Détection Et Caractérisation De Planètes Extrasolaires Par Photométrie Visible Et Interférométrie Infrarouge À Très Haute Précision Pascal Bordé

Total Page:16

File Type:pdf, Size:1020Kb

Détection Et Caractérisation De Planètes Extrasolaires Par Photométrie Visible Et Interférométrie Infrarouge À Très Haute Précision Pascal Bordé Détection et caractérisation de planètes extrasolaires par photométrie visible et interférométrie infrarouge à très haute précision Pascal Bordé To cite this version: Pascal Bordé. Détection et caractérisation de planètes extrasolaires par photométrie visible et in- terférométrie infrarouge à très haute précision. Astrophysique [astro-ph]. Université Pierre et Marie Curie - Paris VI, 2003. Français. tel-00004349 HAL Id: tel-00004349 https://tel.archives-ouvertes.fr/tel-00004349 Submitted on 27 Jan 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ePierre & Marie Curie – Paris VI Ecole´ doctorale Astronomie & Astrophysique d’ˆIle-de-France Observatoire de Paris D´etection et caract´erisation de plan`etes extrasolaires par photom´etrie visible et interf´erom´etrie infrarouge `atr`es haute pr´ecision THESE` pr´esent´ee et soutenue publiquement le 27 octobre 2003 pour l’obtention du Doctorat de l’universit´ePierre & Marie Curie – Paris VI (sp´ecialit´eastrophysique et instrumentations associ´ees) par Pascal Borde´ Composition du jury Pr´esident : Pr. Pierre Encrenaz Directeurs de th`ese : Dr. Vincent Coud´edu Foresto Pr. Pierre L´ena Rapporteurs : Dr. Pierre Barge Dr. Didier Queloz Examinateur : Dr. Alain L´eger Laboratoire d’Etudes´ Spatiales et d’Instrumentation en Astrophysique — UMR 8109 Mis en page avec la classe thloria. i Remerciements Par ses différents aspects, mon travail de thèse m’a conduit à travailler avec de nombreuses personnes dans différents observatoires ou laboratoires de la région parisienne ou des Amé- riques (États-Unis et Chili). Je voudrais remercier ici tous ceux qui m’ont orienté et conseillé dans mes recherches, ou qui plus généralement ont contribué à enrichir le contenu de ce manus- crit. Tout d’abord, ma gratitude va à Vincent Coudé du Foresto et Pierre Léna qui m’ont accueilli dans leur équipe d’interférométrie de l’observatoire de Meudon et ont assuré la direction de ma thèse. Les deux missions d’observation au Mont Hopkins (Arizona) avec Vincent furent pour moi l’occasion de faire mes premières armes d’astronome. C’est un rude métier qui nécessite un moral d’acier afin de faire face aussi bien aux difficultés techniques qu’à la météo capricieuse, mais qui apporte en contrepartie des satisfactions uniques. Au sein de l’équipe d’interférométrie, je tiens à remercier particulièrement Guy Perrin pour sa disponibilité à mon égard, pour de nombreuses discussions scientifiques très enrichissantes, pour avoir réalisé pour moi des observations d’étoiles binaires spectroscopiques et pour les heures de manipulation partagées au Laboratoire de physique des lasers à Villetaneuse. Je suis très redevable à Daniel Rouan du LESIA et Alain Léger de l’IAS pour tout ce qui concerne COROT et les transits d’exoplanètes. En dirigeant mon stage de DEA sur COROT en 1999, Daniel a guidé mes premiers pas en recherche et a su, aidé d’Alain, me communiquer le « virus des exoplanètes ». J’ai eu la chance que ce travail se poursuive jusqu’en 2002 au travers de passionnantes réunions, nous gagnant auprès d’Annie Baglin le surnom des « trois mousquetaires ». Je remercie également Marc Ollivier de l’IAS qui m’a souvent fait l’amitié de répondre à mes questions sur COROT, et avec qui j’ai eu beaucoup de plaisir à travailler sur une expérience préparatoire à Darwin. Je tiens à remercier l’équipe IRCO2 du Laboratoire de physique des lasers à Villetaneuse qui a accueilli le banc de test pour la caractérisation des fibres à10 µm : Thanh Nguyen, Anne Amy- Klein, Christophe Daussy et Christian Chardonnet. Il faut aussi souligner que rien n’aurait été possible sans le soutien de Gwenaël Mazé, directeur du Verre Fluoré, dont le désir de collaborer avec notre équipe s’est prolongé au-delà du terme du contrat attribué par la DGA. Je remercie Pierre Kervella de l’ESO pour une collaboration très agréable lors de mon séjour au Mont Paranal, ainsi que pour m’avoir associé à des études interférométriques sur Sirius et Procyon. Pour leur aide ponctuelle ou répétée, pour de (nombreuses) discussions scientifiques et ami- cales, je remercie Olivier Absil, Daniel Bonneau, Theo ten Brummelaar, Gilles Chagnon, An- drew Collier Cameron, Xavier Delfosse, Emmanuel di Folco, Marc Lacasse, Hal McAlister, Bertrand Mennesson, Antoine Mérand, Steve Ridgway, Jean Schneider, Peter Schuller, Wesley Traub, Tijl Verhoelst et Julien Woillez. Je suis très reconnaissant à Thérèse Encrenaz, directrice du DESPA, puis à son successeur Jean-Louis Bougeret, directeur du LESIA, d’avoir mis à ma disposition tous les moyens né- cessaires à ma recherche, de m’avoir toujours permis de partir en mission ou d’assister à des colloques. Enfin, je remercie particulièrement Jacqueline Thouvay, administratrice hors pair du LESIA, et plus généralement les secrétaires du LESIA et de l’école doctorale Astronomie & Astrophysique d’Île-de-France. ii iii À mes parents iv Table des matières Prologue 1 I De nouveaux mondes 3 1 Une quête astrophysique et métaphysique 5 1.1 L’Universinfini................................ 5 1.2 Lachasseauxplanètesgéantes. 6 1.2.1 Lestentativesastrométriques . 6 1.2.2 Lesplanètesdupulsar ........................ 6 1.2.3 Lessuccèsdelaspectroscopie. 7 1.2.4 Laconfirmationphotométrique . 7 1.3 ObjectifTerres!................................ 8 1.4 Établirlecontact? .............................. 9 2 Les exoplanètes géantes 11 2.1 Qu’est-cequ’uneplanète? . .. .. .. .. .. .. .. 11 2.2 Panoramadesdécouvertes . .. .. .. .. .. .. .. 12 2.3 Distributionsstatistiques . .. 12 2.3.1 Histogrammedesmasses . 12 2.3.2 Histogrammedesdemi-grandsaxes . 13 2.3.3 Étudedel’excentricité . 14 2.3.4 Influencedelamétallicité . 15 2.4 LafamilledesPégasides ........................... 15 2.4.1 Propriétésgénérales . 16 2.4.2 Modèlesd’atmosphèreetspectres . 17 v vi Table des matières 3 Des compagnons planétaires aux compagnons stellaires : les systèmes doubles 21 3.1 Introduction.................................. 21 3.2 Intérêtastrophysique . .. .. .. .. .. .. .. .. 22 3.3 Descriptiondynamique............................ 22 3.3.1 Mouvementducompagnondansleplanorbital . 22 3.3.2 Mouvementducompagnondansleplanduciel . 23 3.4 Vélocimétrieradiale ............................. 26 3.4.1 Calculdesvitessesradiales . 26 3.4.2 Exploitationdesmesuresvélocimétriques . ... 27 3.5 Lesbinairesàéclipses ............................ 30 II La méthode des transits ou la quête des petites planètes et des grandes statistiques 33 4 La science des transits 35 4.1 Principeetgrandeurscaractéristiques . ...... 35 4.1.1 Variationphotométrique . 35 4.1.2 Durée................................. 36 4.1.3 Probabilitégéométrique . 37 4.2 Exploitationd’unecourbedelumière . ... 37 4.2.1 Premièreapproche .......................... 37 4.2.2 Modélisationfine........................... 38 4.2.3 Mesuredesparamètresstellaires. 39 4.3 Succèsetambitionsdelaphotométrie . ... 39 4.3.1 SpectaculaireHD209458 . 39 4.3.2 CandidatsdurelevéOGLE . 40 4.4 Algorithmesdedétection. .. .. .. .. .. .. .. 40 4.4.1 Inconvénientsdel’analysedeFourier . 41 4.4.2 Filtrageadapté ............................ 42 4.4.3 Autresméthodes ........................... 46 4.5 Variabilitéssolaireetstellaire . ..... 47 4.5.1 Causesdelavariabilité. 47 4.5.2 Modèledebruitdevariabilité . 49 vii 4.5.3 Extrapolationauxautresétoiles . 51 5 Prédiction des performances de la mission COROT 53 5.1 LamissionCOROT.............................. 53 5.2 Performancesescomptées . .. .. .. .. .. .. .. 56 5.2.1 Champd’étoilessynthétique. 56 5.2.2 Procéduredesimulation . 57 5.2.3 Courbes d’efficacitédedétection . 59 5.2.4 Nombretotaldedétections. 64 5.2.5 Étudeen fonctiondu typespectral et delamagnitude . .... 66 5.3 Effets réduisant l’efficacitédedétection . 69 5.3.1 Variabilitéstellaire . 69 5.3.2 Variabilitéinduiteparlesétoilesdefond . ... 70 5.3.3 Binairesàéclipses .......................... 71 5.3.4 Difficultédesélectiondescibles. 72 5.4 Conclusion .................................. 72 6 De l’utilisation de la couleur 75 6.1 Propriétés chromatiques de la variabilitésolaire . .......... 75 6.1.1 Mesuresdel’instrumentSPM . 75 6.1.2 Modèledechromaticitésolaire . 77 6.1.3 Coefficientsdechromaticitéenbandelarge . 78 6.2 Soustractiondubruitdevariabilité . ..... 79 6.3 Reconnaissancedestransitsuniques . .... 81 6.3.1 Principedutest............................ 81 6.3.2 Exempled’utilisation . 82 6.4 Conclusion .................................. 83 III Interférométrie infrarouge et exoplanètes géantes 85 7 L’interférométrie astronomique 87 7.1 Motivation .................................. 87 7.2 Brève présentation de l’interférométrie astronomique . ........... 88 7.2.1 De la naissance de l’idée au premier diamètre stellaire . ..... 88 7.2.2 Unessorrécent............................ 88 viii Table des matières 7.3 Observableinterférométrique. .. 88 7.3.1 Degrécomplexedecohérence . 90 7.3.2 ThéorèmedeZernike-VanCittert . 90 7.3.3 Étalonnage.............................. 90 7.4 L’interférométriefibrée. 91 7.4.1 Principe................................ 91 7.4.2 MesuredediamètreavecVINCI. 93 8 Un catalogue d’étoiles-étalons
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • The Denver Observer December 2017
    The Denver DECEMBER 2017 OBSERVER Messier 76, the Little Dumbbell Nebula, one of the deep-sky objects featured in this month’s “Skies.” Image © Joe Gafford. DECEMBER SKIES by Zachary Singer The Solar System of view in your ’scope will include the Moon’s Sky Calendar 3 Full Moon December will be a decent month for eastern section and the star, with plenty of 10 Last-Quarter Moon planetary events; though some planets are room. 17 New Moon slipping from view, others will take their I recommend you observe early—it 26 First-Quarter Moon place. We also have an occultation of Alde- should be a beautiful view, with the star a baran; as seen from Denver, the Moon will bright spark near the Moon’s edge, and over pass in front of the star at approximately the following minutes (they’ll go fast, just like In the Observer 4:06 PM, on the 30th. At that point, with the recent solar eclipse did), you can see the Moon move in its orbit around us, using the sunset still more than half an hour away, the President’s Message . .2 star won’t be visible to the naked eye, but it star for a benchmark. (Before 4:00 PM, look Society Directory. 2 should be in a telescope if you know where for Aldebaran outside the square, but along to look: Imagine a square drawn just large the diagonal from the Moon’s center to that Schedule of Events . 2 enough to touch the edges of the Moon, and lower-left edge.) About Denver Astronomical Society .
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 Meteor Csillagászati Évkönyv 2019
    METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 meteor csillagászati évkönyv 2019 Szerkesztette: Benkő József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2018 Az évkönyv kalendárium részének összeállításában közreműködött: Tartalom Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Bevezető ....................................................................................................... 7 Molnár Péter Sánta Gábor Kalendárium .............................................................................................. 13 Sárneczky Krisztián Szabadi Péter Cikkek Szabó Sándor Szőllősi Attila Zsoldos Endre: 100 éves a Nemzetközi Csillagászati Unió ........................191 Zsoldos Endre Maria Lugaro – Kereszturi Ákos: Elemkeletkezés a csillagokban.............. 203 Szabó Róbert: Az OGLE égboltfelmérés 25 éve ........................................218 A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület Szakmailag ellenőrizte: 2017. évi tevékenysége .........................................................................242 Szabados László Kiss László – Szabó Róbert: Az MTA CSFK Csillagászati Intézetének 2017. évi tevékenysége .........................................................................248 Petrovay Kristóf: Az ELTE Csillagászati Tanszékének működése 2017-ben ............................................................................ 262 Szabó M. Gyula: Az ELTE Gothard Asztrofi zikai Obszervatórium
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • The Maunder Minimum and the Variable Sun-Earth Connection
    The Maunder Minimum and the Variable Sun-Earth Connection (Front illustration: the Sun without spots, July 27, 1954) By Willie Wei-Hock Soon and Steven H. Yaskell To Soon Gim-Chuan, Chua Chiew-See, Pham Than (Lien+Van’s mother) and Ulla and Anna In Memory of Miriam Fuchs (baba Gil’s mother)---W.H.S. In Memory of Andrew Hoff---S.H.Y. To interrupt His Yellow Plan The Sun does not allow Caprices of the Atmosphere – And even when the Snow Heaves Balls of Specks, like Vicious Boy Directly in His Eye – Does not so much as turn His Head Busy with Majesty – ‘Tis His to stimulate the Earth And magnetize the Sea - And bind Astronomy, in place, Yet Any passing by Would deem Ourselves – the busier As the Minutest Bee That rides – emits a Thunder – A Bomb – to justify Emily Dickinson (poem 224. c. 1862) Since people are by nature poorly equipped to register any but short-term changes, it is not surprising that we fail to notice slower changes in either climate or the sun. John A. Eddy, The New Solar Physics (1977-78) Foreword By E. N. Parker In this time of global warming we are impelled by both the anticipated dire consequences and by scientific curiosity to investigate the factors that drive the climate. Climate has fluctuated strongly and abruptly in the past, with ice ages and interglacial warming as the long term extremes. Historical research in the last decades has shown short term climatic transients to be a frequent occurrence, often imposing disastrous hardship on the afflicted human populations.
    [Show full text]
  • Arxiv:1501.00633V1 [Astro-Ph.EP] 4 Jan 2015 Teria (Han Et Al
    Draft version September 24, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS * Y. Katherina Feng1,4, Jason T. Wright1, Benjamin Nelson1, Sharon X. Wang1, Eric B. Ford1, Geoffrey W. Marcy2, Howard Isaacson2, and Andrew W. Howard3 (Received 2014 August 11; Accepted 2014 November 26) Draft version September 24, 2018 ABSTRACT We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi- planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative on an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1MJup planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2MJup planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period > 5 yr, and with no evidence of giant planets in between.
    [Show full text]
  • Chemical Composition of the RS Cvn-Type Star 33 Piscium
    Baltic Astronomy, vol. 20, 53–63, 2011 CHEMICAL COMPOSITION OF THE RS CVn-TYPE STAR 33 PISCIUM G. Bariseviˇcius1, G. Tautvaiˇsien˙e1, S. Berdyugina2, Y. Chorniy1 and I. Ilyin3 1 Institute of Theoretical Physics and Astronomy, Vilnius University, Goˇstauto 12, Vilnius, LT-01108, Lithuania 2 Kiepenheuer Institut f¨ur Sonnenphysik, Sch¨oneckstr. 6, D-79104 Freiburg, Germany 3 Astrophysical Institute Potsdam, An der Sternwarte 16, Potsdam D-14482, Germany Received: 2011 March 7; accepted 2011 March 25 Abstract. Abundances of 22 chemical elements, including the key elements and isotopes such as 12C, 13C, N and O, are investigated in the spectrum of 33 Psc, a single-lined RS CVn-type binary of low magnetic activity. The high resolution spectra were observed on the Nordic Optical Telescope and analyzed with the MARCS model atmospheres. The following main parameters have been determined: Teff = 4750 K, log g = 2.8, [Fe/H] = –0.09, [C/Fe] = –0.04, [N/Fe] = 0.23, [O/Fe] = 0.05, C/N = 2.14, 12C/13C = 30, which show the first-dredge-up mixing signatures and no extra-mixing. Key words: stars: RS CVn binaries, abundances – stars: individual (33 Psc = HD 28)) 1. INTRODUCTION This is the third paper in a series dedicated to a detailed study of photospheric abundances in RS CVn stars (Tautvaiˇsien˙eet al. 2010; Bariseviˇcius et al. 2010, hereafter Papers I and II) with the main aim to get the carbon isotope 12C/13C and C/N ratios in these chromospherically active stars. We plan to investigate correlations between the abundance alterations of chemical elements in the atmo- spheres of these stars and their physical macro parameters, such as the speed of rotation and the magnetic field.
    [Show full text]
  • Tidal Evolution of Close-In Extra-Solar Planets
    Tidal Evolution of Close-in Extra-Solar Planets by Brian Jackson, Richard Greenberg, and Rory Barnes Lunar and Planetary Laboratory University of Arizona 1629 E University Blvd, Tucson AZ 85721-0092 Accepted by Astrophysical Journal 2007 January 2 Revised: 2007 December 31 Running Title: Tidal Evolution - 1 - Abstract The distribution of eccentricities e of extra-solar planets with semi-major axes a > 0.2 AU is very uniform, and values for e are relatively large, averaging 0.3 and broadly distributed up to near 1. For a < 0.2 AU, eccentricities are much smaller (most e < 0.2), a characteristic widely attributed to damping by tides after the planets formed and the protoplanetary gas disk dissipated. Most previous estimates of the tidal damping considered the tides raised on the planets, but ignored the tides raised on the stars. Most also assumed specific values for the planets’ poorly constrained tidal dissipation parameter Qp. Perhaps most important, in many studies, the strongly coupled evolution between e and a was ignored. We have now integrated the coupled tidal evolution equations for e and a over the estimated age of each planet, and confirmed that the distribution of initial e values of close-in planets matches that of the general population for reasonable Q values, with the best fits for stellar and planetary Q being ~10 5.5 and ~10 6.5 , respectively. The accompanying evolution of a values shows most close-in planets had significantly larger a at the start of tidal migration. The earlier gas disk migration did not bring all planets to their current orbits.
    [Show full text]
  • Sky-High 2009
    Sky-High 2009 Total Solar Eclipse, 29th March 2006 The 17th annual guide to astronomical phenomena visible from Ireland during the year ahead (naked-eye, binocular and beyond) By John O’Neill and Liam Smyth Published by the Irish Astronomical Society € 5 P.O. Box 2547, Dublin 14, Ireland. e-mail: [email protected] www.irishastrosoc.org Page 1 Foreword Contents 3 Your Night Sky Primer We send greetings to all fellow astronomers and welcome them to this, the seventeenth edition of 5 Sky Diary 2009 Sky-High. 8 Phases of Moon; Sunrise and Sunset in 2009 We thank the following contributors for their 9 The Planets in 2009 articles: Patricia Carroll, John Flannery and James O’Connor. The remaining material was written by 12 Eclipses in 2009 the editors John O’Neill and Liam Smyth. The Gal- 14 Comets in 2009 lery has images and drawings by Society members. The times of sunrise etc. are from SUNRISE by J. 16 Meteors Showers in 2009 O’Neill. 17 Asteroids in 2009 We are always glad to hear what you liked, or 18 Variable Stars in 2009 what you would like to have included in Sky-High. If we have slipped up on any matter of fact, let us 19 A Brief Trip Southwards know. We can put a correction in future issues. And if you have any problem with understanding 20 Deciphering Star Names the contents or would like more information on 22 Epsilon Aurigae – a long period variable any topic, feel free to contact us at the Society e- mail address [email protected].
    [Show full text]