Antiplatelet Effects of Flavonoids Mediated by Inhibition of Arachidonic Acid Based Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Antiplatelet Effects of Flavonoids Mediated by Inhibition of Arachidonic Acid Based Pathway 76 Original Papers Antiplatelet Effects of Flavonoids Mediated by Inhibition of Arachidonic Acid Based Pathway Authors Jana Karlíčková1, Michal Říha2,Tomáš Filipský2, Kateřina Macáková1, Radomír Hrdina2,Přemysl Mladěnka2 Affiliations 1 Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic Key words Abstract able concentration. Contrarily, many flavonoids, l" aggregation ! particularly those possessing an isolated 7-hy- l" arachidonic acid Flavonoids, important components of human di- droxyl group and/or a 4′-hydroxyl group, acted l" cyclooxygenase et, have been claimed to possess a significant anti- as antagonists on thromboxane receptors. Inter- l" flavonoid platelet potential, in particular due to their effects estingly, the substitution of the free 7-hydroxyl l" platelet l" thromboxane on the arachidonic acid cascade. Due to variable group by glucose might not abolish the activity. and incomplete results, this study was aimed at In conclusion, the consumption of few flavonoids delivering a detailed analysis of the effects of 29 in a diet, particularly of the isoflavonoids geniste- structurally relevant, mainly natural flavonoids in and daidzein, may positively influence platelet on three consecutive steps of the arachidonic acid aggregation. cascade. Only the isoflavonoids genistein and daidzein were shown to possess a marked cyclooxygen- Abbreviations ase-1 inhibitory activity, which was higher than ! that of acetylsalicylic acid using the isolated ovine AA: arachidonic acid enzyme, and physiologically relevant, although ASA: acetylsalicylic acid lower than acetylsalicylic acid in human platelets. COX-1: cyclooxygenase-1 None of the tested flavonoids possesses an effect EDTA: ethylenediaminetetraacetic acid on thromboxane synthase in a clinically achiev- PRP: platelet rich plasma received January 5, 2015 revised July 28, 2015 Introduction in particular by collagen, but other inducers like accepted July 30, 2015 ! ADP and thrombin play a role as well [2,3]. De- Bibliography Platelets are essential components of the human spite this fact, most of the current clinically used DOI http://dx.doi.org/ blood responsible for rapid blood coagulation drugs are irreversible inhibitors of COX-1, like 10.1055/s-0035-1557902 during injuries. On the other hand, excessive ASA, and antagonists on ADP receptors (clopido- Published online September 21, platelet aggregation is associated with cardiovas- grel, ticagrelor, prasugrel) [4]. There are no other This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. 2015 cular diseases, in particular with the risk of seri- drugs acting on other levels of the AA cascade in Planta Med 2016; 82: 76–83 © Georg Thieme Verlag KG ous or fatal coronary heart disease. Because both clinical settings. Such drugs blocking thrombox- Stuttgart · New York · decreased and increased platelet aggregation are ane synthase or acting as antagonists on throm- ISSN 0032‑0943 associated with pathological states, the process boxane receptors [5] might enrich the palette of Correspondence of aggregation has to be tightly controlled. The clinically useful drugs in the future. Since they Assoc. Prof. Přemysl homeostasis is very complex and scientists have act specifically on the described steps of platelet Mladěnka, Ph.D. not been able to precisely define the process in aggregation, they may have fewer side effects in Department of Pharmacology and Toxicology all aspects up to date [1]. There are several pro- comparison to inhibitors of COX-1, which is an Faculty of Pharmacy in Hradec aggregatory factors which enhance thrombus for- enzyme with many essential physiological roles. Králové mation. The central role in this cascade appears to Flavonoids are promising candidates to be both, Charles University in Prague Heyrovského 1203 be associated with the release of AA from the cy- natural modulators of the disruption of platelet 500 05 Hradec Králové toplasmatic membrane and its transformation in- aggregation, and antiplatelet drugs. There is a vast Czech Republic to prostaglandin H2 by platelet COX-1, with fur- amount of literature on the subject showing that Phone: + 420495067295 Fax:+420495067170 ther metabolism into thromboxane A2 by platelet many flavonoids are potent inhibitors of platelet [email protected] thromboxane synthase. This process is stimulated aggregation induced by molecules such as colla- Karlíčková J et al. Antiplatelet Effects of… Planta Med 2016; 82: 76–83 Original Papers 77 Fig. 1 Chemical structure of flavonoids tested in this study. Glc: glucose, Rha: rhamnose, Glu: glucu- ronic acid. gen, AA, thromboxane receptor agonist U-46619, ADP, and epi- Results nephrine [6–10]. The data on thrombin-induced aggregation are ! controversial, some claim that flavonoids have no effect [9,11], Initially, all flavonoids were tested for their possible effects on the other report positive effects [12]. Additionally, the inhibition of inhibition of ovine COX-1 in a concentration of 100 µM and com- platelet aggregation by flavonoids is a reversible process [9], pared to ASA. ASA was moderately active at this concentration, which is another important factor when considering possible the isoflavones genistein and daidzein were more potent inhib- side effects of the current antiplatelet therapy. Although many itors (p < 0.01), while all other flavonoids were essentially inac- mechanisms responsible for antiplatelet effects have been pro- tive (l" Fig. 2A). Considering these surprising results, we retested posed [13], only a few are documented by published studies. In ASA and the active isoflavonoids for their concentration-depen- particular, their effects on the AA-based aggregation cascade are dent effects. Herein, genistein was more potent at lower concen- well documented [10,14, 15] but there are several discrepancies tration again but comparable to ASA in higher concentrations. In ensuing from the use of different protocols (e.g., animal or human the case of daidzein, a threshold effect at about 40% was found platelets, different analytical procedures, use of washed platelets, (l" Fig. 2B). To ascertain if this could be valid for humans, human This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. platelets in plasma, or in the whole blood). Nevertheless, flavo- platelet suspension in plasma was used. In these physiological noids may potentiate the effects of ASA via different mechanisms conditions, ASA showed an excellent effect in units of µM and of action [15]. completely inhibited COX-1 in higher concentrations. Both isofla- A comprehensive investigation between the flavonoid structure vonoids were significantly less active, they did not reach full inhi- and the effects on the AA cascade including COX-1, thromboxane bition even at high, pharmacologically unachievable, concentra- synthase and thromboxane receptors is still missing. In addition, tions but their activity in units of µM could have a real clinical the effects on thromboxane synthase have been analyzed only in- relevance (l" Fig. 2C). The activities of daidzein and genistein directly so far. Therefore, this study was aimed at delivering a de- were similar in this set of experiments. tailed analysis of 29 flavonoids (l" Fig. 1), representing the most The second step of the AA cascade is the transformation of pros- commonly found natural flavonoids, and some relevant synthetic taglandin H2 into thromboxane A2 via thromboxane synthase. All congeners in order to establish structure-activity relationship on flavonoids were tested for their effect on this enzyme and com- three consecutive steps of the AA-based platelet aggregation us- pared to the known inhibitor 1-benzylimidazol. At the concen- ing human platelets. tration of 100 µM, only three flavonoids showed more than 25% inhibition, but all of them were clearly less potent than 25 µM of 1-benzylimidazole (l" Fig. 3A). These partly active flavonoids, 7- Karlíčková J et al. Antiplatelet Effects of… Planta Med 2016; 82: 76–83 78 Original Papers Fig. 3 Effects of flavonoids and 1-benzylimidazol on thromboxane syn- thase. A Comparison of all compounds at the concentration of 100 µM. For comparison, 25 µM of 1-benzylimidazol (BI 25) is shown. Grey area means the error of the method. All partly active flavonoids were less potent than 1-benzyimidazol but there were no significant differences among them. B Concentration-effect curves of partly active flavonoids. Fig. 2 Effects of flavonoids and ASA on COX-1. A Comparison of the ef- fects of all tested flavonoids on ovine COX-1. Grey area shows the error of the method. Compounds were tested at a concentration of 100 µM, several bration in order to ascertain reproducibility of the results: first, flavonoids were retested at higher concentrations, too (7-hydroxyflavone, the used concentration of U-46619 in the range of 0.75–1.5 µM taxifolin, luteolin, hesperetin, luteolin and taxifolin at 200 µM and troxeru- had to produce more than 90% aggregation, and second, epicate- tin at 400 µM). B Concentration-effect curves for effective isoflavonoids and ASA on inhibition of ovine COX-1. C Concentration-effect curves for chin at the concentration of 300 µM had to decrease the aggrega- effective isoflavonoids and ASA on inhibition of human
Recommended publications
  • Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: a Review
    International Journal of Molecular Sciences Review Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review Fereidoon Shahidi * ID and JuDong Yeo Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-709-864-8552 Received: 4 May 2018; Accepted: 23 May 2018; Published: 25 May 2018 Abstract: Phenolics, which are secondary metabolites of plants, exhibit remarkable bioactivities. In this contribution, we have focused on their protective effect against chronic diseases rather than their antioxidant activities, which have been widely discussed in the literature. A large body of epidemiological studies has proven the bioactivities of phenolics in both standard compounds and natural extracts: namely, anticancer, anti-inflammatory, and antibacterial activities as well as reducing diabetes, cardiovascular disease, and neurodegenerative disease. Phenolics also display anti-analgesic, anti-allergic, and anti-Alzheimer’s properties. Thus, this review provides crucial information for better understanding the bioactivities of phenolics in foods and fills a gap in the existing collective and overall knowledge in the field. Keywords: phenolics; bioactivity; phenolic acid; flavonoids; anticancer; anti-inflammatory activity; antibacterial activity 1. Introduction 1.1. Phenolics Phenolic compounds are secondary metabolites of plants. So far, more than 8000 phenolics have been found from natural sources and are classified into phenolic acids, flavonoids, stilbenes, coumarins, lignins, and tannins. Phenolics play a crucial role in plants by controlling their growth as an internal physiological regulator [1]. For instance, kaempferol, apigenin, and quercetin interact with plasma membrane proteins (receptors), in which they restrict the transfer of polar auxin compounds via the membrane, thus affecting plant growth [1].
    [Show full text]
  • Important Flavonoids and Their Role As a Therapeutic Agent
    molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.U.); [email protected] (S.M.); [email protected] (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; [email protected] 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis.
    [Show full text]
  • In Vitro Evaluation of Copper-Chelating Properties of Flavonoids
    RSC Advances View Article Online PAPER View Journal | View Issue In vitro evaluation of copper-chelating properties of flavonoids† Cite this: RSC Adv.,2014,4, 32628 a b a b ac Michal Rˇ´ıha, Jana Karl´ıckovˇ a,´ Toma´ˇs Filipsky,´ Kateˇrina Macakov´ a,´ Liliana Rocha, d e f b Paolo Bovicelli, Ilaria Proietti Silvestri, Luciano Saso, Ludekˇ Jahoda´ˇr, a a Radom´ır Hrdina and Pˇremysl Mladenkaˇ * Copper is an essential trace element involved in plenty of redox reactions in living systems, however, unbound copper ions cause damage to various biomolecules via excessive generation of reactive oxygen species. Flavonoids, ubiquitous plant secondary metabolites, possess complex effects on human health and chelation of transient metal ions is one of their proposed mechanisms of action. In this in vitro study, 26 flavonoids from various subclasses were screened for their interactions with both copper oxidation states at four (patho)physiologically relevant pH conditions (4.5, 5.5, 6.8 and 7.5) by two spectrophotometric approaches and compared with the clinically used copper chelator trientine. In a slightly competitive environment, the majority of flavonoids were able to chelate cupric ions, however, Creative Commons Attribution 3.0 Unported Licence. under more competitive conditions, only flavones and flavonols were able to chelate both cupric and cuprous ions. Apparently, the 2,3-double bond was essential for stable copper chelation. The most efficient copper chelation sites were the 3-hydroxy-4-keto group in flavonols and the 5,6,7-trihydroxyl group in flavones. On the other hand, the 30,40-dihydroxyl group was associated only with a weak Received 15th May 2014 activity.
    [Show full text]
  • Product# Description Qty Price Product# Description Qty Price
    349 Product# Description Qty Price Product# Description Qty Price ASB-00017171-005 QUERCITRIN 5mg $ ASB-00030615-005 RABDOSIA AERIAL PARTS RBRM 5g $ ASB-00017171-010 10mg $ Grade : RBRM ASB-00017171-025 25mg $ FW : 0 For : Rabdosia rubescens Grade : P From : Aerial parts CAS# : [522-12-3] Other Names : Rabdosia rubescens Chemical Formula : C21H20O11 FW : 448.38 MERCK Index# : 11,8047 Rabdosia rubescens Long-Term Storage : RT Please See RABDOSIA AERIAL PARTS RBRM QUERCUS ALBA L. [FAGACEAE] Raffinose Please See RAFFINOSE, D-(+)-(RG) Please See WHITE OAK BARK VBRM 1g $ Quertine ASB-00018010-001 RAFFINOSE, D-(+)- Grade : RG Please See QUERCETIN(AHP) CAS# : [17629-30-0] Quertine Chemical Formula : C18H32O16.5H2O FW : 504.45 Please See QUERCETIN(SH) MERCK Index# : 11,8120 Long-Term Storage : RT Quertine Other Names : Raffinose Please See QUERCETIN(RG) Quindine Rahmnoxanthin Please See QUINIDINE(RG) Please See FRANGULIN A(RG) Quinic Acid Rahmnoxanthin Please See QUINIC ACID(RG) Please See FRANGULIN B(RG) ASB-00017176-100 QUINIC ACID 100mg $ Rahmnoxanthin ASB-00017176-250 250mg $ Please See FRANGULIN A(P) Grade : P (14R)-7-ALPHA,20-EPOXY-1-ALPHA,6-BETA,7,14-TETRAHYDROXYKAUR-16-EN-15-ONE CAS# : [77-95-2] Chemical Formula : C7H12O6 Please See RUBESCENSIN A(RG) FW : 192.18 MP : 170 C Rapanone Long-Term Storage : RT Please See RAPANONE(RG) ASB-00018020-005 RAPANONE 5mg $ ASB-00017175-001 QUINIC ACID 1g $ Grade : RG Grade : RG CAS# : [573-40-0] CAS# : [77-95-2] Chemical Formula : C19H30O4 Chemical Formula : C7H12O6 FW : 322.46 FW : 192.18 Other Names
    [Show full text]
  • 121 Role of Flavonoid Troxerutin on Blood Pressure, Oxidative Stress
    [Frontiers In Bioscience, Elite, 11, 121-129, Jan 1, 2019] Role of flavonoid troxerutin on blood pressure, oxidative stress and regulation of lipid metabolism Boobalan Raja1, Dhanasekaran Saranya1, Rajendran Prabhu1 1Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Materials and methods 3.1. Animals and chemicals 3.2. L-NAME induced hypertensive animal model and troxerutin treatment 3.3. Experimental protocol 3.4. Preparation of tissue homogenates 3.5. Blood pressure measurement 3.6. Lipid peroxidation products and antioxidants 3.7. Tissue lipid level 3.8. Hepatic marker enzymes and renal function markers 3.9. Statistical analysis 4. Results 4.1. Effect of TX on systolic blood pressure 4.2. Effect of TX on lipid peroxidation products 4.3. Effect of TX on antioxidant level 4.4. Effect of TX on lipid level 4.5. Effect of TX on hepatic and renal function markers 5. Discussion 6. Acknowledgements 7. References 1. ABSTRACT These results suggest that TX has enough potential to attenuate hypertension, oxidative stress and The objective of the present study was to dyslipidemia in L-NAME induced hypertensive rats. investigate the effects of troxerutin (TX) on Nω-nitro-L- arginine methyl ester hydrochloride (L-NAME) induced 2. INTRODUCTION hypertension in male albino Wistar rats. L-NAME (40mg/kg body weight (bw)) administration caused a Hypertension is the most common sustained increase in systolic blood pressure (SBP), cardiovascular disorder both in developed and in levels of thiobarbituric acid reactive substances developing countries and has emerged as one of the (TBARS), lipid hydroperoxides (LOOH), tissue lipids major causes of mortality and morbidity worldwide.
    [Show full text]
  • Estonian Statistics on Medicines 2013 1/44
    Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Varicose Veins
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Varicose Veins Chemical Activity Count (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 1 (+)-CATECHIN 7 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALLOCATECHIN 2 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 1 (+)-PRAERUPTORUM-A 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ACETOXYCOLLININ 1 (-)-ALPHA-BISABOLOL 2 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 2 (-)-BORNYL-FERULATE 2 (-)-BORNYL-P-COUMARATE 2 (-)-DICENTRINE 1 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 3 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 Chemical Activity Count (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (15:1)-CARDANOL 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 2 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 3 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 2 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 12,118-BINARINGIN 1 12-ACETYLDEHYDROLUCICULINE
    [Show full text]
  • 1 Revealing SARS-Cov-2 Functional Druggability Through Multi-Target
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 May 2020 doi:10.20944/preprints202005.0199.v1 Revealing SARS-CoV-2 Functional Druggability Through Multi-Target Cadd Screening of Repurposable Drugs Yash Gupta1,2, Dawid Maciorowski1,3, Raman Mathur1, Catherine M Pearce1, David J. IIc1,3, Hamza Husein1,3, Ajay Bharti4, Daniel P. Becker3, Brijesh Rathi2,5, Steven B Bradfute6, Ravi Durvasula1,2, Prakasha Kempaiah1,2* 1 Loyola University Chicago Stritch School of Medicine, Chicago, IL, 60153, USA; 2 Department of Medicine, Loyola University Medical Center, Chicago, IL, 60153, USA; 3 Loyola University Chicago, Chicago, IL, USA; 4 Division of Infectious Diseases, Department of Medicine, University of California, San Diego, CA, 92093, USA, 5 Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, India; 6 Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA. Number of Tables: 10; Number of Figures: 16 ABSTRACT: The emergence of SARS/MERS drug resistant COVID-19 with high transmission and mortality has recently been declared a deadly pandemic causing economic chaos and significant health problems. Like all coronaviruses, SARS-CoV-2 is a large virus that has many druggable components within its proteome. In this study, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes within SARS-CoV-2. We shortlisted seven target proteins with enzymatic activities known to be essential at different stages of the virus life cycle. For virtual screening, the energy minimization of a crystal structure or modeled protein was carried out using Protein Preparation Wizard (Schrödinger LLC, 2020-1).
    [Show full text]
  • Flavonoid Compounds Benzquercin (R!NN)
    Gilenya; Norw. : Gilenya; Spain: Gilenya; Swed.: Gilenya; reintroduction of fingolimod if treatment has been stopped Oxerutins (BAN) for more than 2 weeks, and the precautions for re�initiating Switz.: Gilenya; Turk.: Gilenya; UK: Gilenya; USA: Gilenya. treatment outlined above should be followed. Hidroxileti!rut6sidos; Hydroxyethyir�tosides; Oxerutlnas: Fingolimod may increase the risk of developing 0Kcepynmot infections due to the reduction in peripheral lymphocyte Flavonoid Compounds Description. Oxerutins consist of a mixture of 5 different count (see Uses and Administration, p. 2504.3), and 0-(P-hydroxyethyl)rutosides, not less than 45% of which is mo f!avonoides; 8iofiavonoids; Flavonoides: Vitarnin treatment should not be started in patients without a recent P troxerutin (trihydroxyethylrutoside, below), but which also Substances; Vitamlnas full blood count taken within the previous 6 months. P; <DnqBOHOMj:jol. includes monohydroxyethylrutoside, dihydroxyethylruto­ Fingolimod should not be started in patients with active side, and tetrahydroxyethylrutoside. acute or chronic infections. Patients should be monitored Benzquercin (r!NN) for signs and symptoms of infection during treatment and Quercetin for 2 months after treatment has stopped. Stopping Benzqueccina; Benzquercine; Benzquercinum; 6et!3KB€PLi�H. fingolimod should be considered if a patient develops a 3,3',4';5,7-Pentakis(benzyloxy) flavone. Quercetina; Keep:.;erv.H: 3,3',4',5,7-Pentahydroxyftavone. serious infection during treatment, and then the risks versus C,oKNJ0,=752.9 2-(3,4-Dihydroxyphenyl)-3,5,7-trihy droxy�4H- 1 -benzopyran- benefits reassessed before treatment is resumed. 4--one, Patients without a history of chickenpox or who have not C4$ - 13157-90-9. received varicella Mzoster vaccination should be tested for UN/! - 499L710 905.
    [Show full text]
  • Quercetin Gregory S
    amr Monograph Quercetin Gregory S. Kelly, ND Description and Chemical Composition 5, 7, 3’, and 4’ (Figure 2). The difference between quercetin and kaempferol is that the latter lacks Quercetin is categorized as a flavonol, one of the the OH group at position 3’. The difference six subclasses of flavonoid compounds (Table 1). between quercetin and myricetin is that the latter Flavonoids are a family of plant compounds that has an extra OH group at position 5’. share a similar flavone backbone (a three-ringed By definition quercetin is an aglycone, lacking an molecule with hydroxyl [OH] groups attached). A attached sugar. It is a brilliant citron yellow color multitude of other substitutions can occur, giving and is entirely insoluble in cold water, poorly rise to the subclasses of flavonoids and the soluble in hot water, but quite soluble in alcohol different compounds found within these subclasses. Flavonoids also occur as either glycosides (with attached sugars [glycosyl groups]) or as aglycones (without attached sugars).1 Figure 1. 3-Hydroxyflavone Backbone with Flavonols are present in a wide variety of fruits Locations Numbered for Possible Attachment and vegetables. In Western populations, estimated of Hydroxyl (OH) and Glycosyl Groups daily intake of flavonols is in the range of 20-50 mg/day.2 Most of the dietary intake is as 3’ flavonol glycosides of quercetin, kaempferol, and 2’ 4’ myricetin rather than their aglycone forms (Table 8 1 2). Of this, about 13.82 mg/day is in the form of O 1’ 2 7 5’ quercetin-type flavonols. 2 The variety of dietary flavonols is created by the 6’ 6 differential placement of phenolic-OH groups and 3 OH attached sugars.
    [Show full text]