Publications of the Astronomical Society Of

Total Page:16

File Type:pdf, Size:1020Kb

Publications of the Astronomical Society Of PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC Vol. 55 S;m Francisco, California, December 1943 No. 327 SURVEY OF THE YEAR'S WORK AT MOUNT WILSON* W. S. Adams Seven members of the scientific staff of the Observatory have been on leave of absence throughout the year to engage in research upon military problems and two members of the operat- ing staff are in the armed services. In addition numerous others, while remaining at the Observatory, have devoted much time to assisting in the solution of specific optical and instrumental ques- tions brought to their attention. Essentially the entire activities of the instrument and optical shops have been devoted to con- tracts with the Army and the Office of Scientific Research and Development. The astronomical work of the Observatory, but slightly reduced in amount, has been maintained chiefly by the older members of the staff. The essential solar observations, in which continuity of records is especially important, have been carried on without interruption, and the 60-inch and 100-inch telescopes have been used regularly throughout the year. An interesting result of the dimout regulations in the valley area including Pasadena and Los Angeles has been a darkening of the sky to the south and southwest of Mount Wilson which has made pos- sible a doubling of exposure times on very faint objects without increase of fog on the plates. This has been especially valuable in the study of faint variables and other stars in extragalactic nebulae. The year was characterized by exceptionally favorable ob- * For a complete report covering the period July 1, 1942—June 30, 1943, see Carnegie Institution of Washington Year Book, No. 42, 1943. 253 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 254 PUBLICATIONS OF THE serving conditions, solar observations being made on 327 days and stellar observations on 294 nights. Although the precipita- tion during the winter season was unusually high, amounting to nearly 66 inches, it was almost wholly in the form of rain largely concentrated in three heavy storms. A mild winter appears to favor good astronomical definition. Sunspot activity decreased materially during the year and is now at a very low stage. As the minimum is approached, special interest attaches to the discovery of the first spot of the new cycle. This was found on December 20, 1942, in north latitude 32°. On May 16, 1943 a group appeared in south latitude 41° which was the largest group ever photographed in latitudes higher than 40°. Polarity observations indicated the expected reversal of sign as compared with spots of the previous cycle. In the course of an extensive study of solar prominences, Pettit has found clear evidence of an interchange of gases be- tween interactive prominences. He found also that interactive prominences may become eruptive. In general the angle of ejec- tion of eruptive prominences shows but a small inclination to the solar radius, although exceptions occur. Two-thirds of the 39 trajectories available show an angle of less than 20°. Eruptive prominences move great distances without change of velocity, distances of 200,000 km or more having been observed for 18 prominences, with two exceeding a solar radius. The frequency of eruptive prominences is found to be of the order of 400 per year at sunspot maximum and 25 to 50 per year at sunspot minimum. This investigation has also dealt with motions in prominences of the tornado type and with the structure of quiescent promi- nences. A palisade-like form seems to be characteristic of the quiescent type with as many as 20 or 30 columns or withes, 2000 km wide, and as much as 50,000 km high. Spectroscopic observations of the sun have included studies of the extreirfe ultraviolet spectrum of the disk and spots, photo- graphs of a portion of the green region with a Lummer plate for measurements of the general magnetic field and the solar rota- tion, and an investigation of the presence of additional com- pounds in disk and spot spectra. This last investigation, carried © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System ASTRONOMICAL SOCIETY OF THE PACIFIC 255 on by Babcock and Mrs. Coffeen, has resulted in the identifica- tion of O 2 in the sun where it appears in several faint extensions of the Schumann-Runge band system, and the probable recog- nition of NH in two low states of electronic excitation. The presence of O 2 in the solar atmosphere, even if greatly diluted, must very profoundly reduce the outflow of solar radiation in the region λ 670-λ 2000 A because of its enormous absorptive power. A study still in progress is a comparison by Richardson of the Η and Κ lines at times of violent magnetic storms and of magnetic calm to test the suggestion by Chapman that a cloud containing ionized calcium atoms moving toward the earth dur- ing a magnetic storm might be detected by the presence of a faint absorption component on the violet side of the lines. A satisfac- tory method of determining the intensities of the lines has been devised and the measures are being collected. A search for the asteroid Adonis was made by Nicholson on photographs with the 100-inch telescope covering a range of 14 days in the time of perihelion passage, but no definite evidence of the presence of the asteroid was found. Nicholson has also reobserved the positions of the fainter satellites of Jupiter and has recalculated and improved the orbit of Satellite IX. Cometary observations have included photographs by Baade of periodic comet Wolf I, which was found close to the predicted position, and of Whipple's comet (1942/). The latter showed remarkably rapid changes in the structure of the tail in the course of a few hours. Spectrograms of Whipple's comet by Minkowski enabled him to identify several previously unidentified features in the visual region with bands of Ν Η 2. In the broad field of stellar investigation van Maanen has completed measurements of parallax for 14 faint stars of large proper motion, and has increased his second-epoch material for the determination of proper motions of Cepheid variables to a total of 91 objects. The proper motions of about 800 stars in the distant open cluster h Persei have been measured on two pairs of photographs separated by intervals of 27 and 17 years, respectively. In spite of the small motion of but 0^004 for the cluster, the accuracy of measurement is such as to make it pos- © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System 256 PUBLICATIONS OF THE sible to separate to a very large extent the cluster stars from the field stars. An interesting study of the physical characteristics of the companion of small mass in the system of 61 Cygni has been made by Dr. Russell. The use of theories applicable to normal lucid stars for an object of such mass necessarily involves extra- polation and may result in considerable uncertainties. Calcula- tions of the radius of the star based upon the mass given by Strand yield wide possible limits, but the assumption of the rea- sonable intermediate value of three-fourths the radius of the sun indicates a central temperature of 1,600,000° K, a surface tem- perature below self-luminosity, and a radiation which could be supplied by contraction alone for a period of 5 X 109 years at a cost of but 1/400 of its radius. Several photometric investigations have been completed dur- ing the year. In one of these Dr. Stebbins has used a combina- tion of a photoelectric cell with suitable filters to isolate six spectral regions between λ 3500 and λ 10,000. About one hun- dred fifty stars of all types have been measured, most of which are found to radiate much like black bodies. The chief devia- tions are due to strong hydrogen absorption in the ultraviolet region in A-type stars, and to the strong red and infrared bands in M-type stars. The color temperatures range from about 24,000° Κ for stars of types O and early Β to 2,000° Κ for the reddest M-type stars. The value for type A is 11,000° K. The completion of the investigations of stars in the north polar region by Dr. Seares and Miss Joyner has confirmed the provisional results for the spectrum-color relationship and the color temperatures of the stars. The general uniformity of the obscuring cloud over the polar cap 20° in diameter seems to be well established, the solar system lying close to if not actually within the cloud. The color excess increases at a nearly linear rate to a value of 0.27 magnitude at about 450 parsecs where the cloud apparently ends. The constancy of the zero point of the color indices of the Polar Catalogue is well shown by an intercomparison of the results for small individual fields within the polar cap. An important astrophysical result of this study is the evi- © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System ASTRONOMICAL SOCIETY OF THE PACIFIC 257 dence for the small dispersion in color index for stars of the same spectral type, the upper limit being 0.035 magnitude for types KO and earlier, and about 0.1 magnitude for types K5-M. The accidental error in the various systems of spectral classification may also be derived from the results of the investigation. Visual observations of the light-curve of Nova Puppis (1942) were made by Pettit over a period of about six months with a modified form of wedge photometer.
Recommended publications
  • The Maunder Minimum and the Variable Sun-Earth Connection
    The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations.
    [Show full text]
  • Sodium and Potassium Signatures Of
    Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets Apurva Oza, Robert Johnson, Emmanuel Lellouch, Carl Schmidt, Nick Schneider, Chenliang Huang, Diana Gamborino, Andrea Gebek, Aurelien Wyttenbach, Brice-Olivier Demory, et al. To cite this version: Apurva Oza, Robert Johnson, Emmanuel Lellouch, Carl Schmidt, Nick Schneider, et al.. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets. The Astro- physical Journal, American Astronomical Society, 2019, 885 (2), pp.168. 10.3847/1538-4357/ab40cc. hal-02417964 HAL Id: hal-02417964 https://hal.sorbonne-universite.fr/hal-02417964 Submitted on 18 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astrophysical Journal, 885:168 (19pp), 2019 November 10 https://doi.org/10.3847/1538-4357/ab40cc © 2019. The American Astronomical Society. Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets Apurva V. Oza1 , Robert E. Johnson2,3 , Emmanuel Lellouch4 , Carl Schmidt5 , Nick Schneider6 , Chenliang Huang7 , Diana Gamborino1 , Andrea Gebek1,8 , Aurelien Wyttenbach9 , Brice-Olivier Demory10 , Christoph Mordasini1 , Prabal Saxena11, David Dubois12 , Arielle Moullet12, and Nicolas Thomas1 1 Physikalisches Institut, Universität Bern, Bern, Switzerland; [email protected] 2 Engineering Physics, University of Virginia, Charlottesville, VA 22903, USA 3 Physics, New York University, 4 Washington Place, New York, NY 10003, USA 4 LESIA–Observatoire de Paris, CNRS, UPMC Univ.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • X. Bayesian Stellar Parameters and Evolutionary Stages for 372 Giant Stars from the Lick Planet Search?
    A&A 616, A33 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833111 & c ESO 2018 Astrophysics Precise radial velocities of giant stars X. Bayesian stellar parameters and evolutionary stages for 372 giant stars from the Lick planet search? Stephan Stock, Sabine Reffert, and Andreas Quirrenbach Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany e-mail: [email protected] Received 27 March 2018 / Accepted 4 May 2018 ABSTRACT Context. The determination of accurate stellar parameters of giant stars is essential for our understanding of such stars in general and as exoplanet host stars in particular. Precise stellar masses are vital for determining the lower mass limit of potential substellar companions with the radial velocity method, but also for dynamical modeling of multiplanetary systems and the analysis of planetary evolution. Aims. Our goal is to determine stellar parameters, including mass, radius, age, surface gravity, effective temperature and luminosity, for the sample of giants observed by the Lick planet search. Furthermore, we want to derive the probability of these stars being on the horizontal branch (HB) or red giant branch (RGB), respectively. Methods. We compare spectroscopic, photometric and astrometric observables to grids of stellar evolutionary models using Bayesian inference. Results. We provide tables of stellar parameters, probabilities for the current post-main sequence evolutionary stage, and probability density functions for 372 giants from the Lick planet search. We find that 81% of the stars in our sample are more probably on the HB. In particular, this is the case for 15 of the 16 planet host stars in the sample.
    [Show full text]
  • November 2020 BRAS Newsletter
    A Mars efter Lowell's Glober ca. 1905-1909”, from Percival Lowell’s maps; National Maritime Museum, Greenwich, London (see Page 6) Monthly Meeting November 9th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: Chuck Allen from the Astronomical League will speak about The Cosmic Distance Ladder, which explores the historical advancement of distance determinations in astronomy. What's In This Issue? President’s Message Member Meeting Minutes Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner – John Nagle ALPO 2020 Conference Astro-Photos by BRAS Members - MARS Messages from the HRPO REMOTE DISCUSSION Solar Viewing Edge of Night Natural Sky Conference Recent Entries in the BRAS Forum Observing Notes: Pisces – The Fishes Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society BRAS YouTube Channel Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 24 November 2020 President’s Message Welcome to the home stretch for 2020. The nights are starting earlier and earlier as the weather becomes more and more comfortable and all of our old favorites of the fall and winter skies really start finding their places right where they belong. October was a busy month for us, with several big functions at the Observatory, including two oppositions and two more all night celebrations. By comparison, November is looking fairly calm, the big focus there is going to be our third annual Natural Sky Conference on the 13th, which I’m encouraging people who care about the state of light pollution in our city and the surrounding area to get involved in.
    [Show full text]
  • Transits of Mercury, 1605–2999 CE
    Appendix A Transits of Mercury, 1605–2999 CE Date (TT) Int. Offset Date (TT) Int. Offset Date (TT) Int. Offset 1605 Nov 01.84 7.0 −0.884 2065 Nov 11.84 3.5 +0.187 2542 May 17.36 9.5 −0.716 1615 May 03.42 9.5 +0.493 2078 Nov 14.57 13.0 +0.695 2545 Nov 18.57 3.5 +0.331 1618 Nov 04.57 3.5 −0.364 2085 Nov 07.57 7.0 −0.742 2558 Nov 21.31 13.0 +0.841 1628 May 05.73 9.5 −0.601 2095 May 08.88 9.5 +0.326 2565 Nov 14.31 7.0 −0.599 1631 Nov 07.31 3.5 +0.150 2098 Nov 10.31 3.5 −0.222 2575 May 15.34 9.5 +0.157 1644 Nov 09.04 13.0 +0.661 2108 May 12.18 9.5 −0.763 2578 Nov 17.04 3.5 −0.078 1651 Nov 03.04 7.0 −0.774 2111 Nov 14.04 3.5 +0.292 2588 May 17.64 9.5 −0.932 1661 May 03.70 9.5 +0.277 2124 Nov 15.77 13.0 +0.803 2591 Nov 19.77 3.5 +0.438 1664 Nov 04.77 3.5 −0.258 2131 Nov 09.77 7.0 −0.634 2604 Nov 22.51 13.0 +0.947 1674 May 07.01 9.5 −0.816 2141 May 10.16 9.5 +0.114 2608 May 13.34 3.5 +1.010 1677 Nov 07.51 3.5 +0.256 2144 Nov 11.50 3.5 −0.116 2611 Nov 16.50 3.5 −0.490 1690 Nov 10.24 13.0 +0.765 2154 May 13.46 9.5 −0.979 2621 May 16.62 9.5 −0.055 1697 Nov 03.24 7.0 −0.668 2157 Nov 14.24 3.5 +0.399 2624 Nov 18.24 3.5 +0.030 1707 May 05.98 9.5 +0.067 2170 Nov 16.97 13.0 +0.907 2637 Nov 20.97 13.0 +0.543 1710 Nov 06.97 3.5 −0.150 2174 May 08.15 3.5 +0.972 2644 Nov 13.96 7.0 −0.906 1723 Nov 09.71 13.0 +0.361 2177 Nov 09.97 3.5 −0.526 2654 May 14.61 9.5 +0.805 1736 Nov 11.44 13.0 +0.869 2187 May 11.44 9.5 −0.101 2657 Nov 16.70 3.5 −0.381 1740 May 02.96 3.5 +0.934 2190 Nov 12.70 3.5 −0.009 2667 May 17.89 9.5 −0.265 1743 Nov 05.44 3.5 −0.560 2203 Nov
    [Show full text]
  • Observing List
    day month year Epoch 2000 local clock time: 2.00 Observing List for 17 11 2019 RA DEC alt az Constellation object mag A mag B Separation description hr min deg min 58 286 Andromeda Gamma Andromedae (*266) 2.3 5.5 9.8 yellow & blue green double star 2 3.9 42 19 40 283 Andromeda Pi Andromedae 4.4 8.6 35.9 bright white & faint blue 0 36.9 33 43 48 295 Andromeda STF 79 (Struve) 6 7 7.8 bluish pair 1 0.1 44 42 59 279 Andromeda 59 Andromedae 6.5 7 16.6 neat pair, both greenish blue 2 10.9 39 2 32 301 Andromeda NGC 7662 (The Blue Snowball) planetary nebula, fairly bright & slightly elongated 23 25.9 42 32.1 44 292 Andromeda M31 (Andromeda Galaxy) large sprial arm galaxy like the Milky Way 0 42.7 41 16 44 291 Andromeda M32 satellite galaxy of Andromeda Galaxy 0 42.7 40 52 44 293 Andromeda M110 (NGC205) satellite galaxy of Andromeda Galaxy 0 40.4 41 41 56 279 Andromeda NGC752 large open cluster of 60 stars 1 57.8 37 41 62 285 Andromeda NGC891 edge on galaxy, needle-like in appearance 2 22.6 42 21 30 300 Andromeda NGC7640 elongated galaxy with mottled halo 23 22.1 40 51 35 308 Andromeda NGC7686 open cluster of 20 stars 23 30.2 49 8 47 258 Aries 1 Arietis 6.2 7.2 2.8 fine yellow & pale blue pair 1 50.1 22 17 57 250 Aries 30 Arietis 6.6 7.4 38.6 pleasing yellow pair 2 37 24 39 59 253 Aries 33 Arietis 5.5 8.4 28.6 yellowish-white & blue pair 2 40.7 27 4 59 239 Aries 48, Epsilon Arietis 5.2 5.5 1.5 white pair, splittable @ 150x 2 59.2 21 20 46 254 Aries 5, Gamma Arietis (*262) 4.8 4.8 7.8 nice bluish-white pair 1 53.5 19 18 49 258 Aries 9, Lambda Arietis
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]
  • The Transiting Dust Clumps in the Evolved Disk of the Sun-Like Uxor
    The transiting dust clumps in the evolved disk of the Sun-like UXor RZ Psc rsos.royalsocietypublishing.org 1 Grant M. Kennedy , Matthew A. 2 3 Kenworthy , Joshua Pepper , Joseph E. Research 4 5 6 Rodriguez , , Robert J. Siverd , Keivan G. 5 7 1 Stassun , , & Mark C. Wyatt Article submitted to journal 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2 Subject Areas: Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands astrophysics, extrasolar planets, stars 3 Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015, USA Keywords: 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, variable stars, protoplanetary disks, MS-78, Cambridge, MA 02138, USA 5 debris disks, circumstellar matter Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA 6 Las Cumbres Observatory Global Telescope Network, 6740 Author for correspondence: Cortona Dr., Suite 102, Santa Barbara, CA 93117, USA 7 Grant M. Kennedy Department of Physics, Fisk University, 1000 17th Avenue North, Nashville, TN 37208, USA e-mail: [email protected] RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation.
    [Show full text]
  • Détection Et Caractérisation De Planètes Extrasolaires Par Photométrie Visible Et Interférométrie Infrarouge À Très Haute Précision Pascal Bordé
    Détection et caractérisation de planètes extrasolaires par photométrie visible et interférométrie infrarouge à très haute précision Pascal Bordé To cite this version: Pascal Bordé. Détection et caractérisation de planètes extrasolaires par photométrie visible et in- terférométrie infrarouge à très haute précision. Astrophysique [astro-ph]. Université Pierre et Marie Curie - Paris VI, 2003. Français. tel-00004349 HAL Id: tel-00004349 https://tel.archives-ouvertes.fr/tel-00004349 Submitted on 27 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ePierre & Marie Curie – Paris VI Ecole´ doctorale Astronomie & Astrophysique d’ˆIle-de-France Observatoire de Paris D´etection et caract´erisation de plan`etes extrasolaires par photom´etrie visible et interf´erom´etrie infrarouge `atr`es haute pr´ecision THESE` pr´esent´ee et soutenue publiquement le 27 octobre 2003 pour l’obtention du Doctorat de l’universit´ePierre & Marie Curie – Paris VI (sp´ecialit´eastrophysique et instrumentations associ´ees) par Pascal Borde´ Composition du jury Pr´esident : Pr. Pierre Encrenaz Directeurs de th`ese : Dr. Vincent Coud´edu Foresto Pr. Pierre L´ena Rapporteurs : Dr. Pierre Barge Dr. Didier Queloz Examinateur : Dr. Alain L´eger Laboratoire d’Etudes´ Spatiales et d’Instrumentation en Astrophysique — UMR 8109 Mis en page avec la classe thloria.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]