Polycarbazole and Its Derivatives: Synthesis and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Polycarbazole and Its Derivatives: Synthesis and Applications polymers Review Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years Fadila Bekkar 1, Faiza Bettahar 1, Isabel Moreno 2, Rachid Meghabar 1, Mohammed Hamadouche 3 , Estibaliz Hernáez 4, José Luis Vilas-Vilela 4,5 and Leire Ruiz-Rubio 4,5,* 1 Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie; [email protected] (F.B.); [email protected] (F.B.); [email protected] (R.M.) 2 Macromolecular Chemistry Group (LQM), Organic Chemistry II Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] 3 Laboratoire de Chimie Fine, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie; [email protected] 4 Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] (E.H.); [email protected] (J.L.V.-V.) 5 BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain * Correspondence: [email protected]; Tel.: +34-94-6017-972 Received: 20 August 2020; Accepted: 26 September 2020; Published: 28 September 2020 Abstract: Polycarbazole and its derivatives have been extensively used for the last three decades, although the interest in these materials briefly decreased. However, the increasing demand for conductive polymers for several applications such as light emitting diodes (OLEDs), capacitators or memory devices, among others, has renewed the interest in carbazole-based materials. In this review, the synthetic routes used for the development of carbazole-based polymers have been summarized, reviewing the main synthetic methodologies, namely chemical and electrochemical polymerization. In addition, the applications reported in the last decade for carbazole derivatives are analysed. The emergence of flexible and wearable electronic devices as a part of the internet of the things could be an important driving force to renew the interest on carbazole-based materials, being conductive polymers capable to respond adequately to requirement of these devices. Keywords: carbazole derivatives; conducting polymers; electropolymerization; chemical polymerization 1. Introduction Electrically conductive polymers are a highly demanded class of materials due to their extended uses in electronic and optical devices or sensors, among others. These materials present main advantageous properties of conventional polymers, such as solubility, mechanical flexibility, non-expensive fabrication or processing, with conductivity levels that could be compared to those of semiconductors or even metals. In 1977, Macdiarmid, Shirakawa and Heeger demonstrated that chemical doping of polyacetylene (PA) resulted in a highly conducting material, with its conductivity being eleven orders of magnitude higher than a pristine polymer. For this they were awarded with the Nobel Prize in 2000 for their research on conductive polymers [1,2]. These materials have induced the development of many applications, such as organic light emitting diodes (OLEDs) [3–6], organic field effect transistors (OFETs) [7–11], dye-sensitized solar cells [12–16], photochromic dyes [17–21], batteries [22–26], and electrocatalyst [27,28] or (bio)sensors [26,29–32] Polymers 2020, 12, 2227; doi:10.3390/polym12102227 www.mdpi.com/journal/polymers Polymers 2020, 12, x FOR PEER REVIEW 2 of 33 Polymers 2020, 12, x FOR PEER REVIEW 2 of 33 Polymersfield effect2020 ,transistors12, 2227 (OFETs) [7–11], dye-sensitized solar cells [12–16], photochromic dyes [17–21],2 of 33 field effect transistors (OFETs) [7–11], dye-sensitized solar cells [12–16], photochromic dyes [17–21], batteries [22–26], and electrocatalyst [27,28] or (bio)sensors [26,29–32] batteries [22–26], and electrocatalyst [27,28] or (bio)sensors [26,29–32] The term conductive polymer encompasses both organic molecules containing of alternating The term conductive polymer encompasses both organic moleculesmolecules containing of alternatingalternating simple (type σ) and double (type π) carbon bonds and/or conjugated aromatic nuclei on their simple (type(typeσ σ) and) and double double (type (typeπ) carbonπ) carbon bonds bonds and/or and/or conjugated conjugated aromatic aromatic nuclei onnuclei their skeleton.on their skeleton. This particularity, π-conjugated structure, allows the transfer of charges (electrons or holes) Thisskeleton. particularity, This particularity,π-conjugated π-conjugated structure, structure, allows the allows transfer the transfer of charges of charges (electrons (electrons or holes) or holes) along along the macromolecular skeleton. The most commonly used conjugated polymers are thealong macromolecular the macromolecular skeleton. sk Theeleton. most commonlyThe most usedcommonly conjugated used polymers conjugated are poly(thiophene)polymers are poly(thiophene) (PT) [33,34], poly(pyrrole) (PPy) [35], poly(p-phenylene) (PPP) [36], poly (p- (PT)poly(thiophene) [33,34], poly(pyrrole) (PT) [33,34], (PPy) poly(pyrrole) [35], poly(p-phenylene) (PPy) [35], poly(p-phenylene) (PPP) [36], poly (p-phenylenevinylene) (PPP) [36], poly (p- phenylenevinylene) (PPV) [37], and polyfluorene (PF) [38–41], with their structures summarized in (PPV)phenylenevinylene) [37], and polyfluorene (PPV) [37], (PF) and [38 –polyfluorene41], with their (P structuresF) [38–41], summarized with their structures in Figure1 .summarized In addition toin Figure 1. In addition to the processability inherent of many polymers, it is important to notice their theFigure processability 1. In addition inherent to the ofprocessability many polymers, inherent it is importantof many polymers, to notice theirit is important ability to modulate to notice their ability to modulate their conductivity by doping, which could vary 10from the1 isolation state (<10−10 conductivityability to modulate by doping, their which conductivity could vary by from doping the isolation, which could state( <vary10− fromS.cm the− ), isolation to the semiconductor state (<10−10 S.cm−1), to 5the semiconductor1 state (~10−5 S.cm−1), and even to4 the conductive1 material (>105 4 S.cm−11) stateS.cm− (~101), to− theS.cm semiconductor− ), and even state to the (~10 conductive−5 S.cm−1), material and even (> 10to theS.cm conductive− ) near copper material (5 (>1010 4S.cm S.cm−−1).) near copper (5 × 105 S.cm−1). Among electronic conductive polymers, polymers containing× a carbazole Amongnear copper electronic (5 × 10 conductive5 S.cm−1). Among polymers, electronic polymers conductive containing polymers, a carbazole polymers ring (PCz) containing also present a carbazole good ring (PCz) also present good electrical and optical properties. electricalring (PCz) and also optical present properties. good electrical and optical properties. Figure 1. The structure of some of the main conjugated polymers. Figure 1. The structure of some of the main conjugated polymers. Carbazole (C12HH99N),N), also also named named dibenzopyrrole or diphenylenimine,diphenylenimine, is an N-containigN-containig Carbazole (C12H9N), also named dibenzopyrrole or diphenylenimine, is an N-containig heterocyclic compound compound discovered discovered by by Graebe Graebe and and Gl Glaseraser in in1872 1872 [42]. [42 Its]. structure Its structure consists consists of two of heterocyclic compound discovered by Graebe and Glaser in 1872 [42]. Its structure consists of two twobenzene benzene ring ringfused fused on either on either side side of ofa central a central pyrro pyrrolele ring ring (Figure (Figure 2)2)[ [43].43]. Carbazole Carbazole represents represents an benzene ring fused on either side of a central pyrrole ring (Figure 2) [43]. Carbazole represents an important class of heterocycles withwith severalseveral advantages.advantages. For example, a large variety of substituents important class of heterocycles with several advantages. For example, a large variety of substituents can be easily introduced in the nitrogen atom andand the aromaticaromatic frameworkframework can be substituted in can be easily introduced in the nitrogen atom and the aromatic framework can be substituted in positions 3 andand 6,6, modifyingmodifying thethe physicochemicalphysicochemical properties.properties. Carbazol-basedCarbazol-based polymers (PCz) have positions 3 and 6, modifying the physicochemical properties. Carbazol-based polymers (PCz) have attracted increased attention over the last 50 years owing to their stability and higher redox potential attracted increased attention over the last 50 years owing to their stability and higher redox potential compared to other conducting polymers [[44].44]. Simila Similarly,rly, they present good electro-electro- andand photoactivephotoactive compared to other conducting polymers [44]. Similarly, they present good electro- and photoactive properties because of their high hole transporting mobility and strong absorption in the UV spectral properties because of their high hole transporting mobility and strong absorption in the UV spectral region [45[45].]. These These characteristics characteristics have have extended extended the use the of thisuse kindof this of polymer kind of in polymer several applications, in several region [45]. These characteristics have extended the use of this kind of polymer in several suchapplications, as transistors
Recommended publications
  • Synthesis of 1,2,3,4-Tetrahydrocarbazoles with Large Groups - Aromatization to Carbazoles1 K
    PHYSICAL SCIENCES 215 Synthesis of 1,2,3,4-Tetrahydrocarbazoles with Large Groups - Aromatization to Carbazoles1 K. DARRELL BERLIN, PETER E. CLARK lACK T. SCHROEDER and DARREL G. HOPPERs Department of Chemistry, Oklahoma State University, Stillwater Tetrahydrocarbazoles can be prepared from cyclohexanone and phenyl­ hydrazines as Illustrated by the one-step synthesis ot Rogers and Corson (1947). ~--ir V CHs + NHs + HaO These compounds can be aromatized by heating with chloranll in xylene (Barclay and CAmpbell, 1945) and reduced electrolytically to the cia-hexa­ hydro derivatives (Perkin and Plant, 1924) or over metal catalysts to the dodecahydro (Eldertield, 1952) derivatives, all in high yield. Few hexahydrocarbazoles - and fewer dodecahydrocarbazoles - are known. These compounds, like several substituted carbazole. (Clayson, 1962), may be biologically active. For this latter poulbWty. tor the pur­ pose of stUdying the nuclear magnetic resonance spectra of these com­ pounds and to explore the possibilities ot the Rogers-Corson type of FIscher indole synthesis, conformationally rigid ketonea, 4-t-butylcyclo- ·We eratefuUy aek1lOwJeclse partial .apport by tM :a..eareh Foundatfon. Oklahoma State University. IN.UemaJ Selenee FoundatloD Re.-reh Trainee. Summft' 1111. 21e PROC. OF THE OKLA. ACAD. OF SCI. FOR 1966 hexanone and 2-eyclohexyleyc1ohexanone, were examined. It was thought that thia type of ketone would provide a polyhydrocarbazole more resistant to air oxidation because of steric factors. 3-t-Butyl-l,2,3,4-tetrahydrocar­ bazole (1) and 3-methyl-l,2,3,4-tetrahydrocarbazole (I) were prepared, the latter compound to serve as a model in proof ot structure tor I, which is new. Both 1 and the methyl compound 1 showed infrared bands tor N-H, at about 3400 cm-· and 3350 em'· respectively.
    [Show full text]
  • Table 2. Chemical Names and Alternatives, Abbreviations, and Chemical Abstracts Service Registry Numbers
    Table 2. Chemical names and alternatives, abbreviations, and Chemical Abstracts Service registry numbers. [Final list compiled according to the National Institute of Standards and Technology (NIST) Web site (http://webbook.nist.gov/chemistry/); NIST Standard Reference Database No. 69, June 2005 release, last accessed May 9, 2008. CAS, Chemical Abstracts Service. This report contains CAS Registry Numbers®, which is a Registered Trademark of the American Chemical Society. CAS recommends the verification of the CASRNs through CAS Client ServicesSM] Aliphatic hydrocarbons CAS registry number Some alternative names n-decane 124-18-5 n-undecane 1120-21-4 n-dodecane 112-40-3 n-tridecane 629-50-5 n-tetradecane 629-59-4 n-pentadecane 629-62-9 n-hexadecane 544-76-3 n-heptadecane 629-78-7 pristane 1921-70-6 n-octadecane 593-45-3 phytane 638-36-8 n-nonadecane 629-92-5 n-eicosane 112-95-8 n-Icosane n-heneicosane 629-94-7 n-Henicosane n-docosane 629-97-0 n-tricosane 638-67-5 n-tetracosane 643-31-1 n-pentacosane 629-99-2 n-hexacosane 630-01-3 n-heptacosane 593-49-7 n-octacosane 630-02-4 n-nonacosane 630-03-5 n-triacontane 638-68-6 n-hentriacontane 630-04-6 n-dotriacontane 544-85-4 n-tritriacontane 630-05-7 n-tetratriacontane 14167-59-0 Table 2. Chemical names and alternatives, abbreviations, and Chemical Abstracts Service registry numbers.—Continued [Final list compiled according to the National Institute of Standards and Technology (NIST) Web site (http://webbook.nist.gov/chemistry/); NIST Standard Reference Database No.
    [Show full text]
  • The Chemistry of Heterocycles
    The Chemistry of Heterocycles Mohammad Jafarzadeh Faculty of Chemistry, Razi University The Chemistry of Heterocycles, (Second Edition). By Theophil Eicher and Siegfried Hauptmann, Wiley-VCH Veriag GmbH, 2003 1 110 5 Five-Membered Heterocycles The indole ring system forms the basis of several pharmaceuticals, for instance the anti-inflammatory indomethacin 54 and the antidepressant iprindole 55: MeO, I CH2— C H 2— C H 2— N M e 2 55 Indigo and other dyes (see p 81) which contain the chromophore 56 O x - ,X = N H o r S , ( E ) - o r ( Z ) - , 56 are known as indigoid dyes, and are vat dyes. These water-insoluble compounds are reduced by sodium dithionite and sodium hydroxide and applied as vat dyes, whereby they become soluble as disodium dihydro compounds, e.g.: ^2H,2NaOH -2H20 Before the availability of sodium dithionite (1871), the reduction of indigo was brought about by bacte- ria with reducing properties (fermentation vat). The vat of indigo has a brown-yellow colour. The cloth is dipped in the vat and then exposed to air to allow reoxidation to indigo which is precipitated and finely distributed onto the fibre. A consequence of this process is the low rubbing fastness of the dyes. It causes the faded appearance of indigo-dyed jeans and makes possible the manufacture of 'faded jeans'. Since the seventies, indole compound5.14s Isoindolehave lost their importance as textile dyes. They have, how- ever, found application in other fields, e.g. in polaroid photography. [A-C] The name isoindole is admissible for benzo[c]pyrrole5.15.
    [Show full text]
  • Synthesis of Azaindoles, Diazaindoles, and Advanced Carbazole Alkaloid Intermediates Via Palladium-Catalyzed Reductive N- Heteroannulation
    Graduate Theses, Dissertations, and Problem Reports 2008 Synthesis of azaindoles, diazaindoles, and advanced carbazole alkaloid intermediates via palladium-catalyzed reductive N- heteroannulation Grissell M. Carrero-Martinez West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Carrero-Martinez, Grissell M., "Synthesis of azaindoles, diazaindoles, and advanced carbazole alkaloid intermediates via palladium-catalyzed reductive N-heteroannulation" (2008). Graduate Theses, Dissertations, and Problem Reports. 4360. https://researchrepository.wvu.edu/etd/4360 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Synthesis of Azaindoles, Diazaindoles, and Advanced Carbazole Alkaloid Intermediates via Palladium-Catalyzed Reductive N-Heteroannulation Grissell M. Carrero-Martínez Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Björn C. G. Söderberg, Ph.D., Chair Kung K. Wang, Ph.D. John H. Penn, Ph.D.
    [Show full text]
  • Vinylation of a Secondary Amine Core with Calcium Carbide for Efficient
    molecules Article Vinylation of a Secondary Amine Core with Calcium Carbide for Efficient Post-Modification and Access to Polymeric Materials Konstantin S. Rodygin 1, Alexander S. Bogachenkov 1 and Valentine P. Ananikov 1,2,* ID 1 Saint Petersburg State University, Universitetsky Prospect, 26, St. Petersburg 198504, Russia; [email protected] (K.S.R.); [email protected] (A.S.B.) 2 Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospect, 47, Moscow 119991, Russia * Correspondence: [email protected] Received: 16 February 2018; Accepted: 9 March 2018; Published: 13 March 2018 Abstract: We developed a simple and efficient strategy to access N-vinyl secondary amines of various naturally occurring materials using readily available solid acetylene reagents (calcium carbide, KF, and KOH). Pyrrole, pyrazole, indoles, carbazoles, and diarylamines were successfully vinylated in good yields. Cross-linked and linear polymers were synthesized from N-vinyl carbazoles through free radical and cationic polymerization. Post-modification of olanzapine (an antipsychotic drug substance) was successfully performed. Keywords: acetylene; calcium carbide; vinylation; olanzapine; functionalization 1. Introduction Nitrogen-containing compounds are one of the most important functional molecules in modern chemistry, biology, and drug development. Nucleic acids, N-heterocyclic compounds, amines, amino-acids, and their biopolymers are pivotal to a vast majority of biochemical processes. Effective modification of secondary amines by the insertion of a vinyl group leads to demanded N-vinyl derivatives with a variety of new applications. Vinylated products are interesting both as biologically active cores [1] and as versatile building blocks for polymerization [2]. At the same time, carbazole-based compounds are considered promising as photoconductors and charge-transporting materials [3] in the aftermath of the discovery of photoconductivity in poly(N-vinylcarbazole) [4].
    [Show full text]
  • Mutagens and Reproductive Toxins Chemical Class Standard Operating Procedure
    1 Mutagens and Reproductive Toxins Chemical Class Standard Operating Procedure Mutagens and Reproductive Toxins H340 H341 H360 H361 H362 This SOP is not a substitute for hands-on training. Print a copy and insert into your laboratory SOP binder. Department: Chemistry Date SOP was written: Thursday, July 1, 2021 Date SOP was approved by PI/lab supervisor: Thursday, July 1, 2021 Name: F. Fischer Principal Investigator: Signature: ______________________________ Name: Matthew Rollings Internal Lab Safety Coordinator or Lab Manager: Lab Phone: 510.301.1058 Office Phone: 510.643.7205 Name: Felix Fischer Emergency Contact: Phone Number: 510.643.7205 Tan Hall 674, 675, 676, 679, 680, 683, 684 Location(s) covered by this SOP: Hildebrand Hall: D61, D32 1. Purpose This SOP covers the precautions and safe handling procedures for the use of Mutagens and Reproductive Toxins. For a list of Mutagens and Reproductive Toxins covered by this SOP and their use(s), see the “List of Chemicals”. Procedures described in Section 12 apply to all materials covered in this SOP. A change to the “List of Chemicals” does not constitute a change in the SOP requiring review or retraining. If you have questions concerning the applicability of any recommendation or requirement listed in this procedure, contact the Principal Investigator/Laboratory Supervisor or the campus Chemical Hygiene Officer at [email protected]. 2. Physical & Chemical Properties/Definition of Chemical Group Germ Cell Mutagenicity is a hazard class that is primarily concerned with chemicals that may cause mutations in the germ cell of humans that can be transmitted to the progeny. Rev.
    [Show full text]
  • Influence of Electronic Environment on the Radiative Efficiency of 9
    molecules Article Influence of Electronic Environment on the Radiative Efficiency of 9-Phenyl-9H-carbazole-Based ortho-Carboranyl Luminophores Seok Ho Lee †, Ji Hye Lee † , Min Sik Mun †, Sanghee Yi, Eunji Yoo, Hyonseok Hwang and Kang Mun Lee * Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; [email protected] (S.H.L.); [email protected] (J.H.L.); [email protected] (M.S.M.); [email protected] (S.Y.); [email protected] (E.Y.); [email protected] (H.H.) * Correspondence: [email protected]; Tel.: +82-33-250-8499 † These authors contributed equally to the work. Abstract: The photophysical properties of closo-ortho-carboranyl-based donor–acceptor dyads are known to be affected by the electronic environment of the carborane cage but the influence of the elec- tronic environment of the donor moiety remains unclear. Herein, four 9-phenyl-9H-carbazole-based closo-ortho-carboranyl compounds (1F, 2P, 3M, and 4T), in which an o-carborane cage was appended at the C3-position of a 9-phenyl-9H-carbazole moiety bearing various functional groups, were syn- thesized and fully characterized using multinuclear nuclear magnetic resonance spectroscopy and elemental analysis. Furthermore, the solid-state molecular structures of 1F and 4T were determined by X-ray diffraction crystallography. For all the compounds, the lowest-energy absorption band Citation: Lee, S.H.; Lee, J.H.; exhibited a tail extending to 350 nm, attributable to the spin-allowed π–π* transition of the 9-phenyl- Mun, M.S.; Yi, S.; Yoo, E.; Hwang, H.; 9H-carbazole moiety and weak intramolecular charge transfer (ICT) between the o-carborane and Lee, K.M.
    [Show full text]
  • Theoretical Study on the Acidities of Pyrrole, Indole, Carbazole and Their Hydrocarbon Analogues in DMSO
    Canadian Journal of Chemistry Theoretical study on the acidities of pyrrole, indole, carbazole and their hydrocarbon analogues in DMSO Journal: Canadian Journal of Chemistry Manuscript ID cjc-2018-0032.R1 Manuscript Type: Article Date Submitted by the Author: 13-May-2018 Complete List of Authors: Ariche, Berkane; Modelisation and computational Méthods Laboratory, Faculty of Sciences, University of Saida, Chemistry RAHMOUNI,Draft Ali; Universite Dr Tahar Moulay de Saida, Chimie Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue?: Keyword: pKa calculation, Aromaticity index, Pyrolle, DMSO, DFT https://mc06.manuscriptcentral.com/cjc-pubs Page 1 of 33 Canadian Journal of Chemistry Theoretical study on the acidities of pyrrole, indole, carbazole and their hydrocarbon analogues in DMSO Ariche Berkane, Rahmouni Ali* Modeling and Calculation Methods Laboratory, University of Saida, B.P. 138, 20002 Saida, Algeria *Corresponding author [email protected] Abstract SMD and IEF-PCM continuum solvation models have been used, in combination with three quantum chemistry methods (B3LYP,Draft M062X and CBS-QB3) to study the acidities of pyrrole, indole and carbazole as well as their hydrocarbon analogues in DMSO, following a direct thermodynamic method. Theoretical parameters such as aromaticity indices (HOMA and SA), molecular electrostatic potential (MEP) and atomic charges have been calculated using B3LYP/6-311++G(d,p) level of theory. Calculated pKa values indicate that there is generally good agreement with experimental data, with all deviations being less than the acceptable error for a directly calculated pKa values. The M062X functional combined to SMD solvation model provide the more accurate pKa values.
    [Show full text]
  • Synthesis of Carbazoles from N-(N,N-Diarylamino)Phthalimides with Aluminum Chloride Via Diarylnitrenium Ions
    8612 J. Org. Chem. 2001, 66, 8612-8615 Synthesis of Carbazoles from N-(N,N-Diarylamino)phthalimides with Aluminum Chloride via Diarylnitrenium Ions Yasuo Kikugawa,* Yutaka Aoki, and Takeshi Sakamoto Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan [email protected] Received September 17, 2001 Generation of diarylnitrenium ions from N-(N,N-diarylamino)phthalimides by treatment with AlCl3 in benzene or in 1,2-dichloroethane leads to formation of carbazoles by intramolecular C-C bond formation. The reaction proceeds in synthetically useful yields. Introduction Scheme 1 From the extensive work of Gassman and his group, the nitrenium ion has received increasing attention from synthetic, theoretical, and biological perspectives.1 How- ever, despite the potential utility of the nitrenium ion as an electrophilic nitrogen, its synthetic applications re- main limited, mainly because it is a short-lived reaction intermediate. Previously, we reported that N-phenylaminophthal- imide reacts with AlCl3 in benzene to generate a phen- ylnitrenium ion that is trapped by benzene to give o- and p-aminobiphenyls and N-phenylaniline.2 On the other hand, with N-(N-methyl-N-phenylamino)phthalimide, the cleavage of the N-N bond results in a positive charge exclusively on the para position of the methylamino group, and 4-methylaminobiphenyl was obtained in 91% yield.3 In an extension of this work, we now have investigated the reaction of N-(N,N-diarylamino)phthal- imides (1) with AlCl3 in benzene, with the expectation that AlCl3-mediated cleavage of the N-N bond might give 4 a diarylnitrenium ion.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • Carbazole Violet Pigment 23 from China and India
    Carbazole Violet Pigment 23 From China and India Investigations Nos. 701-TA-437 and 731-TA-1060 and 1061 (Final) Publication 3744 December 2004 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Stephen Koplan, Chairman Deanna Tanner Okun, Vice Chairman Marcia E. Miller Jennifer A. Hillman Charlotte R. Lane Daniel R. Pearson Robert A. Rogowsky Director of Operations Staff assigned Cynthia Trainor, Investigator Cynthia Foreso, Industry Analyst Craig Thomsen, Economist David Boyland, Accountant Mary Jane Alves, Attorney David Goldfine, Attorney Lemuel Shields, Statistician George Deyman, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Carbazole Violet Pigment 23 From China and India Investigations Nos. 701-TA-437 and 731-TA-1060 and 1061 (Final) Publication 3744 December 2004 CONTENTS Page Determinations ................................................................. 1 Views of the Commission ......................................................... 3 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Major firms involved in violet 23 market ........................................... I-2 Summary data................................................................ I-2 Nature and extent of subsidies
    [Show full text]
  • Synthesis and Characterization of New Conjugated Polymers for Application in Solar Cells
    Synthesis and Characterization of New Conjugated Polymers for Application in Solar Cells Mohd Sani Bin Sarjadi A thesis submitted to The University of Sheffield as partial fulfillment for the degree of Doctor of Philosophy October 2014 Declaration This thesis is submitted for the degree of doctorate of philosophy (PhD) at the University of Sheffield, having been submitted for no other degree. It records the research carried out the University of Sheffield from November 2009 to October 2014. It is entirely my original work, unless where referenced. Signed:…………………………………………………….. 15 OCTOBER 2014 Date:…………………………………………………… i Abstract Plastic photovoltaic devices based on solution processed conjugated polymers have attracted much attention as potential candidates for the next generation of solar cells. Polymer solar cells based on blends of conjugated polymer donors and molecular acceptors such as PCBM (often referred to as bulk heterojunction solar cells) are attracting a great deal of interest. These systems have potential technological value due to their ease of fabrication and their relatively low production costs. This enabled devices to be produced that have solar power conversion efficiencies approaching 9%. The purpose of this research project is to develop new and more efficient materials for application in this area. A new class of alternating copolymers comprising carbazole units and thieno‐thiophene units for application in the area of bulk heterojunction solar cells is presented in this contribution. The polymers were prepared using Suzuki coupling methods. Three main classes of such polymers were prepared. The first class of polymers P1 ‐ P3 consisted of alternating co‐ polymers comprising thienothiophene repeat units and either 2,7‐linked 9‐alkyl carbazole units P1, or 2,7‐linked‐9‐alkyl carbazole repeat units with fluorine substituents at their 3,6‐ positions P2, or 2,7‐linked‐9,9‐dioctylfluorene P3.
    [Show full text]