Llanos Vegetation

Total Page:16

File Type:pdf, Size:1020Kb

Llanos Vegetation Plant Formations in the Llanos BioProvince Peter Martin Rhind Llanos Forest The most extensive forests on the Llanos extend along the eastern piedmont of the Andean Cordillera, which in places is up to 80 km wide. A feature here is the continuous input of groundwater and nutrients from the adjacent slopes and a number of areas are subject to seasonal flooding. These forests can be subdivided into several different types. The most prevalent type, found on the drier alluvial plains, is a medium tall (25-30 m), semi deciduous forest dominated by Banara guianensis, Brosimum alicastrum, Brownea macrophylla, Chrysophyllum argenteum subsp. auratum, Croton gossypiifolius, Lonchocarpus hedyosmus and Pachira quinata. But possibly one of the most interesting is the largely evergreen forest of the San Camilo Reserve in western Apure State. This forms part of the so-called San Camillo forest refuge centre (of Steyermark) for endemic and/or relict species. Endemic species including Aegiphila scandens (Verbenaceae), Forsteronia apurensis (Apocynaceae), Inga thibaudiana (Fabaceae), Machaerium paraense (Fabaceae), Miconia matthaei (Melastomataceae), Odontocarpa steyermarkii (family?), Ormosia nobilis (Fabaceae), Ouratea apurensis, O. pseudomarahuacensis (Ochnaceae), Pterocarpus santalinoides (Fabaceae) and Simaba paraensis (Simarubaceae). Also present are various Amazonian and Guayanan floristic elements reflecting the former close link with these biomes in the recent past. These include Caraipa punctata, Guatteria cardoniana, Licania latifolia, Pouteria bangii and Roucheria columbiana. Another interesting, disjunct element found here is Myrocarpus venezuelanum (Fabaceae). Other members of this genus are found in Argentina, Paraguay and southern Brazil. This is thought to be evidence of a former connection between the Brazilian and Guayanan shields which was disrupted during an arid phases of the Pleistocene. Llanos Semi-Deciduous Gallery Forest Many of these linear stretches of forest are thought to be relicts of a once more extensive forest but some have now been modified by human intervention. The forests associated with Delgadito Creek in Venezuela’s Portuguese State, however, are thought to be largely undisturbed. They extend for some 4000 ha and characteristically have three tree stories. Most of the tree species are evergreen and the upper canopy can reach heights of up to about 22 m. The dominant trees of the upper canopy include Astronium graveolens and Samanea saman together with Albizzia caribensis, Hura crepitans, Lecythis ollearia and Trichilia unifoliata. The middle stratum ranges from 10-20 m and typically includes Calycophyllum candidissimum, Cecropia peltata, Guazuma ulmifolia and Guettardia divaricata. Between 8-10 m, palms such as Attalea butyracea and Bactris major largely dominate the lower stratum. Of particular interest for its timber value is Astronium graveolens and so its presence is usually a good indicator that forest has not been disturbed. Among the endemic species associated with these forests is Gustavia acuta (Lecythidaceae). Llanos Dry Savanna In the Colombian Llanos these are largely characterised by bunchgrass formations and can be broadly divided into three types – Trachypogon vestitus savanna, Paspalum pectinatum savanna and Trachypogon vestitus-Axonopus purpusii savanna. The first type is found in the driest areas, mainly on well-drained high plains. Other common grasses are Leptocoryphium lanatum and Paspalum pectinatus, while others include Andropogon selloanus, Axonopus pulcher and Thrasya petrosa. Certain sedges such as Bulbostylis junciformis, Dichronema ciliata and Rhyncospora barbata are also common, together with Copyright © 2010 Peter Martin Rhind the forbs Curculigo scorzoneraefolia and Ichthyothera terminalis. Trees and shrubs occur sporadically mainly Curatella americana and Palicourea rigida, but in slightly more humid areas Byrsonima crassifolia and B. verbascifolia also make an appearance. Paspalum pectinatum savanna is characteristic or shallow soils with high gravel content in level areas. However, it is similar to the previous savanna in that both Leptocoryphium lanatum and Paspalum pectinatus are common components and they share a number of other common species. Among the scattered tree are Curatella americana, Jacaranda lasiogyne and Xylopia aromatica. Savanna dominated by Trachypogon vestitus and Axonopus purpusii are found on more recently developed soils where leaching is less pronounced such as in the piedmont regions and on alluvial fans. They typically have a two-layered structure with an upper layer of Trachypogon vestitus and a lower one dominated by decumbent Axonopus purpusii. Other common grasses are Andropogon bicornis, Leptocaryphium lanatum, Panicum versicolor, Setaria genigulata and Trachypogon plumosus, while common sedges included Bulbophyllis junciformis, Dichronema ciliata and Sclera hirtella. Arboreal vegetation includes both scattered low shrubs with species such as Cassia flexuosa, Melochia polystachya, Pavonia speciosa and Psidium eugenii, together with occasional tree groves. Llanos Humid Savanna These, like dry savanna, are also dominated by bunchgrass formations, and occur where there is intermittent water inundation. In the Colombian Llanos two types have been recognized – Trachypogon ligularis savanna and Leptocoryphium lanatum savanna. The first occurs at the dry end of the spectrum and occupies an intermediate position between dry and wet savanna. Other dominant grasses in this savanna are Andropogon selloanus, Leptocoryphium lanatum and Paspalum pectinatum, while other common grasses include Axonopus pulcher, Setaria geniculata and Trachypogon plumosa, while Bulbostylis junciformis is the common sedge. Besides a scattering of low shrubs and trees such as Byrsonima crassifolia, Curatella americana, Pavonia speciosa and Psidium guineense the two suffrutescent shrubs Hyptis brachiata and H. confertai also occur. With increased grazing pressure these latter two species become more abundant. Savanna dominated by Leptocoryphium lanatum is often very wet with much standing water in the rainy season. They have a two-layered structure with Leptocoryphium lanatum conspicuous in the upper layer while a variety of small, annual grasses dominate the lower layer. Other common upper layer species include grasses such as Andropogon hypogynus, Axonopus purpusii, Eriochrysis halcoides, Panicum rudgei, Setaria geniculata, Sorghastrum parviflorum, the sedges Bulbostylis junciformis and Rhyncospora globosa and the forb Heliconia psittacorum. Common lower layer grasses are Andropogon brevifolius, Aristida capillacea, Panicum stenodes and Paspalum minus. Llanos Wet Savanna With these savannas periodic inundation is frequent during the wet season often to a depth of up to 0.3 m and they may remain flooded for several months at a time. Two wet savanna types have been recognized on the Colombian Llanos. These include Mesosetum Savanna and Andropogon Savanna. The first is largely confined to the aeolian plain, which although flooded during the wet season, the water table can drop to a subsurface depth of up to 2 m in the dry season. Here the dominant grasses are Mesosetum chaseae, M. rottboellioides and Eriochloa holcoides, while other common grasses are Andropogon virgatus, Axonopus anceps, Leptocoryphium lanatum and Trachypogon ligularis. Sedges like Rhychospora barbata and R. globosa are also common together with the shrubs Buettneria jaculifolia and Jassiaea lithospermifolia. This formation has much in common with wet savanna found the Llanos of central Venezuela. In places where the depth of floodwater increases other species may become conspicuous such as Copyright © 2010 Peter Martin Rhind the shrub Rhynchanthera grandiflora, the tree Caraipa llanorum or the palm Maurita minor. Andropogon Savanna occurs mainly in the low basins of alluvial overflow plains on heavy clay soil with poor drainage where even during the dry season the water table is close to the surface. The vegetation has a fairly complex structure and often includes several layers. The dominant grasses are Andropogon bicornis, A. hypogynus, A. virgatus and Sorghastrum parviflorum. Common upper layer species include Axonopus anceps and the shrubs Buettnera jaculifolia and Jussiaea lithospermifolia. At medium heights the grasses Eriochrysis holcoides and Setaria geniculata are usually conspicuous together with the sedges Cyperus haspan and Rhyncospora barbata. At the lowest level Panicum laxum, P. parviflorum and Paratheria prostrata are common. Llanos Savannas with Relict Forest On the Colombian Llanos these are found in scattered locations such as dunes, dissected high plains and at the foot of mountains. Three types have been identified but one of them the Melinis minutiflora Savanna is regarded as a highly modified as a result of human intervention. The other two are described as Trachypogon ligularis-Paspalum carinatum Savanna and Paspalum carinatum Savanna. The former, dominated by the two- bunchgrass species Trachypogon ligularis and Paspalum carinatum occur on dunes on the aeolian plain. Other commonly associated grasses included Axonopus purpusii, Gymnopogon foliosus, Leptocoryphium lanatum and Paspalum pectinatum while other frequent components are the sedges Bulbostylis junciformis and Rhynchospora barbata and the endemic forb Schieckia orinomensis (Haemodoraceae). The presence of shrubs, such as species of Miconia, show that these formations would probably develop into woodland if left undisturbed,
Recommended publications
  • Number of Plant Species That Correspond with Data Obtained from at Least Two Other Participants
    Promotor: Prof. Dr. ir. Patrick Van Damme Faculty of Bioscience Engineering Department of Plant Production Laboratory of Tropical and Sub-Tropical Agriculture and Ethnobotany Coupure links 653 B-9000 Gent, Belgium ([email protected]) Co-Promotor: Dr. Ina Vandebroek Institute of Economic Botany The New York Botanical Garden Bronx River Parkway at Fordham Road Bronx, New York 10458, USA ([email protected]) Chairman of the Jury: Prof. Dr. ir. Norbert De Kimpe Faculty of Bioscience Engineering Department of Organic Chemistry Coupure links 653 B-9000 Gent, Belgium ([email protected]) Members of the Jury: Prof. Dr. ir. Christian Vogl Prof. Dr. Paul Goetghebeur University of Natural Resources and Faculty of Science Applied Life Sciences Department of Biology Institut für Ökologischen Landbau K.L. Ledeganckstraat 35 Gregor Mendelstrasse 33 B-9000 Gent, Belgium A-1180, Vienna, Austria ([email protected]) ([email protected]) Prof. Dr. Mieke Verbeken Prof. Dr. ir. François Malaisse Faculty of Science Faculté Universitaire des Sciences Department of Biology Agronomiques K.L. Ledeganckstraat 35 Laboratoire d’Ecologie B-9000 Gent, Belgium Passage des Déportés, 2 ([email protected]) B-5030 Gembloux, Belgium ([email protected]) Prof. Dr. ir. Dirk Reheul Faculty of Bioscience Engineering Department of Plant Production Coupure links 653 B-9000 Gent, Belgium ([email protected]) Dean: Prof. Dr. ir. Herman Van Langenhove Rector: Prof. Dr. Paul Van Cauwenberge THOMAS EVERT QUANTITATIVE ETHNOBOTANICAL RESEARCH
    [Show full text]
  • The State of Venezuela's Forests
    ArtePortada 25/06/2002 09:20 pm Page 1 GLOBAL FOREST WATCH (GFW) WORLD RESOURCES INSTITUTE (WRI) The State of Venezuela’s Forests ACOANA UNEG A Case Study of the Guayana Region PROVITA FUDENA FUNDACIÓN POLAR GLOBAL FOREST WATCH GLOBAL FOREST WATCH • A Case Study of the Guayana Region The State of Venezuela’s Forests. Forests. The State of Venezuela’s Págs i-xvi 25/06/2002 02:09 pm Page i The State of Venezuela’s Forests A Case Study of the Guayana Region A Global Forest Watch Report prepared by: Mariapía Bevilacqua, Lya Cárdenas, Ana Liz Flores, Lionel Hernández, Erick Lares B., Alexander Mansutti R., Marta Miranda, José Ochoa G., Militza Rodríguez, and Elizabeth Selig Págs i-xvi 25/06/2002 02:09 pm Page ii AUTHORS: Presentation Forest Cover and Protected Areas: Each World Resources Institute Mariapía Bevilacqua (ACOANA) report represents a timely, scholarly and Marta Miranda (WRI) treatment of a subject of public con- Wildlife: cern. WRI takes responsibility for José Ochoa G. (ACOANA/WCS) choosing the study topics and guar- anteeing its authors and researchers Man has become increasingly aware of the absolute need to preserve nature, and to respect biodiver- Non-Timber Forest Products: freedom of inquiry. It also solicits Lya Cárdenas and responds to the guidance of sity as the only way to assure permanence of life on Earth. Thus, it is urgent not only to study animal Logging: advisory panels and expert review- and plant species, and ecosystems, but also the inner harmony by which they are linked. Lionel Hernández (UNEG) ers.
    [Show full text]
  • Map and Database of Quaternary Faults in Venezuela and Its Offshore Regions
    U.S. Department of the Interior U.S. Geological Survey Map and Database of Quaternary Faults in Venezuela and its Offshore Regions By Franck A. Audemard M., Michael N. Machette, Jonathan W. Cox, Richard L. Dart, and Kathleen M. Haller Open-File Report 00-018 (paper edition) This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. 2000 Map and Database of Quaternary Faults in Venezuela and its Offshore Regions A project of the International Lithosphere Program Task Group II-2, Major Active Faults of the World Data and map compiled by 1 FRANCK A. AUDEMARD M., 2 MICHAEL N. MACHETTE, 2 JONATHAN W. COX, 2 RICHARD L. DART, AND 2 KATHLEEN M. HALLER 1 Fundación Venezolana de Investigaciones Sismológicas (FUNVISIS) Dpto. Ciencias de la Tierra, Prolongacion Calle Mara, El Llanito Caracas 1070-A, Venezuela 2 U.S. Geological Survey (USGS) Central Geologic Hazards Team MS 966, P.O. Box 25046 Denver, Colorado, USA Regional Coordinator for Central America CARLOS COSTA Universidad Nacional de San Luis Departmento de Geologia Casilla de Correo 320 San Luis, Argentina ILP Task Group II-2 Co-Chairman, Western Hemisphere MICHAEL MACHETTE U.S. Geological Survey (USGS) Central Geologic Hazards Team MS 966, P.O. Box 25046 Denver, Colorado, USA January 2000 version i TABLE OF CONTENTS PAGE INTRODUCTION...............................................................................................................................................................1
    [Show full text]
  • Redalyc.FORMATIONS of COASTAL FORESTS in the AMAZON AND
    Revista Árvore ISSN: 0100-6762 [email protected] Universidade Federal de Viçosa Brasil Costa Quaresma, Adriano; G. Jardim, Mário Augusto FORMATIONS OF COASTAL FORESTS IN THE AMAZON AND ECOLOGICAL RELATIONS WITH VASCULAR EPIPHYTES Revista Árvore, vol. 41, núm. 2, 2017, pp. 1-8 Universidade Federal de Viçosa Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=48851650002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Formations of coastal forests in the amazon... 1 FORMATIONS OF COASTAL FORESTS IN THE AMAZON AND ECOLOGICAL RELATIONS WITH VASCULAR EPIPHYTES1 Adriano Costa Quaresma2* and Mário Augusto G. Jardim3 1 Received on 11.07.2014 accepted for publication on 28.11.2016. 2 Instituto Nacional de Pesquisas da Amazônia, Departamento de Ecologia, Programa de Pós-Graduação em Ecologia, Manaus, AM - Brasil. E-mail: <[email protected]>. 3 Ministério da Ciência, Tecnologia, Inovações e Comunicações, Museu Paraense Emílio Goeldi, Coordenação de Botânica, Belém, PA - Brasil. E-mail: <[email protected]>. *Corresponding author. ABSTRACT – Was investigated the vascular epiphytes and relate it to the composition and structure of the arboreal component in two formations of coastal forests in the Algodoal-Maiandeua Environmental Protetion Area, Maracanã, Pará, Brazil. We demarcated four 50m x 50m parcels (two in a dry forest and two in a flooding forest). Were registered and identified all the vascular epiphytes as well as their phorophytes. The abundance and richness of epiphytes were evaluated by the epiphyte/phorophyte ratio and differences in the use of phorophytic species by epiphytes were verified using a MDS.
    [Show full text]
  • Social Organization Influences the Exchange and Species Richness of Medicinal Plants in Amazonian Homegardens
    Copyright © 2016 by the author(s). Published here under license by the Resilience Alliance. Díaz-Reviriego, I., L. González-Segura, Á. Fernández-Llamazares, P. L. Howard, J. Molina, and V. Reyes-García. 2016. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens. Ecology and Society 21 (1):1. http://dx.doi.org/10.5751/ES-07944-210101 Erratum: This paper was originally published with a date of 2015, the error was corrected on 18 January 2016. Research, part of a Special Feature on Networking the Environment: Social Network Analysis in Environmental Management and Local Ecological Knowledge Studies Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens Isabel Díaz-Reviriego 1, Lara González-Segura 1, Álvaro Fernández-Llamazares 1, Patricia L. Howard 2,3, José Luis Molina 4 and Victoria Reyes-García 1,5 ABSTRACT. Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane’ Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people’s location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]
  • A New Species, Dicheirinia Panamensis, and New Records of Rust Fungi from Panama
    Mycol Progress (2007) 6:81–91 DOI 10.1007/s11557-007-0526-0 ORIGINAL ARTICLE A new species, Dicheirinia panamensis, and new records of rust fungi from Panama José R. Hernández & Meike Piepenbring & Maritza Betzaida Vega Rios Received: 13 July 2006 /Revised: 15 November 2006 /Accepted: 19 January 2007 /Published online: 11 April 2007 # German Mycological Society and Springer-Verlag 2007 Abstract Based on a recent fieldwork in Panama, 25 species Jackson (1926), Standley (1927), Kern and Chardón of rust fungi and several new hosts are reported for the first (1927), Kern (1938), Hennen and Cummins (1956), Jørstad time from this country. Among the new records is one new (1957), Toler et al. (1959), Ramachar and Cummins (1965), species, Dicheirinia panamensis on Cojoba rufescens Cummins (1978), Buriticá and Hennen (1980), Ono and (Fabaceae). It differs from known species in the genus Hennen (1983), Hennen and McCain (1993), Buriticá Dicheirinia by the presence of uredinia and telia without (1999a, b), Berndt (2002), Hernández and Hennen (2003), paraphyses, irregularly tuberculate urediniospores with two Hernández et al. (n.d.), and Piepenbring (2005). In total, germ pores on the flattened sides, and tuberculate telio- only about 67 species of rust fungi are known from Panama spores formed by three probasidial cells, subtended by a (Piepenbring 2006), although diversity of plants is very pedicel with three hyaline, apical cells. high and rusts are common in this country. Several days of intensive field work in Panama yielded numerous new records of rust species, new host records, Introduction and a species of Dicheirinia on Fabaceae that is different from all known species and therefore described as new.
    [Show full text]
  • Tabla 1: Descripción General Por Sector De Evaluación, Durante La Temporada Húmeda Y Temporada Seca
    Tabla 1: Descripción general por sector de evaluación, durante la temporada húmeda y Temporada seca Cantidad Liter cod. Unidad Comunidad Altitud cod. Sector Pendiente (%) sobre el suelo Cobertura (%) Vegetación Nativa (m.s.n.m.) (cm) SE01 Bh ca/pc 448 60 mayor 10 25 - 75 Ticumpinia SE02 Bh ca/pc 426 10 mayor 10 50 - 75 Ticumpinia SE03 Bh ca/pc 491 60 10 a 15 50 - 75 Ticumpinia SE04 Bh cb 445 10 mayor 10 50 - 75 Ticumpinia SE05 Bh cb 440 20 - 30 mayor 10 50 - 75 Ticumpinia SE06 Bh cb/pc 465 menor 5 mayor 10 50 - 75 Puerto Huallana SE07 Bh cb/pc 418 20 - 40 7 25 - 50 Puerto Huallana SE08 Bh cb/pc 418 20 - 40 mayor 10 25 - 50 Puerto Huallana SE09 Bh cb/pc 483 may-15 8 25 - 50 Kochiri SE10 Bh tma/pc 471 5 8 25 - 50 Kochiri SE11 Bh ca 492 may-15 8 25 - 50 Kochiri SE12 Bh tma/pc 471 10 mayor 10 50 - 75 Mayapo SE13 Bh ca 437 20 - 40 mayor 10 50 - 75 Mayapo SE14 Bh ca 494 60 menor 10 25 - 50 Mayapo SE15 Bh cb 250 may-50 02-mar 25 - 80 Timpia SE16 Bh cb 507 30 - 45 02-mar 25 - 80 Timpia SE17 Bh cb 457 15 - 45 02-mar 25 - 60 Timpia SE18 Bh m 534 40 02-mar 25 - 60 Timpia SE19 Bh ca/pc 529 50 - 75 2 - 3,5 25 - 70 Timpia SE20 Bh tma 437 10 2 - 3,5 25 - 70 Timpia SE21 Bh m 540 60 - 80 1,5 - 3,5 25 - 70 Timpia SE22 Bh m/pc 805 may-40 01-may 25 - 50 Poyentimari SE23 Bh m 1242 oct-75 1,5 - 2,5 25 - 60 Reserva Comunal Machiguenga SE24 Bh m/pc 764 may-45 1,5 - 2,5 25 - 55 Reserva Comunal Machiguenga SE25 Bh tma/pc 708 15 - 30 1,5 - 2 25 - 60 Reserva Comunal Machiguenga SE26 Bh cb 690 50 - 60 02-mar 25 - 60 Reserva Comunal Machiguenga SE27 Bh ca 627 abr-40
    [Show full text]
  • Pautas Para El Conocimiento, Conservación Y Uso Sostenible De Las Plantas Medicinales Nativas En Colombia Conservación De Plantas
    PAUTAS PARA EL CONOCIMIENTO, CONSERVACIÓN Y USO SOSTENIBLE DE LAS PLANTAS MEDICINALES NATIVAS EN COLOMBIA CONSERVACIÓN DE PLANTAS Nuestras publicaciones ESTRATEGIA NACIONAL PARA LA Las publicaciones del Instituto Humboldt divulgan el conocimiento sobre la conservación y el uso sostenible de la biodiversidad de Colombia para provecho de su sociedad y hacen parte de sus estrategias institucionales de comunicación, educación y conciencia pública. www.humboldt.org.co [email protected] [email protected] PAUTAS PARA EL CONOCIMIENTO, CONSERVACIÓN Y USO SOSTENIBLE EN COLOMBIA DE LAS MEDICINALES PLANTAS CONSERVACIÓN NATIVAS EL CONOCIMIENTO, PARA PAUTAS Henry Yesid Bernal, Hernando García Martínez, Germán Felipe Quevedo Sánchez (Editores) Pautas para el conocimiento, conservación y uso sostenible de las plantas medicinales nativas en Colombia Estrategia Nacional para la Conservación de Plantas Henry Yesid Bernal, Hernando García Martínez, Germán Felipe Quevedo Sánchez (Editores) Índice de autores* Henry Yesid Bernal Profesor Asociado Facultad de Ciencias, Departamento de Biología Unidad de Ecología y Sistemática, Unesis © Ministerio de Ambiente, Vivienda y Desarrollo Territorial 2011 Herbario Pontificia Universidad Javeriana, HPUJ © Instituto de Investigación de Recursos Biológicos Alexander von Humboldt 2011 Pontificia Universidad Javeriana Todos los derechos reservados. Se autoriza la reproducción y difusión de material contenido [email protected]; [email protected] en este documento para fines educativos u otros
    [Show full text]
  • Spring Shorebird Migration Through Central Venezuela
    Wilson Bull., 99(4), 1987, pp. 571-578 SPRING SHOREBIRD MIGRATION THROUGH CENTRALVENEZUELA BETSY TRENT THOMAS ’ AnsrnAcr.-Nearctic-breeding shorebirds regularly migrate through the llanos of central Venezuela in the spring (March-May). At a single site, consisting of three feeding areas with a total of 3-5 ha, 10 species were recorded. Four migrating Least Sandpipers (Culidris minutilla) banded at this site were recaptured there in subsequent years. White-rumped Sandpipers (C. fusicollis) dyed and flagged in the Venezuelan llanos were observed a few weeks later, one in Texas and two in Kansas. Shorebird weights, numbers, passage times, and lengths of stay at the study site are given. Nearly all shorebirds had recently completed molt of remiges and rectrices, but none were in distinctive breeding plumages or colors. Received27 Jan. 1987, accepted4 June 1987. Although shorebird migration routes are relatively well known in North America, their passage routes in South America, where most species spend over half of their lives, are poorly understood. Recently, interest has increased in the welfare of migrant nearctic-breeding shorebirds because feeding and resting sites are limited and declining in both number and quality (Myers 1983, Senner and Howe 1984). I briefly sampled spring shorebirds on migration at a single site in 1982 and 1983. In 1983 I recaptured one of the 2 1 Least Sandpipers (Calidris minutilla) banded in the previous year. Because of this I decided to study in detail shorebird passage in 1984. Here, I give data on species, passage times, numbers, weights, molt, length of stay, and returns. STUDY AREA AND METHODS The site of most observations and all mist-netting was a 4000-ha cattle ranch, Fundo Pecuario Masaguaral, approximately central in the llanos of Venezuela (08”3 lN,’ 67”35W).’ A description of the vegetation of this ranch is in Troth (1979).
    [Show full text]
  • A Vegetation Map of South America
    A VEGETATION MAP OF SOUTH AMERICA MAPA DE LA VEGETACIÓN DE AMÉRICA DEL SUR MAPA DA VEGETAÇÃO DA AMÉRICA DO SUL H.D.Eva E.E. de Miranda C.M. Di Bella V.Gond O.Huber M.Sgrenzaroli S.Jones A.Coutinho A.Dorado M.Guimarães C.Elvidge F.Achard A.S.Belward E.Bartholomé A.Baraldi G.De Grandi P.Vogt S.Fritz A.Hartley 2002 EUR 20159 EN A VEGETATION MAP OF SOUTH AMERICA MAPA DE LA VEGETACIÓN DE AMÉRICA DEL SUR MAPA DA VEGETAÇÃO DA AMÉRICA DO SUL H.D.Eva E.E. de Miranda C.M. Di Bella V.Gond O.Huber M.Sgrenzaroli S.Jones A.Coutinho A.Dorado M.Guimarães C.Elvidge F.Achard A.S.Belward E.Bartholomé A.Baraldi G.De Grandi P.Vogt S.Fritz A.Hartley 2002 EUR 20159 EN A Vegetation Map of South America I LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 2002 ISBN 92-894-4449-5 © European Communities, 2002 Reproduction is authorized provided the source is acknowledged Printed in Italy II A Vegetation Map of South America A VEGETATION MAP OF SOUTH AMERICA prepared by H.D.Eva* E.E.
    [Show full text]
  • TAXON:Platymiscium Pinnatum SCORE:0.0 RATING:Low Risk
    TAXON: Platymiscium pinnatum SCORE: 0.0 RATING: Low Risk Taxon: Platymiscium pinnatum Family: Fabaceae Common Name(s): granadillo Synonym(s): Amerimnon latifolium Willd. hormigo Amerimnon pinnatum Jacq. Panama redwood Platymiscium polystachyum Benth. ex Seem. quira roble Assessor: Chuck Chimera Status: Assessor Approved End Date: 19 Oct 2015 WRA Score: 0.0 Designation: L Rating: Low Risk Keywords: Tropical Tree, Timber Source, Unarmed, Shade-Tolerant, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines,
    [Show full text]