1 1 Full Title 2 PRMT1 Is Required for the Maintenance of Mature Β Cell

Total Page:16

File Type:pdf, Size:1020Kb

1 1 Full Title 2 PRMT1 Is Required for the Maintenance of Mature Β Cell Page 1 of 72 Diabetes 1 Full title 2 PRMT1 is required for the maintenance of mature β cell identity 3 4 Short running title 5 Essential role of PRMT1 in β cell identity 6 7 Authors 8 Hyunki Kim1, #, young-Ha Yoon2, 3, #, Chang-Myung Oh4, #, Joonyub Lee1, #, Kanghoon Lee1, Heein 9 Song1, Eunha Kim5, Kijong Yi1, Mi-Young Kim6, Hyeongseok Kim1, Yong Kyung Kim7, Eun-Hye 10 Seo2, 3, Haejeong Heo2, 3, Hee-Jin Kim2, Junguee Lee8, Jae Myoung Suh1, Seung-Hoi Koo9, Je Kyung 11 Seong6,10, Seyun Kim5, Young Seok Ju1, Minho Shong7, Mirang Kim2, 3, * and Hail Kim1, 11, * 12 13 Affiliations 14 1Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and 15 Technology, Daejeon 34141, Republic of Korea 16 2Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and 17 Biotechnology, Daejeon 34141, Republic of Korea 18 3Department of Functional Genomics, University of Science and Technology, Daejeon 34113, 19 Republic of Korea 20 4Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 21 Gwangju 61005, Republic of Korea 22 5Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 23 34141, Republic of Korea 24 6Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, 25 BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, 1 Diabetes Publish Ahead of Print, published online December 17, 2019 Diabetes Page 2 of 72 26 Seoul National University, and Korea Mouse Phenotyping Center (KMPC), Seoul 08826, Republic 27 of Korea 28 7Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of 29 Medicine, 282 Munhwaro, Daejeon 35015, Republic of Korea 30 8Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic 31 University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Republic of Korea 32 9Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic 33 of Korea 34 10 Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio 35 Institute, Seoul National University, Seoul 08826, Republic of Korea 36 11KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 37 Daejeon 34141, Republic of Korea 38 #These authors contributed equally to this work 39 40 * Corresponding authors 41 Hail Kim, M.D., Ph.D. 42 Graduate School of Medical Science and Engineering 43 Korea Advanced Institute of Science and Technology 44 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea 45 Phone: +82-42-350-4243 46 e-mail: [email protected] 47 48 Mirang Kim, Ph.D. 49 Personalized Genomic Medicine Research Center 50 Korea Research Institute of Bioscience and Biotechnology 2 Page 3 of 72 Diabetes 51 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea 52 Phone: +82-42-879-8113 53 e-mail: [email protected] 54 55 Word count: 4,444 56 57 Number of figures: 6 3 Diabetes Page 4 of 72 58 Abstract 59 Loss of functional β cell mass is an essential feature of type 2 diabetes, and maintaining mature 60 cell identity is important for preserving a functional β cell mass. However, it is unclear how β cells 61 achieve and maintain their mature identity. Here, we demonstrate a novel function of PRMT1 in 62 maintaining mature β cell identity. Prmt1 knockout in fetal and adult β cells induced diabetes, which 63 was aggravated by high fat diet-induced metabolic stress. Deletion of Prmt1 in adult β cells resulted 64 in the immediate loss of histone H4 arginine 3 asymmetric di-methylation (H4R3me2a) and the 65 subsequent loss of β cell identity. The expression levels of genes involved in mature β cell function 66 and identity were robustly downregulated as soon as Prmt1 deletion was induced in adult β cells. ChIP- 67 seq and ATAC-seq analyses revealed that PRMT1-dependent H4R3me2a increases chromatin 68 accessibility at the binding sites for CTCF and β cell transcription factors. In addition, PRMT1- 69 dependent open chromatin regions may show an association with the risk of diabetes in humans. 70 Together, our results indicate that PRMT1 plays an essential role in maintaining β cell identity by 71 regulating chromatin accessibility. 4 Page 5 of 72 Diabetes 72 Introduction 73 Maintaining the functional β cell mass is crucial for preventing diabetes, which develops when 74 β cells fail to meet the insulin demand (1,2). Although β cell death is thought to be the major 75 mechanism of β cell failure (3), recent studies indicate that β cell dedifferentiation can decrease the 76 functional β cell mass and thereby deteriorate systemic glucose homeostasis (4,5). Maintaining mature 77 cell identity is also important for maintaining cell function (6,7). A hierarchy of transcription factor 78 (TF) cascades directs β cell differentiation, and β cells require continuous activation of these TFs to 79 maintain their function and identity (8–10). The genetic identity of a differentiated cell is generally 80 controlled by the chromatin state, which is overall stable and has a limited epigenomic flexibility 81 (11,12). Likewise, epigenetic regulation plays an essential role in the postnatal maturation of β cells 82 and the maintenance of mature β cell identity (13–16). 83 Histone arginine methylation, which is regulated by protein arginine methyltransferase 84 (PRMT), can affect chromatin structures to facilitate the recruitment of protein complexes that regulate 85 gene transcription (17,18). PRMT4-dependent histone H3 arginine 17 asymmetric di-methylation 86 (H3R17me2a) in β cells has been reported to regulate glucose-stimulated insulin secretion (GSIS) (19). 87 However, the role of PRMT-induced histone arginine methylation in regulating β cell identity has not 88 yet been elucidated. Among the nine members of the PRMT family, PRMT1 predominates in 89 mammalian cells (20). It appears to be associated with diabetes, as its catalytic activity is decreased in 90 the liver and pancreas of diabetic Goto-Kakizaki rats (21). PRMT1 has also been shown to specifically 91 induce the active histone code, histone H4 arginine 3 asymmetric di-methylation (H4R3me2a), which 92 potentiates subsequent histone acetylation and contributes to establishing euchromatin structure 93 (22,23). Based on these previous findings, we herein explored the role of PRMT1-dependent 94 H4R3me2a in mature β cells. 5 Diabetes Page 6 of 72 95 Research Design and Methods 96 Animals 97 Prmt1 floxed (Prmt1fl/fl) [MGI: 4432476] mice were crossed with Rip2-Cre [MGI: 2387567] and 98 Pdx1-CreERT2 [MGI: 2684321] mice to generate Prmt1 βKO and Prmt1 βiKO mice, respectively. 99 R26-eYFP [MGI: 2449038] mice were crossed for lineage-tracing experiments and β cell sorting. All 100 mice were backcrossed and maintained on a C57BL/6J background. Cre recombination for CreERT2 101 was induced by a total of five intraperitoneal injections of corn oil-dissolved tamoxifen (75 mg/kg) 102 over 2 weeks. Mice were housed in climate-controlled, specific pathogen-free barrier facilities under 103 a 12-hour light/dark cycle, and chow and water were provided ad libitum. Mice were fed either a 104 standard chow diet or high-fat diet (HFD; 60% kcal fat). The animal experiment protocols for this 105 study were approved by the Institutional Animal Care and Use Committee at the Korea Advanced 106 Institute of Science and Technology. All experiments were performed in accordance with the 107 relevant guidelines and regulations. 108 109 Metabolic assays 110 Body weight and random blood glucose levels were measured in the afternoon of the daytime. The 111 glucose tolerance test and the insulin tolerance test were performed as previously described (24). 112 113 Histological analyses 114 For histological analyses, formalin-fixed paraffin-embedded pancreatic slides were prepared, stained 115 and analyzed as described in Supplementary Materials. 116 117 Pancreatic insulin content 118 Pancreatic tissues were dissected, placed in acid-ethanol (1.5% HCl in 70% ethanol), homogenized 119 and incubated at 4°C for 16 hours. The aqueous phase of pancreatic insulin extract was neutralized 6 Page 7 of 72 Diabetes 120 with an equal amount of 1 M Tris-Cl buffer (pH 7.5). The pancreatic insulin content was calculated by 121 dividing the total pancreatic insulin by the weight of the pancreas. 122 123 Glucose-stimulated insulin secretion (GSIS) 124 For the in vivo GSIS assay, mice were fasted for 16 hours and then given an intraperitoneal injection 125 of D-glucose in PBS (2 g/kg). For the ex vivo islet GSIS assay, pancreatic islets were isolated from 126 mice as described previously (25), and the assay was performed as described in the Supplementary 127 Materials. 128 129 Oxygen consumption rate (OCR) 130 Pancreatic islets were isolated from mice as described previously (25), and the OCR assay was 131 performed as described in the Supplementary Materials. 132 133 Quantitative reverse transcription PCR (qRT-PCR) 134 Total RNA was extracted from mouse tissues and qRT-PCR was performed as described in the 135 Supplementary Materials. The sequences of the utilized primers are listed in Supplementary Table 1. 136 137 ChIP-seq, RNA-seq and ATAC-seq analyses 138 ChIP experiments were performed in MIN6 cells as previously described (26) with modifications. 139 RNA-seq experiments were performed using WT and Prmt1-null islets. ATAC experiments were 140 performed as previously described (27), using MIN6 cells and FACS-sorted WT and Prmt1-null β 141 cells. ChIP-seq, RNA-seq and ATAC-seq analyses were performed as described in the Supplementary 142 Materials. 143 144 Chromatin conformation capture PCR (3C-PCR) 7 Diabetes Page 8 of 72 145 3C experiments were performed in MIN6 cells as previously described (28) with modifications.
Recommended publications
  • An Automated Pipeline for Inferring Variant-Driven Gene
    www.nature.com/scientificreports OPEN MAGPEL: an autoMated pipeline for inferring vAriant‑driven Gene PanEls from the full‑length biomedical literature Nafseh Saberian1, Adib Shaf 1, Azam Peyvandipour1 & Sorin Draghici 1,2* In spite of the eforts in developing and maintaining accurate variant databases, a large number of disease‑associated variants are still hidden in the biomedical literature. Curation of the biomedical literature in an efort to extract this information is a challenging task due to: (i) the complexity of natural language processing, (ii) inconsistent use of standard recommendations for variant description, and (iii) the lack of clarity and consistency in describing the variant-genotype-phenotype associations in the biomedical literature. In this article, we employ text mining and word cloud analysis techniques to address these challenges. The proposed framework extracts the variant- gene‑disease associations from the full‑length biomedical literature and designs an evidence‑based variant-driven gene panel for a given condition. We validate the identifed genes by showing their diagnostic abilities to predict the patients’ clinical outcome on several independent validation cohorts. As representative examples, we present our results for acute myeloid leukemia (AML), breast cancer and prostate cancer. We compare these panels with other variant‑driven gene panels obtained from Clinvar, Mastermind and others from literature, as well as with a panel identifed with a classical diferentially expressed genes (DEGs) approach. The results show that the panels obtained by the proposed framework yield better results than the other gene panels currently available in the literature. One crucial step in understanding the biological mechanism underlying a disease condition is to capture the relationship between the variants and the disease risk1.
    [Show full text]
  • Human Blastocysts of Normal and Abnormal Karyotypes Display Distinct Transcriptome Profles Received: 16 March 2018 Frederick Licciardi1, Tenzin Lhakhang2, Yael G
    www.nature.com/scientificreports OPEN Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profles Received: 16 March 2018 Frederick Licciardi1, Tenzin Lhakhang2, Yael G. Kramer3, Yutong Zhang4, Adriana Heguy4,5,6 & Accepted: 26 September 2018 Aristotelis Tsirigos 2,5,6 Published: xx xx xxxx Unveiling the transcriptome of human blastocysts can provide a wealth of important information regarding early embryonic ontology. Comparing the mRNA production of embryos with normal and abnormal karyotypes allows for a deeper understanding of the protein pathways leading to viability and aberrant fetal development. In addition, identifying transcripts specifc for normal or abnormal chromosome copy number could aid in the search for secreted substances that could be used to non- invasively identify embryos best suited for IVF embryo transfer. Using RNA-seq, we characterized the transcriptome of 71 normally developing human blastocysts that were karyotypically normal vs. trisomic or monosomic. Every monosomy and trisomy of the autosomal and sex chromosomes were evaluated, mostly in duplicate. We frst mapped the transcriptome of three normal embryos and found that a common core of more than 3,000 genes is expressed in all embryos. These genes represent pathways related to actively dividing cells, such as ribosome biogenesis and function, spliceosome, oxidative phosphorylation, cell cycle and metabolic pathways. We then compared transcriptome profles of aneuploid embryos to those of normal embryos. We observed that non-viable embryos had a large number of dysregulated genes, some showing a hundred-fold diference in expression. On the contrary, sex chromosome abnormalities, XO and XXX displayed transcriptomes more closely mimicking those embryos with 23 normal chromosome pairs.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • COX7A2L Rabbit Pab
    Leader in Biomolecular Solutions for Life Science COX7A2L Rabbit pAb Catalog No.: A8298 Basic Information Background Catalog No. Cytochrome c oxidase (COX), the terminal component of the mitochondrial respiratory A8298 chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. This component is a heteromeric complex consisting of 3 catalytic subunits encoded by Observed MW mitochondrial genes and multiple structural subunits encoded by nuclear genes. The 13KDa mitochondrially-encoded subunits function in electron transfer, and the nuclear- encoded subunits may function in the regulation and assembly of the complex. This Calculated MW nuclear gene encodes a protein similar to polypeptides 1 and 2 of subunit VIIa in the C- 12kDa terminal region, and also highly similar to the mouse Sig81 protein sequence. This gene is expressed in all tissues, and upregulated in a breast cancer cell line after estrogen Category treatment. It is possible that this gene represents a regulatory subunit of COX and mediates the higher level of energy production in target cells by estrogen. Several Primary antibody transcript variants, some protein-coding and others non-protein coding, have been found for this gene. Applications WB Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 9167 O14548 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-114 of human COX7A2L (NP_004709.2). Synonyms COX7A2L;COX7AR;COX7RP;EB1;SIG81 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3.
    [Show full text]
  • Roles of Mitochondrial Respiratory Complexes During Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser
    Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser To cite this version: Pedro Escoll, Lucien Platon, Carmen Buchrieser. Roles of Mitochondrial Respiratory Complexes during Infection. Immunometabolism, Hapres, 2019, Immunometabolism and Inflammation, 1, pp.e190011. 10.20900/immunometab20190011. pasteur-02593579 HAL Id: pasteur-02593579 https://hal-pasteur.archives-ouvertes.fr/pasteur-02593579 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ij.hapres.com Review Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll 1,2,*, Lucien Platon 1,2,3, Carmen Buchrieser 1,2,* 1 Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 75015 Paris, France 2 CNRS-UMR 3525, 75015 Paris, France 3 Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France * Correspondence: Pedro Escoll, Email: [email protected]; Tel.: +33-0-1-44-38-9540; Carmen Buchrieser, Email: [email protected]; Tel.: +33-0-1-45-68-8372. ABSTRACT Beyond oxidative phosphorylation (OXPHOS), mitochondria have also immune functions against infection, such as the regulation of cytokine production, the generation of metabolites with antimicrobial proprieties and the regulation of inflammasome-dependent cell death, which seem in turn to be regulated by the metabolic status of the organelle.
    [Show full text]
  • Restoring Mitofusin Balance Prevents Axonal Degeneration in a Charcot-Marie-Tooth Type 2A Model
    Amendment history: Corrigendum (January 2021) Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model Yueqin Zhou, … , Cathleen M. Lutz, Robert H. Baloh J Clin Invest. 2019;129(4):1756-1771. https://doi.org/10.1172/JCI124194. Research Article Neuroscience Graphical abstract Find the latest version: https://jci.me/124194/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model Yueqin Zhou,1,2 Sharon Carmona,2 A.K.M.G. Muhammad,1,2 Shaughn Bell,1,2 Jesse Landeros,1,2 Michael Vazquez,1,2 Ritchie Ho,2 Antonietta Franco,3 Bin Lu,2 Gerald W. Dorn II,3 Shaomei Wang,2 Cathleen M. Lutz,4 and Robert H. Baloh1,2,5 1Center for Neural Science and Medicine, and 2Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. 3Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA. 4The Jackson Laboratory, Bar Harbor, Maine, USA. 5Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA. Mitofusin-2 (MFN2) is a mitochondrial outer-membrane protein that plays a pivotal role in mitochondrial dynamics in most tissues, yet mutations in MFN2, which cause Charcot-Marie-Tooth disease type 2A (CMT2A), primarily affect the nervous system. We generated a transgenic mouse model of CMT2A that developed severe early onset vision loss and neurological deficits, axonal degeneration without cell body loss, and cytoplasmic and axonal accumulations of fragmented mitochondria. While mitochondrial aggregates were labeled for mitophagy, mutant MFN2 did not inhibit Parkin-mediated degradation, but instead had a dominant negative effect on mitochondrial fusion only when MFN1 was at low levels, as occurs in neurons.
    [Show full text]
  • Cells Phenotype of Human Tolerogenic Dendritic Glycolytic
    High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells This information is current as of September 26, 2021. Frano Malinarich, Kaibo Duan, Raudhah Abdull Hamid, Au Bijin, Wu Xue Lin, Michael Poidinger, Anna-Marie Fairhurst and John E. Connolly J Immunol published online 27 April 2015 http://www.jimmunol.org/content/early/2015/04/25/jimmun Downloaded from ol.1303316 Supplementary http://www.jimmunol.org/content/suppl/2015/04/25/jimmunol.130331 http://www.jimmunol.org/ Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 27, 2015, doi:10.4049/jimmunol.1303316 The Journal of Immunology High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells Frano Malinarich,*,† Kaibo Duan,† Raudhah Abdull Hamid,*,† Au Bijin,*,† Wu Xue Lin,*,† Michael Poidinger,† Anna-Marie Fairhurst,† and John E.
    [Show full text]
  • Role of Cytochrome C Oxidase Nuclear-Encoded Subunits in Health and Disease
    Physiol. Res. 69: 947-965, 2020 https://doi.org/10.33549/physiolres.934446 REVIEW Role of Cytochrome c Oxidase Nuclear-Encoded Subunits in Health and Disease Kristýna ČUNÁTOVÁ1, David PAJUELO REGUERA1, Josef HOUŠTĚK1, Tomáš MRÁČEK1, Petr PECINA1 1Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic Received February 2, 2020 Accepted September 13, 2020 Epub Ahead of Print November 2, 2020 Summary [email protected] and Tomáš Mráček, Department of Cytochrome c oxidase (COX), the terminal enzyme of Bioenergetics, Institute of Physiology CAS, Vídeňská 1083, 142 mitochondrial electron transport chain, couples electron transport 20 Prague 4, Czech Republic. E-mail: [email protected] to oxygen with generation of proton gradient indispensable for the production of vast majority of ATP molecules in mammalian Cytochrome c oxidase cells. The review summarizes current knowledge of COX structure and function of nuclear-encoded COX subunits, which may Energy demands of mammalian cells are mainly modulate enzyme activity according to various conditions. covered by ATP synthesis carried out by oxidative Moreover, some nuclear-encoded subunits possess tissue-specific phosphorylation apparatus (OXPHOS) located in the and development-specific isoforms, possibly enabling fine-tuning central bioenergetic organelle, mitochondria. OXPHOS is of COX function in individual tissues. The importance of nuclear- composed of five multi-subunit complexes embedded in encoded subunits is emphasized by recently discovered the inner mitochondrial membrane (IMM). Electron pathogenic mutations in patients with severe mitopathies. In transport from reduced substrates of complexes I and II to addition, proteins substoichiometrically associated with COX were cytochrome c oxidase (COX, complex IV, CIV) is found to contribute to COX activity regulation and stabilization of achieved by increasing redox potential of individual the respiratory supercomplexes.
    [Show full text]
  • Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces Cerevisiae
    life Review Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae Leticia V. R. Franco 1,2,* , Luca Bremner 1 and Mario H. Barros 2 1 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] 2 Department of Microbiology,Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil; [email protected] * Correspondence: [email protected] Received: 27 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast. Keywords: mitochondrial diseases; respiratory chain; yeast; Saccharomyces cerevisiae; pet mutants 1.
    [Show full text]
  • Influenza-Specific Effector Memory B Cells Predict Long-Lived Antibody Responses to Vaccination in Humans
    bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Influenza-specific effector memory B cells predict long-lived antibody responses to vaccination in humans Anoma Nellore1, Esther Zumaquero2, Christopher D. Scharer3, Rodney G. King2, Christopher M. Tipton4, Christopher F. Fucile5, Tian Mi3, Betty Mousseau2, John E. Bradley6, Fen Zhou2, Paul A. Goepfert1, Jeremy M. Boss3, Troy D. Randall6, Ignacio Sanz4, Alexander F. Rosenberg2,5, Frances E. Lund2 1Dept. of Medicine, Division of Infectious Disease, 2Dept of Microbiology, 5Informatics Institute, 6Dept. of Medicine, Division of Clinical Immunology and Rheumatology and at The University of Alabama at Birmingham, Birmingham, AL 35294 USA 3Dept. of Microbiology and Immunology and 4Department of Medicine, Division of Rheumatology Emory University, Atlanta, GA 30322, USA Correspondence should be addressed to: Frances E. Lund, PhD Charles H. McCauley Professor and Chair Dept of Microbiology University of Alabama at Birmingham 276 BBRB Box 11 1720 2nd Avenue South Birmingham AL 35294-2170 [email protected] SHORT RUNNING TITLE: Effector memory B cell development after influenza vaccination 1 bioRxiv preprint doi: https://doi.org/10.1101/643973; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Seasonal influenza vaccination elicits hemagglutinin (HA)-specific CD27+ memory B cells (Bmem) that differ in expression of T-bet, BACH2 and TCF7.
    [Show full text]
  • Heparanase Overexpression Induces Glucagon Resistance and Protects
    Page 1 of 85 Diabetes Heparanase overexpression induces glucagon resistance and protects animals from chemically-induced diabetes Dahai Zhang1, Fulong Wang1, Nathaniel Lal1, Amy Pei-Ling Chiu1, Andrea Wan1, Jocelyn Jia1, Denise Bierende1, Stephane Flibotte1, Sunita Sinha1, Ali Asadi2, Xiaoke Hu2, Farnaz Taghizadeh2, Thomas Pulinilkunnil3, Corey Nislow1, Israel Vlodavsky4, James D. Johnson2, Timothy J. Kieffer2, Bahira Hussein1 and Brian Rodrigues1 1Faculty of Pharmaceutical Sciences, UBC, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3; 2Department of Cellular & Physiological Sciences, Life Sciences Institute, UBC, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3; 3Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB, Canada E2L 4L5; 4Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel 31096 Running Title: Heparanase overexpression and the pancreatic islet Corresponding author: Dr. Brian Rodrigues Faculty of Pharmaceutical Sciences University of British Columbia, 2405 Wesbrook Mall, Vancouver, B.C., Canada V6T 1Z3 TEL: (604) 822-4758; FAX: (604) 822-3035 E-mail: [email protected] Key Words: Heparanase, heparan sulfate proteoglycan, glucose homeostasis, glucagon resistance, pancreatic islet, STZ Word Count: 4761 Total Number of DiabetesFigures: Publish 6 Ahead of Print, published online October 7, 2016 Diabetes Page 2 of 85 Abstract Heparanase, a protein with enzymatic and non-enzymatic properties, contributes towards disease progression and prevention. In the current study, a fortuitous observation in transgenic mice globally overexpressing heparanase (hep-tg) was the discovery of improved glucose homeostasis. We examined the mechanisms that contribute towards this improved glucose metabolism. Heparanase overexpression was associated with enhanced GSIS and hyperglucagonemia, in addition to changes in islet composition and structure.
    [Show full text]
  • Electron Transport Chain Activity Is a Predictor and Target for Venetoclax Sensitivity in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-15051-z OPEN Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma Richa Bajpai1,7, Aditi Sharma 1,7, Abhinav Achreja2,3, Claudia L. Edgar1, Changyong Wei1, Arusha A. Siddiqa1, Vikas A. Gupta1, Shannon M. Matulis1, Samuel K. McBrayer 4, Anjali Mittal3,5, Manali Rupji 6, Benjamin G. Barwick 1, Sagar Lonial1, Ajay K. Nooka 1, Lawrence H. Boise 1, Deepak Nagrath2,3,5 & ✉ Mala Shanmugam 1 1234567890():,; The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the ‘primed’ state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy. 1 Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA.
    [Show full text]