explore the planets of stars that never die, discover atoms as massive as suns and universes smaller than atoms. Cosmos is also a story about us. It's the saga of how wandering bands of hunters and gatherers found their way to the stars, one adventure with many heroes. -
Columbia and Challenger: Organizational Failure at NASA
ARTICLE IN PRESS Space Policy 19 (2003) 239–247 Columbia and Challenger: organizational failure at NASA Joseph Lorenzo Hall* Astronomy Department/School of Information Management and Systems, Astronomy Department, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411, USA Abstract The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science— is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA’s flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA’s organization and organizational change, namely path dependence and ‘‘normalization of deviance’’. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future. r 2003 Elsevier Ltd. All rights reserved. 1. Introduction in 1967 are examples of failure at NASA that cost a total of 17 astronaut lives. -
Effects of Space Exploration Objective: Students Will Be Able To: 1
Lesson Topic: Effects of Space Exploration Objective: Students will be able to: 1. Identify and describe how space exploration affects the state of Florida. 2. Describe the nature of the Kennedy Space Center. 3. Identify the components of a space shuttle 4. Apply the importance of space exploration to the Florida culture through design. Time Required: 75 minutes Materials Needed: ● Teacher computer with internet access ● Projector/Smartboard ● 1 computer/laptop/iPad per student with internet access ● Effects of Space Exploration handout (attached) ● Space Exploration Video: Escape Velocity - A Quick History of Space Exploration ● Space Shuttle Website: Human Space Flight (HSF) - Space Shuttle ● Kennedy Space Center Website: Visit Kennedy Space Center Visitor Complex at Cape Canaveral ● Coloring pencils/Markers Teacher Preparation: ● Assign a Legends of Learning Content Review Quick Play playlist for the day(s) you will be teaching the lesson. ○ Content Review - Middle School - Effects of Space Exploration ● Make copies of Effects of Space Exploration Worksheet (1 per student) Engage (10 minutes): 1. Pass out the Effects of Space Exploration Handout. 2. Ask students “What do you know about space exploration? a. Draw the words “Space Exploration” on the board with a circle around it. i. As students share their answers write their answers on the board and link them to the Space Exploration circle with a line. 3. Tell students “We are going to watch a short video about the history of space exploration and how it has evolved over time. In the space provided on the handout, jot down any notes that you find interesting or important. 4. -
Columbia Accident Investigation Board
COLUMBIA ACCIDENT INVESTIGATION BOARD Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD On the Front Cover This was the crew patch for STS-107. The central element of the patch was the microgravity symbol, µg, flowing into the rays of the Astronaut symbol. The orbital inclination was portrayed by the 39-degree angle of the Earthʼs horizon to the Astronaut symbol. The sunrise was representative of the numerous science experiments that were the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conduct- ed on this mission had widespread benefits to life on Earth and the continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. In addition, the seven stars represent the STS-107 crew members, as well as honoring the original Mercury 7 astronauts who paved the way to make research in space possible. The Israeli flag represented the first person from that country to fly on the Space Shuttle. On the Back Cover This emblem memorializes the three U.S. human space flight accidents – Apollo 1, Challenger, and Columbia. The words across the top translate to: “To The Stars, Despite Adversity – Always Explore“ Limited First Printing, August 2003, by the Columbia Accident Investigation Board Subsequent Printing and Distribution by the National Aeronautics and Space Administration and the Government Printing Office Washington, D.C. 2 Report Volume I August 2003 COLUMBIA ACCIDENT INVESTIGATION BOARD IN MEMORIAM Rick D. Husband Commander William C. -
International Space Station Basics Components of The
National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles. -
Challenger Accident in a Rogers Commission Hearing at KSC
CHALLENGER By Arnold D. Aldrich Former Program Director, NSTS August 27, 2008 Recently, I was asked by John Shannon, the current Space Shuttle Program Manager, to comment on my experiences, best practices, and lessons learned as a former Space Shuttle program manager. This project is part of a broader knowledge capture and retention initiative being conducted by the NASA Johnson Space Center in an “oral history” format. One of the questions posed was to comment on some of the most memorable moments of my time as a Space Shuttle program manager. Without question, the top two of these were the launch of Challenger on STS‐51L on January 28, 1986, and the launch of Discovery on STS‐26 on September 29, 1988. Background The tragic launch and loss of Challenger occurred over 22 years ago. 73 seconds into flight the right hand Solid Rocket Booster (SRB) broke away from the External Tank (ET) as a result of a burn‐ through in its aft most case to case joint and the Space Shuttle vehicle disintegrated resulting in the total loss of the vehicle and crew. The events leading up to that launch are still vivid in my mind and deeply trouble me to this day, as I know they always will. This paper is not about what occurred during the countdown leading up to the launch – those facts and events were thoroughly investigated and documented by the Rogers Commission. Rather, what I can never come to closure with is how we, as a launch team, and I, as one of the leaders of that team, allowed the launch to occur. -
ASTRODYNAMICS 2011 Edited by Hanspeter Schaub Brian C
ASTRODYNAMICS 2011 Edited by Hanspeter Schaub Brian C. Gunter Ryan P. Russell William Todd Cerven Volume 142 ADVANCES IN THE ASTRONAUTICAL SCIENCES ASTRODYNAMICS 2011 2 AAS PRESIDENT Frank A. Slazer Northrop Grumman VICE PRESIDENT - PUBLICATIONS Dr. David B. Spencer Pennsylvania State University EDITORS Dr. Hanspeter Schaub University of Colorado Dr. Brian C. Gunter Delft University of Technology Dr. Ryan P. Russell Georgia Institute of Technology Dr. William Todd Cerven The Aerospace Corporation SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Photos: Top photo: Cassini looking back at an eclipsed Saturn, Astronomy picture of the day 2006 October 16, credit CICLOPS, JPL, ESA, NASA; Bottom left photo: Shuttle shadow in the sunset (in honor of the end of the Shuttle Era), Astronomy picture of the day 2010 February 16, credit: Expedition 22 Crew, NASA; Bottom right photo: Comet Hartley 2 Flyby, Astronomy picture of the day 2010 November 5, Credit: NASA, JPL-Caltech, UMD, EPOXI Mission. 3 ASTRODYNAMICS 2011 Volume 142 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Hanspeter Schaub Brian C. Gunter Ryan P. Russell William Todd Cerven Proceedings of the AAS/AIAA Astrodynamics Specialist Conference held July 31 – August 4 2011, Girdwood, Alaska, U.S.A. Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com 4 Copyright 2012 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2012 Library of Congress Card No.