Epsilon Dichotomy for Linear Models
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Automorphic Forms on GL(2)
Automorphic Forms on GL(2) Herve´ Jacquet and Robert P. Langlands Formerly appeared as volume #114 in the Springer Lecture Notes in Mathematics, 1970, pp. 1-548 Chapter 1 i Table of Contents Introduction ...................................ii Chapter I: Local Theory ..............................1 § 1. Weil representations . 1 § 2. Representations of GL(2,F ) in the non•archimedean case . 12 § 3. The principal series for non•archimedean fields . 46 § 4. Examples of absolutely cuspidal representations . 62 § 5. Representations of GL(2, R) ........................ 77 § 6. Representation of GL(2, C) . 111 § 7. Characters . 121 § 8. Odds and ends . 139 Chapter II: Global Theory ............................152 § 9. The global Hecke algebra . 152 §10. Automorphic forms . 163 §11. Hecke theory . 176 §12. Some extraordinary representations . 203 Chapter III: Quaternion Algebras . 216 §13. Zeta•functions for M(2,F ) . 216 §14. Automorphic forms and quaternion algebras . 239 §15. Some orthogonality relations . 247 §16. An application of the Selberg trace formula . 260 Chapter 1 ii Introduction Two of the best known of Hecke’s achievements are his theory of L•functions with grossen•¨ charakter, which are Dirichlet series which can be represented by Euler products, and his theory of the Euler products, associated to automorphic forms on GL(2). Since a grossencharakter¨ is an automorphic form on GL(1) one is tempted to ask if the Euler products associated to automorphic forms on GL(2) play a role in the theory of numbers similar to that played by the L•functions with grossencharakter.¨ In particular do they bear the same relation to the Artin L•functions associated to two•dimensional representations of a Galois group as the Hecke L•functions bear to the Artin L•functions associated to one•dimensional representations? Although we cannot answer the question definitively one of the principal purposes of these notes is to provide some evidence that the answer is affirmative. -
REPRESENTATION THEORY WEEK 7 1. Characters of GL Kand Sn A
REPRESENTATION THEORY WEEK 7 1. Characters of GLk and Sn A character of an irreducible representation of GLk is a polynomial function con- stant on every conjugacy class. Since the set of diagonalizable matrices is dense in GLk, a character is defined by its values on the subgroup of diagonal matrices in GLk. Thus, one can consider a character as a polynomial function of x1,...,xk. Moreover, a character is a symmetric polynomial of x1,...,xk as the matrices diag (x1,...,xk) and diag xs(1),...,xs(k) are conjugate for any s ∈ Sk. For example, the character of the standard representation in E is equal to x1 + ⊗n n ··· + xk and the character of E is equal to (x1 + ··· + xk) . Let λ = (λ1,...,λk) be such that λ1 ≥ λ2 ≥ ···≥ λk ≥ 0. Let Dλ denote the λj determinant of the k × k-matrix whose i, j entry equals xi . It is clear that Dλ is a skew-symmetric polynomial of x1,...,xk. If ρ = (k − 1,..., 1, 0) then Dρ = i≤j (xi − xj) is the well known Vandermonde determinant. Let Q Dλ+ρ Sλ = . Dρ It is easy to see that Sλ is a symmetric polynomial of x1,...,xk. It is called a Schur λ1 λk polynomial. The leading monomial of Sλ is the x ...xk (if one orders monomials lexicographically) and therefore it is not hard to show that Sλ form a basis in the ring of symmetric polynomials of x1,...,xk. Theorem 1.1. The character of Wλ equals to Sλ. I do not include a proof of this Theorem since it uses beautiful but hard combina- toric. -
Matrix Coefficients and Linearization Formulas for SL(2)
Matrix Coefficients and Linearization Formulas for SL(2) Robert W. Donley, Jr. (Queensborough Community College) November 17, 2017 Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 1 / 43 Goals of Talk 1 Review of last talk 2 Special Functions 3 Matrix Coefficients 4 Physics Background 5 Matrix calculator for cm;n;k (i; j) (Vanishing of cm;n;k (i; j) at certain parameters) Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 2 / 43 References 1 Andrews, Askey, and Roy, Special Functions (big red book) 2 Vilenkin, Special Functions and the Theory of Group Representations (big purple book) 3 Beiser, Concepts of Modern Physics, 4th edition 4 Donley and Kim, "A rational theory of Clebsch-Gordan coefficients,” preprint. Available on arXiv Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 3 / 43 Review of Last Talk X = SL(2; C)=T n ≥ 0 : V (2n) highest weight space for highest weight 2n, dim(V (2n)) = 2n + 1 ∼ X C[SL(2; C)=T ] = V (2n) n2N T X C[SL(2; C)=T ] = C f2n n2N f2n is called a zonal spherical function of type 2n: That is, T · f2n = f2n: Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 4 / 43 Linearization Formula 1) Weight 0 : t · (f2m f2n) = (t · f2m)(t · f2n) = f2m f2n min(m;n) ∼ P 2) f2m f2n 2 V (2m) ⊗ V (2n) = V (2m + 2n − 2k) k=0 (Clebsch-Gordan decomposition) That is, f2m f2n is also spherical and a finite sum of zonal spherical functions. -
An Introduction to Lie Groups and Lie Algebras
This page intentionally left blank CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 113 EDITORIAL BOARD b. bollobás, w. fulton, a. katok, f. kirwan, p. sarnak, b. simon, b. totaro An Introduction to Lie Groups and Lie Algebras With roots in the nineteenth century, Lie theory has since found many and varied applications in mathematics and mathematical physics, to the point where it is now regarded as a classical branch of mathematics in its own right. This graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups, to the theory of root systems, and classification of finite-dimensional representations of semisimple Lie algebras. Written in an informal style, this is a contemporary introduction to the subject which emphasizes the main concepts of the proofs and outlines the necessary technical details, allowing the material to be conveyed concisely. Based on a lecture course given by the author at the State University of New York at Stony Brook, the book includes numerous exercises and worked examples and is ideal for graduate courses on Lie groups and Lie algebras. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: http://www.cambridge.org/series/ sSeries.asp?code=CSAM Already published 60 M. P. Brodmann & R. Y. Sharp Local cohomology 61 J. D. Dixon et al. Analytic pro-p groups 62 R. Stanley Enumerative combinatorics II 63 R. M. Dudley Uniform central limit theorems 64 J. -
Corporate Profile
2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense. -
Math.GR] 21 Jul 2017 01-00357
TWISTED BURNSIDE-FROBENIUS THEORY FOR ENDOMORPHISMS OF POLYCYCLIC GROUPS ALEXANDER FEL’SHTYN AND EVGENIJ TROITSKY Abstract. Let R(ϕ) be the number of ϕ-conjugacy (or Reidemeister) classes of an endo- morphism ϕ of a group G. We prove for several classes of groups (including polycyclic) that the number R(ϕ) is equal to the number of fixed points of the induced map of an appropriate subspace of the unitary dual space G, when R(ϕ) < ∞. Applying the result to iterations of ϕ we obtain Gauss congruences for Reidemeister numbers. b In contrast with the case of automorphisms, studied previously, we have a plenty of examples having the above finiteness condition, even among groups with R∞ property. Introduction The Reidemeister number or ϕ-conjugacy number of an endomorphism ϕ of a group G is the number of its Reidemeister or ϕ-conjugacy classes, defined by the equivalence g ∼ xgϕ(x−1). The interest in twisted conjugacy relations has its origins, in particular, in the Nielsen- Reidemeister fixed point theory (see, e.g. [29, 30, 6]), in Arthur-Selberg theory (see, e.g. [42, 1]), Algebraic Geometry (see, e.g. [27]), and Galois cohomology (see, e.g. [41]). In representation theory twisted conjugacy probably occurs first in [23] (see, e.g. [44, 37]). An important problem in the field is to identify the Reidemeister numbers with numbers of fixed points on an appropriate space in a way respecting iterations. This opens possibility of obtaining congruences for Reidemeister numbers and other important information. For the role of the above “appropriate space” typically some versions of unitary dual can be taken. -
Representation Theory
M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Schur Orthogonality Relations and Invariant Sesquilinear Forms
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 4, Pages 1211{1219 S 0002-9939(01)06227-X Article electronically published on August 29, 2001 SCHUR ORTHOGONALITY RELATIONS AND INVARIANT SESQUILINEAR FORMS ROBERT W. DONLEY, JR. (Communicated by Rebecca Herb) Abstract. Important connections between the representation theory of a compact group G and L2(G) are summarized by the Schur orthogonality relations. The first part of this work is to generalize these relations to all finite-dimensional representations of a connected semisimple Lie group G: The second part establishes a general framework in the case of unitary representa- tions (π, V ) of a separable locally compact group. The key step is to identify the matrix coefficient space with a dense subset of the Hilbert-Schmidt endo- morphisms on V . 0. Introduction For a connected compact Lie group G, the Peter-Weyl Theorem [PW] provides an explicit decomposition of L2(G) in terms of the representation theory of G.Each irreducible representation occurs in L2(G) with multiplicity equal to its dimension. The set of all irreducible representations are parametrized in the Theorem of the Highest Weight. To convert representations into functions, one forms the set of matrix coefficients. To undo this correspondence, the Schur orthogonality relations express the L2{inner product in terms of the unitary structure of the irreducible representations. 0 Theorem 0.1 (Schur). Fix irreducible unitary representations (π, V π), (π0;Vπ ) of G.Then Z ( 1 h 0ih 0i ∼ 0 0 0 0 u; u v; v if π = π ; hπ(g)u; vihπ (g)u ;v i dg = dπ 0 otherwise, G π 0 0 π0 where u; v are in V ;u;v are in V ;dgis normalized Haar measure, and dπ is the dimension of V π. -
On a Class of Inverse Quadratic Eigenvalue Problem
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 235 (2011) 2662–2669 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam On a class of inverse quadratic eigenvalue problem Yongxin Yuan a,∗, Hua Dai b a School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China b Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China article info a b s t r a c t Article history: In this paper, we first give the representation of the general solution of the following inverse Received 25 September 2009 monic quadratic eigenvalue problem (IMQEP): given matrices Λ D diagfλ1; : : : ; λpg 2 Received in revised form 3 December 2009 p×p n×p C , λi 6D λj for i 6D j, i; j D 1;:::; p, X DTx1;:::; xpU 2 C , rank.X/ D p, and N both Λ and X are closed under complex conjugation in the sense that λ2j D λ2j−1 2 C, MSC: n n x2j D xN2j−1 2 C for j D 1;:::; l, and λk 2 R, xk 2 R for k D 2l C 1;:::; p, 65F18 2 C C D 15A24 find real-valued symmetric matrices D and K such that XΛ DXΛ KX 0: Then Q Q n×n O O we consider a best approximation problem: given D; K 2 R , find .D; K/ 2 SDK such Keywords: O O Q Q Q Q that k.D; K/ − .D; K/kW D min.D;K/2 k.D; K/ − .D; K/kW ; where k · kW is a weighted Quadratic eigenvalue problem SDK Frobenius norm and SDK is the solution set of IMQEP. -
Successful Launch of the First Epsilon Launch Vehicle
Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) 59 Contribution to Japan's Flagship Launch Vehicle – part 2 -Successful Launch of the first Epsilon Launch Vehicle- TATSURU TOKUNAGA*1 NOBUHIKO KOHARA*2 KATSUYA HAKOH*3 TSUTOMU TAKAI*4 KYOICHI UI*5 TETSUYA ONO*6 On September 14, 2013, the first Epsilon Launch Vehicle was launched from (Independent Administrative Institution) Japan Aerospace Exploration Agency (JAXA) Uchinoura Space Center, and succeeded in properly injecting a satellite into orbit. In Epsilon Launch Vehicle development, we participate in the development/manufacture of the second-stage reaction control system(RCS) and modification maintenance of the launcher for the Epsilon launch system. The development/maintenance details and launch results are introduced in this report. |1. Introduction JAXA started development of the Epsilon Launch Vehicle in 2010, going through the stages of vehicle development, manufacturing, and maintenance of launch-related facilities, until the first Epsilon Launch Vehicle was launched from Uchinoura Space Center in 2013. We contributed to the successful launch of the first Epsilon Launch Vehicle through development of the second-stage reaction control system, which was equipped onto the launch vehicle, and modification maintenance of the launcher. Details of the development/maintenance and the launch results are introduced here. |2. Approach to Epsilon Launch Vehicle Development 2.1 General The Epsilon Launch Vehicle is the three-staged solid rocket developed by JAXA since 2010, and is the successor to the M-V launch vehicle technology, which completed operations in 2006, and develops to organize technical application/commonality of the H-IIA launch vehicle. -
The Official Magazine of the Tau Epsilon Phi Fraternity
the Plume The Official Magazine of the Tau Epsilon Phi Fraternity Winter 2017 Issue Volume 75 Issue 1 THE CONSUL’S CORNER the Consul’s Corner Brothers, I’d like to welcome you all to the first new edition of TEΦ’s Plume in over 20 years. We hope this finds you all well. To our alumni members I hope that this brings back great memories of your time in Tau Epsilon Phi. To our lifeblood, our undergraduates, I hope you find our National publication filled with interesting articles. As always, we’d love to hear of your accomplishments, both individually and as a chapter. I’d also like to extend to you the warm fraternal greetings of our Grand Council. It is certainly an honor and privilege to serve as the 47th Consul of TEΦ and lead this prestigious group of Brothers. I’d like to thank everyone who was able to attend our 2016 Grand Chapter in Orlando, Florida. We had such a diverse group of attendees and I’m glad that many of you are remaining involved whether serving on a committee, the Grand Council, or the TEΦ Foundation. I look forward to working with each of you and meeting many more of you as I continue to visit our chapters and attend alumni meet and greets around the country. I’d like to take a moment to recognize and thank my predecessor, Lane Koplon, for his many years of service to our great Fraternity, particularly as our Consul for the past five years. He helped lead our Fraternity out of bankruptcy and pave a path forward for the revitalization of TEΦ.