Intel Quick Sync Video from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Intel Quick Sync Video from Wikipedia, the Free Encyclopedia Intel Quick Sync Video From Wikipedia, the free encyclopedia Intel Quick Sync Video is Intel's brand for their dedicated video encoding and decoding hardware core. Quick Sync was introduced with the Sandy Bridge CPU microarchitecture on 9 January 2011, and has been found on the die of Intel products ever since. The name "Quick Sync" refers to the use case of quickly transcoding ("syncing") a video from, for example, a DVD or Blu-ray Disc to a format appropriate to, for example, a smartphone. Unlike video encoding on a CPU or a general-purpose GPU, Quick Sync is a dedicated hardware core on the processor die. This allows for a much more power efficient video processing.[1][2] Contents 1 Performance 2 Quick Sync development 3 Operating system support 3.1 Linux 3.2 Microsoft Windows 3.3 OS X 4 Hardware decoding and encoding 5 See also 6 References 7 External links Performance Quick Sync has been praised for its speed.[3] The eighth annual MPEG-4 AVC/H.264 video codecs comparison showed that Quick Sync is comparable to x264 superfast preset in terms of speed, compression ratio and quality (SSIM);[4] tests were performed on an Intel Core i7 3770 (Ivy Bridge) processor. A benchmark from Tom's Hardware showed in 2011 that Quick Sync could convert a 449 MB, four-minute 1080p file to 1024×768 in 22 seconds. The same encoding using only software took 172 seconds but it is not clear what software encoder was used and how it was configured. The same encoding took 83 or 86 seconds GPU-assisted, using an Nvidia GeForce GTX 570 and an AMD Radeon HD 6870, respectively, both of which where at that time (5 years ago) contemporary high-end GPUs.[5] Quick Sync, like other hardware accelerated video encoding technologies, gives lower quality results than with CPU only encoders. Speed is prioritized over quality.[6] Quick Sync development Quick Sync was first unveiled at Intel Developer Forum 2010 (13 September) but, according to Tom's Hardware, Quick Sync had been conceptualized 5 years before that.[1] The older Clarkdale microarchitecture had hardware video decoding support, but no hardware encoding support.[3] known as Intel Clear Video. Version 1 (Sandy Bridge) Quick Sync was initially built into some Sandy Bridge CPUs, but not into Sandy Bridge Pentiums or Celerons.[7] Version 2 (Ivy Bridge) The Ivy Bridge microarchitecture included a "next-generation" implementation of Quick Sync.[8] Version 3 (Haswell) The Haswell microarchitecture implementation is focused on quality, with speed about the same as before (for any given clip length vs. encoding length). It has seven hard-coded quality/performance levels (called "target usages"), compared to the three in previous generations. The highest-quality TU1 setting is intended to be higher quality than Ivy Bridge's version, and the highest speed TU7 setting should be faster, higher-quality, and more battery-friendly for mobile devices. This generation of Quick Sync supports the H.264/MPEG-4 AVC, VC-1 and H.262/MPEG-2 Part 2 video standards.[1] Version 4 (Broadwell) The Broadwell microarchitecture adds VP8 hardware decoding[9] and encoding[10] support. Also, it has two independent bit stream decoder (BSD) rings to process video commands on GT3 GPUs; this allows one BSD ring to process decoding and the other BSD ring to process encoding at the same time.[11] Version 5 (Skylake) The Skylake microarchitecture adds a full fixed-function H.265/HEVC main/8-bit encoding and decoding acceleration, hybrid and partial HEVC main10/10-bit decoding acceleration, JPEG encoding acceleration for resolutions up to 16,000×16,000 pixels, and partial VP9 encoding and decoding acceleration.[12] Version 6 (Kaby Lake) The Kaby Lake microarchitecture adds full fixed-function H.265/HEVC Main10/10-bit encoding and decoding acceleration & full fixed-function VP9 8-bit & 10-bit decoding acceleration & 8-bit encoding acceleration.[13][14] Operating system support The Quick Sync Video SIP core needs to be supported by the device driver. The device driver provides one or more interfaces, for example VDPAU, VAAPI or DXVA for video decoding, and OpenMAX IL or VAAPI for video encoding. One of these interfaces is then used by end-user software, for example VLC media player or GStreamer, to access the Quick Sync Video hardware and make use of it. Linux Quick Sync support by Intel Media SDK on Linux is available,[15] and as of November 2013 it is supported by Wowza Streaming Engine (formerly known as Wowza Media Server) for transcoding of media streams using their transcoder add-on.[16] Quick Sync is also supported by the VA API, for both encoding and decoding.[17] Microsoft Windows Microsoft offers a wide support for Quick Sync in Windows based on supporting driver software from Intel and good support through both DirectShow/DirectX as well as WMF (Windows Media Foundation). A wide range of applications are based upon this base support for the technology in Windows. Windows Vista and later have support for Quick Sync Video. OS X Apple added Quick Sync support in OS X Mountain Lion for AirPlay Mirroring, FaceTime and QuickTime X.[18] iMovie 10 and Final Cut Pro X use Quick Sync when exporting videos. Hardware decoding and encoding Support for Quick Sync hardware accelerated decoding of H.264, MPEG-2, and VC-1 video is widely available today. One common way to gain access to the technology on the Microsoft Windows platform is by use of the free ffdshow filter. Some other free software like VLC media player (since 2.1.0 "Rincewind") support Quick Sync as well. However, many commercial applications also benefit from the technology today, including CyberLink PowerDVD, CyberLink PowerDirector and MacroMotion Bogart "gold" edition. It has been claimed that in testing it keeps the CPU at its lowest possible frequency to reduce power consumption in order to maximize battery life for mobile devices while being about twice as fast as libavcodec.[19] Support for hardware-assisted media encoding tailored for Quick Sync is widely available. Examples of such software with Quick Sync support during encoding processes are Badaboom Media Converter, CyberLink MediaShow, CyberLink MediaEspresso, ArcSoft MediaConverter, MAGIX Video Pro X, Pinnacle Studio (since version 18), Roxio Toast, Roxio Creator, XSplit Broadcaster,[20] XSplit Gamecaster[21] (all commercial) and projects like HandBrake (windows build only),[22] or Open Broadcaster Software.[23] See also Intel Clear Video, video decoding using a general purpose Intel GPU. Video Coding Engine, AMD's equivalent SIP core Nvidia NVENC, Nvidia's equivalent SIP core References 1. "Intel's Second-Gen Core CPUs: The Sandy Bridge Review - Sandy Bridge's Secret Weapon: Quick Sync". Tom's Hardware. Retrieved 2011-08-30. 2. "The Sandy Bridge Review: Intel Core i7-2600K, i5-2500K and Core i3-2100 Tested". AnandTech. Retrieved 2014-04-05. 3. "The Sandy Bridge Review: Intel Core i7-2600K, i5-2500K and Core i3-2100 Tested". Anandtech. Retrieved 2011-09-23. 4. "Eighth MPEG-4 AVC/H.264 Video Codecs Comparison.". MSU Graphics & Media Lab (Video Group). pp. 135–137 (6.4 Speed/Quality Trade–Off). 5. "Intel's Second-Gen Core CPUs: The Sandy Bridge Review - Quick Sync Vs. APP Vs. CUDA". Tom's Hardware. Retrieved 2011-08-30. 6. "H.264 encoding - CPU vs GPU: Nvidia CUDA, AMD Stream, Intel MediaSDK and x264". Hardware.fr SARL. Retrieved 2012-05-11. 7. "Intel Pentium Processor G620". 8. "Intel's Roadmap: Ivy Bridge, Panther Point, and SSDs". Anandtech. Retrieved 2011-08-30. 9. "VA-API 1.3 Readies Broadwell Support, Adds VP8 Decoding". Phoronix.com. March 18, 2014. Retrieved June 10, 2015. 10. "VA-API Adds Support For VP8 Video Encoding". Phoronix.com. July 19, 2014. Retrieved June 10, 2015. 11. "Intel Broadwell GT3 Graphics Have Dual BSD Rings". Phoronix.com. Retrieved April 17, 2014. 12. Cutress, Ian. "The Intel 6th Gen Skylake Review: Core i7-6700K and i5-6600K Tested". Retrieved 2015-08-06. 13. Harsh Jain (2016-06-06). "What's New in Intel® Media SDK 2016 R2". Intel. Retrieved 2016-07-27. 14. "Intel® Media Software Development Kit 2016, R2, Release Notes Version (7.0.0.358)" (PDF). Intel. 2016-06-06. Retrieved 2016-07-27. 15. "Intel® Media SDK 2013 R3 for Linux Servers now available for download". 16. "Wowza Delivers Accelerated Streaming Performance with Intel Media SDK 2013 for Servers". 17. "GStreamer VA-API README". 18. "Apple - OS X Mountain Lion". Apple. Retrieved 2012-06-11. 19. "H.264/AVC". Codecs. ffdshow-tryout.sourceforge.net. 20. "XSplit Broadcaster". 21. "XSplit Gamecaster". 22. "HandBrake 0.10.0 Released". handbrake.fr. Retrieved 2014-11-22. 23. "Open Broadcaster Software". External links Intel Quick Sync Video, intel.com Retrieved from "https://en.wikipedia.org/w/index.php?title=Intel_Quick_Sync_Video&oldid=747783420" Categories: Intel semiconductor IP cores Video conversion software Video acceleration This page was last modified on 4 November 2016, at 10:22. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization..
Recommended publications
  • Intel® Quick Sync Video Technology Guide
    WP80 Superguide 3: THE CLOUD VIDEO SUPERGUIDE JANUARY/FEBRUARY 2015 SPONSORED CONTENT Intel® Quick Sync Video Technology and Intel® Xeon® Processor Based Servers— Flexible Transcode Performance and Quality Video transcoding involves converting provides enterprise-quality HEVC and and boost image quality. Some key one compressed video format to audio codecs, Intel® VTune™ Amplifier improvements include the following: another. In the past this process has XE performance analysis tools and Video • Additional JPEG/MJPEG decode in been a compute-intensive task which Quality Caliper stream quality analyzer. the multi-format codec engine. This demanded a large amount of precious Additionally, product family members, support is on top of existing energy- CPU resources. Intel® Quick Synch Video Intel® Video Pro Analyzer and Intel® efficient, high-performance AVC (QSV) can enable hardware-accelerated Stress Bitstreams and Encoder bundles encode/decode that sustains multiple transcoding to deliver better performance enable production–scale validation and 4K and Ultra HD video streams. than transcoding on the CPU without debug of encode, transcode, and decode • A dedicated new video quality engine sacrificing quality. and playback applications. to provide extensive video processing First introduced in 2011, Intel Quick Intel Media Server Studio SDK at low power consumption Sync technology is available in the Intel® implements many codec and tools • Programmable and media-optimized Xeon® Processor E3-1200 v3 with Intel components initially in software, and EU (execution units)/samplers for HD Graphics P4600/4700 and Iris™ Pro later as hybrid (software and hardware) high quality P5200. (From here on, we’ll simply refer to or entirely in hardware.
    [Show full text]
  • Copyright by Jian He 2020 the Dissertation Committee for Jian He Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Jian He 2020 The Dissertation Committee for Jian He certifies that this is the approved version of the following dissertation: Empowering Video Applications for Mobile Devices Committee: Lili Qiu, Supervisor Mohamed G. Gouda Aloysius Mok Xiaoqing Zhu Empowering Video Applications for Mobile Devices by Jian He DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2020 Acknowledgments First and foremost, I want to thank my advisor Prof. Lili Qiu, for the support and guidance I have received over the past few years. I appreciate all her contributions of time, ideas and funding to make my Ph.D. experience productive and stimulating. The enthusiasm she has for her research signifi- cantly motivated to concentrate on my research especially during tough times in my Ph.D. pursuit. She taught me how to crystallize ideas into solid and fancy research works. I definitely believe that working with her will help me have a more successful career in the future. I also want to thank all the members in my dissertation committee, Prof. Mohamed G. Gouda, Prof. Aloysius Mok and Dr. Xiaoqing Zhu. I owe many thanks to them for their insightful comments on my dissertation. I was very fortunate to collaborate with Wenguang Mao, Mubashir Qureshi, Ghufran Baig, Zaiwei Zhang, Yuchen Cui, Sangki Yun, Zhaoyuan He, Chenxi Yang, Wangyang Li and Yichao Chen on many interesting works. They always had time and passion to devote to my research projects.
    [Show full text]
  • Download/Face- Modules/Documents/Face-Modules-Hw-Specifications.Pdf
    I PC H “ CompuLab Ltd. Revision 1.2 December 2013 Legal Notice © 2013 CompuLab Ltd. All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of CompuLab Ltd. No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by CompuLab Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document. CompuLab Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners. CompuLab Ltd. 17 HaYetsira St., Yokneam Elite 20692, P.O.B 687 ISRAEL Tel: +972-4-8290100 http://www.compulab.co.il http://fit-pc.com/web/ Fax: +972-4-8325251 CompuLab Ltd. Intense PC Hardware Specification Page 2 of 74 Revision History Revision Engineer Revision Changes 1.0 Maxim Birger Initial public release 1.1 Maxim Birger Memory Interface updated Super-IO Controller peripheral section added RS232 serial com port info added 1.2 Maxim Birger HDMI Block Diagram updated DP Block Diagram updated CompuLab Ltd. Intense PC Hardware Specification Page 3 of 74 Table of Contents Legal Notice ..................................................................................................................................................
    [Show full text]
  • HP RP5810 Retail System, Model 5810
    QuickSpecs HP RP5 Retail System, Model 5810 Overview HP RP5 Retail System, Model 5810 Front View 1. 5.25” external optical drive 5. NIC link indicator LED 2. Power/ Diagnostic LED 6. Hard Drive LED 3. NIC link indicator LED 7. Power button 4. 2 USB 2.0 ports with sliding door c04304464 — DA - 14956 Worldwide — Version 8 — December 8, 2014 Page 1 QuickSpecs HP RP5 Retail System, Model 5810 Overview Rear View 1. 24 Volt USB + PWR port 10. PS/2 keyboard port 2. Two (2) Full-Height Slots* 11. VGA port 3. RS232 serial COM3 12. 3 USB 2.0 ports 4. RJ-45 LAN jack 13. 2 USB 3.0 ports 5. RS232 serial (power configurable) COM1 port 14. RS232 serial (power configurable) COM2 port 6. PS/2 mouse port 15. DisplayPort 7. 240W EPA – Active PFC power supply (no line 16. RJ12 cash drawer port switching required) 8. Line in audio jack 17. One (1) PCIe x16 Slot (wired as x16)** – shown is optional three (3) port 12 Volt USB +Power Card 9. Line out audio jack 18. One (1) PCIe x16 Slot (wired as x4)** – shown is optional three (3) port 12 Volt USB + Power Card * Can be configured either as two (2) PCI x1 or two (2) PCIe x1 Full-Height slots. Shown is optional 2 Port RS232 serial (power configurable) Card, COM4 port (left) and COM3 port (right port). **A variety of cards are available to populate slots, dependant on riser choice and connectors utilized. For full details, please contact your HP sales representative for configuration choices.
    [Show full text]
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Keepixo’S Genova Live:Speed Is the Latest Addition to Genova Virtualizable Software Family of Products
    High Density Video Transcoding Keepixo’s Genova Live:Speed is the latest addition to Genova Virtualizable Software family of products. It runs on the Kontron SYMKLOUD platform and leverages Intel’s Quick Sync Video (QSV) technology to dramatically increase transcoding density; minimize power consumption while meeting professional service grade levels. Media Processing Acceleration Genova Live:Speed The explosive growth of Internet video traffic has put Keepixo worked with Kontron to leverage the Kontron pressure on video transcoding infrastructures to SYMKLOUD Converged Infrastructure platform and optimize bandwidth, power consumption and cost of developed a comprehensive package that optimizes the operations. High density transcoding solutions such as performance of QSV and allows smooth deployment of Intel’s Quick Sync Video technology have emerged to highly dense transcoding infrastructures comprising of address these challenges. They introduce various levels hundreds of services. of HW acceleration to off-load computationally intensive tasks. Initially targeted at consumer Keepixo selected the Kontron SymKloud MS2910 applications, high density transcoding has become a platform to implement its high density transcoding viable option for professional transcoding solution. The MS2910 platform comes in a 2U (21” infrastructures when included in suitable packages that depth) chassis, dual hot-swappable 10GbE switches, address the requirements of professional applications. and can accommodate up to 9 modular compute servers, each hosting 2 independent CPUs for a total of Intel Quick Sync Video (QSV) is available on a range of up to 18 CPUs per chassis. The SymKloud compute Intel i7 and Xeon E3 processors fitted with on-chip nodes can be of different mix-and-match processor graphics.
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Opengl Driver Intel Download Windows 7 OPENGL INTEL HD GRAPHICS 4000 TREIBER WINDOWS 7
    opengl driver intel download windows 7 OPENGL INTEL HD GRAPHICS 4000 TREIBER WINDOWS 7. But here on windows, the intel graphics control panel clearly states that the supported version is 4.0. This package contains intel hd, hd 4000 graphics driver and is supported on latitude systems that run windows 7, windows 8.1 and windows 10 64-bit operating systems. Ask question asked questions for cs6, windows 10. This package contains windows 10 driver to address intel advisory. Would be compatible with the intel hd graphics 3000 video. AMD Radeon Pro WX 3200 Laptop GPU, Benchmarks and Specs. So far, featured content, opencl* versions. Did you try to execute your gl tessellation sample on the ivy bridge? Intel hd graphics memory on your computer. I have updated the graphics drivers as far as i can. But here on steam, opencl* versions. My mac's hd 4000 controller supports directx 11. Acer One D255e Drivers PC . I recently purchased a subscription for photoshop cc 2017, after my trial for cs6 ran out. Opengl problems on windows 10 with intel hd graphics 3000 hi fellas, maybe some of you can help me. My son is wanting to run scrap mechanic on steam, on windows 7, 64 bit. Is there any graphics 4000 opengl for mac really support. I have a core i5 2520m cpu with intel hd graphics 3000 under windows 10. In cs6, my graphics card, the intel hd 4000, had some problems, but i was able to fix them and the features that required it worked again. It is a dell laptop, intel i5 cpu 240ghz, with an intel hd graphics chipset, 4gb ram .
    [Show full text]
  • REPORT the Barron's Bears
    GILDER February 2006 / Vol. XI No. 2 T E C H N O L O G Y R E P O R T The Barron’s Bears ur Celestial Empire possesses all things in abundance “ and lacks no products within its border. There is there- O fore no need to import the manufactures of outside barbarians.” —Emperor Qian Long, 1793, to King George III’s Ambassador (quoted in Fast Boat to China by Andrew Ross). It’s mid-winter, snowing again outside my window. After some 60 days of cross country skiing so far in Western Massachusetts, two schusses to Silicon Valley, and my son Richard a newly instrument rated pilot, I feel pretty good. With Dick Sears’ Gilder Technology Index (www.GTIndex.com) up some 325 percent since the crash and 27 percent in the last Power-One is the 52 weeks, I feel pretty fl ush. But as I prepare for another day of Nordic sweltering up and swooping down, something nags in the back of my mind. leader in digital What could it be? Flaws in the Linley Group’s projection of EZchip’s (LNOP) coming three year revenue ramp? A slow IPTV (Internet protocol television) transition dragging power solutions, (CONTINUED ON PAGE 2) with some 50 FEATURED COMPANY: NetLogic (NETL) design wins for Whoa! It seems the only thing fl ying faster than NetLogic’s processor speeds these days is the company’s stock price, up by a whopping third so far in the fi rst month or so of the year. But after listening to CEO Ron Jankov, it’s hard to be anything but buoyant.
    [Show full text]
  • Rethinking Visual Cloud Workload Distribution
    WHITE PAPER Media and Communications Content Creation and Distribution RethinkingVisualCloud WorkloadDistribution Creating a New Model With visual computing workloads growing at an accelerating pace, cloud service providers (CSPs), communications service providers (CoSPs), and enterprises are rethinking the physical and virtual distribution of compute resources to more effectively balance cost and deployment efficiency while achieving exceptional performance. Visual cloud deployments accommodate a diverse range of streaming workloads, encompassing media processing and delivery, cloud graphics, cloud gaming, media analytics, and immersive media. Contending with the onslaught of new visual workloads will require more nimble, scalable, virtualized infrastructures; the capability of shifting workloads to the network edge when appropriate; and a collection of tools, software, and hardware components to support individual use cases fluidly. Advanced network technologies and cloud architectures are essential for agile distribution of visual cloud workloads. A 2017 report, Cisco Visual Networking Index: Forecast and Methodology, 2016–2021, projected strong growth in all Internet and managed IP video- related sectors. Compound annual growth rate (CAGR) figures during this time span, calculated in petabytes per month, included these predictions: • Content delivery network (CDN) traffic: 44 percent increase globally • Consumer-managed IP video traffic: 19,619 petabytes per month (14 percent increase) by 2021 • Consumer Internet video: 27 percent increase for fixed, 55 percent increase for mobile The impact of this media growth on cloud-based data centers will produce a burden on those CSPs, CoSPs, and enterprises that are not equipped to deal with TableofContents large-scale media workloads dynamically. Solutions to this challenge include: Creating a New Model . 1 • Increasingflexibilityandoptimizingprocessing: Virtualization and software- defined infrastructure (SDI) make it easier to balance workloads on available OpenSourceSoftware resources.
    [Show full text]
  • Transcoding SDK Combine Your Encoding Presets Into a Single Tool
    DATASHEET | Page 1 Transcoding SDK Combine your encoding presets into a single tool MainConcept Transcoding SDK is an all-in-one production tool offering HOW DOES IT WORK? developers the ability to manage multiple codecs and parameters in one • Transcoding SDK works as an place. This streamlined SDK supports the latest encoders and decoders additional layer above MainConcept from MainConcept, including HEVC/H.265, AVC/H.264, DVCPRO, and codecs. MPEG-2. The transcoder generates compliant streams across different • The easy-to-use API replaces the devices, media types, and camcorder formats, and includes support for need to set conversion parameters MPEG-DASH and Apple HLS adaptive bitstream formats. Compliance manually by allowing you to configure ensures content is delivered that meets each unique specification. the encoders with predefined profiles, letting the transcoding engine take Transcoding SDK was created to simplify the workflow for developers care of the rest. who frequently move between codecs and output to a multitude of • If needed, manual control of the configurations. conversion process is supported, including source/target destinations, export presets, transcoding, and filter AVAILABLE PACKAGES parameters. HEVC/H.265 HEVC/H.265 encoder for creating HLS, DASH-265, and other ENCODER PACKAGE generic 8-bit/10-bit 4:2:0 and 4:2:2 streams in ES, MP4 and TS file formats. Includes hardware encoding support using Intel Quick KEY FEATURES Sync Video (IQSV) and NVIDIA NVENC (including Hybrid GPU) for Windows and Linux. • Integrated SDKs for fast deployment HEVC/H.265 SABET HEVC/H.265 encoder package plus Smart Adaptive Bitrate Encod- of transcoding tools ENCODER PACKAGE ing Technology (SABET).
    [Show full text]
  • Intel® Quick Sync Video and Ffmpeg Installation and Validation Guide
    White paper Intel® Quick Sync Video and FFmpeg Installation and Validation Guide Introduction Intel® Quick Sync Video technology on Intel® Iris™ Pro Graphics and Intel® HD graphics provides transcode acceleration on Linux* systems in FFmpeg* 2.8 and later editions. This paper is a detailed step-by-step guide to enabling h264_qsv, mpeg2_qsv, and hevc_qsv hardware accelerated codecs in the FFmpeg framework. For a quicker overview, please see this article. Performance note: The *_qsv implementations are intended to provide easy access to Intel hardware capabilities for FFmpeg users, but are less efficient than custom applications optimized for Intel® Media Server Studio. Document note: Monospace type = command line inputs/outputs. Pink = highlights to call special attention to important command line I/O details. Getting Started 1. Install Intel Media Server Studio for Linux. Download from software.intel.com/intel-media-server- studio. This is a prerequisite for the *_qsv codecs as it provides the foundation for encode acceleration. See the next chapter for more info on edition choices. Note: Professional edition install is required for hevc_qsv. 2. Get the latest FFmpeg source from https://www.FFmpeg.org/download.html. Intel Quick Sync Video support is available in FFmpeg 2.8 and later editions. The install steps outlined below were verified with ffmpeg release 3.2.2 3. Configure FFmpeg with “--enable –libmfx –enable-nonfree”, build, and install. This requires copying include files to /opt/intel/mediasdk/include/mfx and adding a libmfx.pc file. More details below. 4. Test transcode with an accelerated codec such as “-vcodec h264_qsv” on the FFmpeg command line.
    [Show full text]