Intel Quick Sync Video from Wikipedia, the Free Encyclopedia
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Intel® Quick Sync Video Technology Guide
WP80 Superguide 3: THE CLOUD VIDEO SUPERGUIDE JANUARY/FEBRUARY 2015 SPONSORED CONTENT Intel® Quick Sync Video Technology and Intel® Xeon® Processor Based Servers— Flexible Transcode Performance and Quality Video transcoding involves converting provides enterprise-quality HEVC and and boost image quality. Some key one compressed video format to audio codecs, Intel® VTune™ Amplifier improvements include the following: another. In the past this process has XE performance analysis tools and Video • Additional JPEG/MJPEG decode in been a compute-intensive task which Quality Caliper stream quality analyzer. the multi-format codec engine. This demanded a large amount of precious Additionally, product family members, support is on top of existing energy- CPU resources. Intel® Quick Synch Video Intel® Video Pro Analyzer and Intel® efficient, high-performance AVC (QSV) can enable hardware-accelerated Stress Bitstreams and Encoder bundles encode/decode that sustains multiple transcoding to deliver better performance enable production–scale validation and 4K and Ultra HD video streams. than transcoding on the CPU without debug of encode, transcode, and decode • A dedicated new video quality engine sacrificing quality. and playback applications. to provide extensive video processing First introduced in 2011, Intel Quick Intel Media Server Studio SDK at low power consumption Sync technology is available in the Intel® implements many codec and tools • Programmable and media-optimized Xeon® Processor E3-1200 v3 with Intel components initially in software, and EU (execution units)/samplers for HD Graphics P4600/4700 and Iris™ Pro later as hybrid (software and hardware) high quality P5200. (From here on, we’ll simply refer to or entirely in hardware. -
Copyright by Jian He 2020 the Dissertation Committee for Jian He Certifies That This Is the Approved Version of the Following Dissertation
Copyright by Jian He 2020 The Dissertation Committee for Jian He certifies that this is the approved version of the following dissertation: Empowering Video Applications for Mobile Devices Committee: Lili Qiu, Supervisor Mohamed G. Gouda Aloysius Mok Xiaoqing Zhu Empowering Video Applications for Mobile Devices by Jian He DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2020 Acknowledgments First and foremost, I want to thank my advisor Prof. Lili Qiu, for the support and guidance I have received over the past few years. I appreciate all her contributions of time, ideas and funding to make my Ph.D. experience productive and stimulating. The enthusiasm she has for her research signifi- cantly motivated to concentrate on my research especially during tough times in my Ph.D. pursuit. She taught me how to crystallize ideas into solid and fancy research works. I definitely believe that working with her will help me have a more successful career in the future. I also want to thank all the members in my dissertation committee, Prof. Mohamed G. Gouda, Prof. Aloysius Mok and Dr. Xiaoqing Zhu. I owe many thanks to them for their insightful comments on my dissertation. I was very fortunate to collaborate with Wenguang Mao, Mubashir Qureshi, Ghufran Baig, Zaiwei Zhang, Yuchen Cui, Sangki Yun, Zhaoyuan He, Chenxi Yang, Wangyang Li and Yichao Chen on many interesting works. They always had time and passion to devote to my research projects. -
Download/Face- Modules/Documents/Face-Modules-Hw-Specifications.Pdf
I PC H “ CompuLab Ltd. Revision 1.2 December 2013 Legal Notice © 2013 CompuLab Ltd. All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of CompuLab Ltd. No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by CompuLab Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document. CompuLab Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners. CompuLab Ltd. 17 HaYetsira St., Yokneam Elite 20692, P.O.B 687 ISRAEL Tel: +972-4-8290100 http://www.compulab.co.il http://fit-pc.com/web/ Fax: +972-4-8325251 CompuLab Ltd. Intense PC Hardware Specification Page 2 of 74 Revision History Revision Engineer Revision Changes 1.0 Maxim Birger Initial public release 1.1 Maxim Birger Memory Interface updated Super-IO Controller peripheral section added RS232 serial com port info added 1.2 Maxim Birger HDMI Block Diagram updated DP Block Diagram updated CompuLab Ltd. Intense PC Hardware Specification Page 3 of 74 Table of Contents Legal Notice .................................................................................................................................................. -
HP RP5810 Retail System, Model 5810
QuickSpecs HP RP5 Retail System, Model 5810 Overview HP RP5 Retail System, Model 5810 Front View 1. 5.25” external optical drive 5. NIC link indicator LED 2. Power/ Diagnostic LED 6. Hard Drive LED 3. NIC link indicator LED 7. Power button 4. 2 USB 2.0 ports with sliding door c04304464 — DA - 14956 Worldwide — Version 8 — December 8, 2014 Page 1 QuickSpecs HP RP5 Retail System, Model 5810 Overview Rear View 1. 24 Volt USB + PWR port 10. PS/2 keyboard port 2. Two (2) Full-Height Slots* 11. VGA port 3. RS232 serial COM3 12. 3 USB 2.0 ports 4. RJ-45 LAN jack 13. 2 USB 3.0 ports 5. RS232 serial (power configurable) COM1 port 14. RS232 serial (power configurable) COM2 port 6. PS/2 mouse port 15. DisplayPort 7. 240W EPA – Active PFC power supply (no line 16. RJ12 cash drawer port switching required) 8. Line in audio jack 17. One (1) PCIe x16 Slot (wired as x16)** – shown is optional three (3) port 12 Volt USB +Power Card 9. Line out audio jack 18. One (1) PCIe x16 Slot (wired as x4)** – shown is optional three (3) port 12 Volt USB + Power Card * Can be configured either as two (2) PCI x1 or two (2) PCIe x1 Full-Height slots. Shown is optional 2 Port RS232 serial (power configurable) Card, COM4 port (left) and COM3 port (right port). **A variety of cards are available to populate slots, dependant on riser choice and connectors utilized. For full details, please contact your HP sales representative for configuration choices. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Keepixo’S Genova Live:Speed Is the Latest Addition to Genova Virtualizable Software Family of Products
High Density Video Transcoding Keepixo’s Genova Live:Speed is the latest addition to Genova Virtualizable Software family of products. It runs on the Kontron SYMKLOUD platform and leverages Intel’s Quick Sync Video (QSV) technology to dramatically increase transcoding density; minimize power consumption while meeting professional service grade levels. Media Processing Acceleration Genova Live:Speed The explosive growth of Internet video traffic has put Keepixo worked with Kontron to leverage the Kontron pressure on video transcoding infrastructures to SYMKLOUD Converged Infrastructure platform and optimize bandwidth, power consumption and cost of developed a comprehensive package that optimizes the operations. High density transcoding solutions such as performance of QSV and allows smooth deployment of Intel’s Quick Sync Video technology have emerged to highly dense transcoding infrastructures comprising of address these challenges. They introduce various levels hundreds of services. of HW acceleration to off-load computationally intensive tasks. Initially targeted at consumer Keepixo selected the Kontron SymKloud MS2910 applications, high density transcoding has become a platform to implement its high density transcoding viable option for professional transcoding solution. The MS2910 platform comes in a 2U (21” infrastructures when included in suitable packages that depth) chassis, dual hot-swappable 10GbE switches, address the requirements of professional applications. and can accommodate up to 9 modular compute servers, each hosting 2 independent CPUs for a total of Intel Quick Sync Video (QSV) is available on a range of up to 18 CPUs per chassis. The SymKloud compute Intel i7 and Xeon E3 processors fitted with on-chip nodes can be of different mix-and-match processor graphics. -
The Birth, Evolution and Future of Microprocessor
The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four. -
Opengl Driver Intel Download Windows 7 OPENGL INTEL HD GRAPHICS 4000 TREIBER WINDOWS 7
opengl driver intel download windows 7 OPENGL INTEL HD GRAPHICS 4000 TREIBER WINDOWS 7. But here on windows, the intel graphics control panel clearly states that the supported version is 4.0. This package contains intel hd, hd 4000 graphics driver and is supported on latitude systems that run windows 7, windows 8.1 and windows 10 64-bit operating systems. Ask question asked questions for cs6, windows 10. This package contains windows 10 driver to address intel advisory. Would be compatible with the intel hd graphics 3000 video. AMD Radeon Pro WX 3200 Laptop GPU, Benchmarks and Specs. So far, featured content, opencl* versions. Did you try to execute your gl tessellation sample on the ivy bridge? Intel hd graphics memory on your computer. I have updated the graphics drivers as far as i can. But here on steam, opencl* versions. My mac's hd 4000 controller supports directx 11. Acer One D255e Drivers PC . I recently purchased a subscription for photoshop cc 2017, after my trial for cs6 ran out. Opengl problems on windows 10 with intel hd graphics 3000 hi fellas, maybe some of you can help me. My son is wanting to run scrap mechanic on steam, on windows 7, 64 bit. Is there any graphics 4000 opengl for mac really support. I have a core i5 2520m cpu with intel hd graphics 3000 under windows 10. In cs6, my graphics card, the intel hd 4000, had some problems, but i was able to fix them and the features that required it worked again. It is a dell laptop, intel i5 cpu 240ghz, with an intel hd graphics chipset, 4gb ram . -
REPORT the Barron's Bears
GILDER February 2006 / Vol. XI No. 2 T E C H N O L O G Y R E P O R T The Barron’s Bears ur Celestial Empire possesses all things in abundance “ and lacks no products within its border. There is there- O fore no need to import the manufactures of outside barbarians.” —Emperor Qian Long, 1793, to King George III’s Ambassador (quoted in Fast Boat to China by Andrew Ross). It’s mid-winter, snowing again outside my window. After some 60 days of cross country skiing so far in Western Massachusetts, two schusses to Silicon Valley, and my son Richard a newly instrument rated pilot, I feel pretty good. With Dick Sears’ Gilder Technology Index (www.GTIndex.com) up some 325 percent since the crash and 27 percent in the last Power-One is the 52 weeks, I feel pretty fl ush. But as I prepare for another day of Nordic sweltering up and swooping down, something nags in the back of my mind. leader in digital What could it be? Flaws in the Linley Group’s projection of EZchip’s (LNOP) coming three year revenue ramp? A slow IPTV (Internet protocol television) transition dragging power solutions, (CONTINUED ON PAGE 2) with some 50 FEATURED COMPANY: NetLogic (NETL) design wins for Whoa! It seems the only thing fl ying faster than NetLogic’s processor speeds these days is the company’s stock price, up by a whopping third so far in the fi rst month or so of the year. But after listening to CEO Ron Jankov, it’s hard to be anything but buoyant. -
Rethinking Visual Cloud Workload Distribution
WHITE PAPER Media and Communications Content Creation and Distribution RethinkingVisualCloud WorkloadDistribution Creating a New Model With visual computing workloads growing at an accelerating pace, cloud service providers (CSPs), communications service providers (CoSPs), and enterprises are rethinking the physical and virtual distribution of compute resources to more effectively balance cost and deployment efficiency while achieving exceptional performance. Visual cloud deployments accommodate a diverse range of streaming workloads, encompassing media processing and delivery, cloud graphics, cloud gaming, media analytics, and immersive media. Contending with the onslaught of new visual workloads will require more nimble, scalable, virtualized infrastructures; the capability of shifting workloads to the network edge when appropriate; and a collection of tools, software, and hardware components to support individual use cases fluidly. Advanced network technologies and cloud architectures are essential for agile distribution of visual cloud workloads. A 2017 report, Cisco Visual Networking Index: Forecast and Methodology, 2016–2021, projected strong growth in all Internet and managed IP video- related sectors. Compound annual growth rate (CAGR) figures during this time span, calculated in petabytes per month, included these predictions: • Content delivery network (CDN) traffic: 44 percent increase globally • Consumer-managed IP video traffic: 19,619 petabytes per month (14 percent increase) by 2021 • Consumer Internet video: 27 percent increase for fixed, 55 percent increase for mobile The impact of this media growth on cloud-based data centers will produce a burden on those CSPs, CoSPs, and enterprises that are not equipped to deal with TableofContents large-scale media workloads dynamically. Solutions to this challenge include: Creating a New Model . 1 • Increasingflexibilityandoptimizingprocessing: Virtualization and software- defined infrastructure (SDI) make it easier to balance workloads on available OpenSourceSoftware resources. -
Transcoding SDK Combine Your Encoding Presets Into a Single Tool
DATASHEET | Page 1 Transcoding SDK Combine your encoding presets into a single tool MainConcept Transcoding SDK is an all-in-one production tool offering HOW DOES IT WORK? developers the ability to manage multiple codecs and parameters in one • Transcoding SDK works as an place. This streamlined SDK supports the latest encoders and decoders additional layer above MainConcept from MainConcept, including HEVC/H.265, AVC/H.264, DVCPRO, and codecs. MPEG-2. The transcoder generates compliant streams across different • The easy-to-use API replaces the devices, media types, and camcorder formats, and includes support for need to set conversion parameters MPEG-DASH and Apple HLS adaptive bitstream formats. Compliance manually by allowing you to configure ensures content is delivered that meets each unique specification. the encoders with predefined profiles, letting the transcoding engine take Transcoding SDK was created to simplify the workflow for developers care of the rest. who frequently move between codecs and output to a multitude of • If needed, manual control of the configurations. conversion process is supported, including source/target destinations, export presets, transcoding, and filter AVAILABLE PACKAGES parameters. HEVC/H.265 HEVC/H.265 encoder for creating HLS, DASH-265, and other ENCODER PACKAGE generic 8-bit/10-bit 4:2:0 and 4:2:2 streams in ES, MP4 and TS file formats. Includes hardware encoding support using Intel Quick KEY FEATURES Sync Video (IQSV) and NVIDIA NVENC (including Hybrid GPU) for Windows and Linux. • Integrated SDKs for fast deployment HEVC/H.265 SABET HEVC/H.265 encoder package plus Smart Adaptive Bitrate Encod- of transcoding tools ENCODER PACKAGE ing Technology (SABET). -
Intel® Quick Sync Video and Ffmpeg Installation and Validation Guide
White paper Intel® Quick Sync Video and FFmpeg Installation and Validation Guide Introduction Intel® Quick Sync Video technology on Intel® Iris™ Pro Graphics and Intel® HD graphics provides transcode acceleration on Linux* systems in FFmpeg* 2.8 and later editions. This paper is a detailed step-by-step guide to enabling h264_qsv, mpeg2_qsv, and hevc_qsv hardware accelerated codecs in the FFmpeg framework. For a quicker overview, please see this article. Performance note: The *_qsv implementations are intended to provide easy access to Intel hardware capabilities for FFmpeg users, but are less efficient than custom applications optimized for Intel® Media Server Studio. Document note: Monospace type = command line inputs/outputs. Pink = highlights to call special attention to important command line I/O details. Getting Started 1. Install Intel Media Server Studio for Linux. Download from software.intel.com/intel-media-server- studio. This is a prerequisite for the *_qsv codecs as it provides the foundation for encode acceleration. See the next chapter for more info on edition choices. Note: Professional edition install is required for hevc_qsv. 2. Get the latest FFmpeg source from https://www.FFmpeg.org/download.html. Intel Quick Sync Video support is available in FFmpeg 2.8 and later editions. The install steps outlined below were verified with ffmpeg release 3.2.2 3. Configure FFmpeg with “--enable –libmfx –enable-nonfree”, build, and install. This requires copying include files to /opt/intel/mediasdk/include/mfx and adding a libmfx.pc file. More details below. 4. Test transcode with an accelerated codec such as “-vcodec h264_qsv” on the FFmpeg command line.