Application of Supercritical Fluids Review Yoshiaki Fukushima
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supercritical Gel Drying of Polymeric Hydrogels for Tissue
1123 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 32, 2013 of Chemical Engineering Online at: www.aidic.it/cet Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright © 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 Supercritical Gel Drying of Polymeric Hydrogels for Tissue Engineering Applications Stefano Cardea*, Lucia Baldino, Iolanda De Marco, Paola Pisanti, Ernesto Reverchon Department of Industrial Engineering, University of Salerno, Via Ponte Don Melillo, 84084, Fisciano, Italy [email protected] Tissue engineering (TE) is an emerging field aimed at repairing defective tissues and organ, instead of relying on conventional organ transplantation. Among the polymeric materials proposed for TE applications, the water-soluble polymers have been frequently used in form of hydrogels, that are a class of highly hydrated polymer materials. Nevertheless, hydrogel materials have poor mechanical properties; as a result, this scaffolding approach is seldom used for hard tissues applications. With the aim of overcoming this limitation, drying processes have been often applied to eliminate the water from hydrogels and amply the range of applications of the water-soluble polymeric scaffolds, but these techniques present several limitations. For this reason, in this work we proposed a supercritical gel drying method coupled with a water/solvent substitution step. PVA, Alginate and Chitosan hydrogels were processed and opportunely characterized from a macroscopic and microscopic point of view. Supercritical gel drying process confirmed to be effectiveness for the formation of polymeric scaffolds; in particular, we obtained stable 3-D structures with nanometric porous morphologies suitable for TE applications. 1. Introduction Tissue engineering (TE) is an emerging field aimed at repairing defective tissues and organ, instead of relying on conventional organ transplantation. -
Supercritical Fluid Extraction of Positron-Emitting Radioisotopes from Solid Target Matrices
XA0101188 11. United States of America Supercritical Fluid Extraction of Positron-Emitting Radioisotopes From Solid Target Matrices D. Schlyer, Brookhaven National Laboratory, Chemistry Department, Upton, Bldg. 901, New York 11973-5000, USA Project Description Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. What is a supercritical fluid? Above a certain temperature, a vapor can no longer be liquefied regardless of pressure critical temperature - Tc supercritical fluid r«gi on solid a u & temperature Fig. 1. Phase diagram depicting regions of solid, liquid, gas and supercritical fluid behavior. The critical point is defined by a critical pressure (Pc) and critical temperature (Tc) for a particular substance. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid[l,2,3]. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples [4-10]. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well [11,12]. -
Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products
Project No. 09-805 Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products ItIntegrat tdUied Universit itPy Programs Dr. Chien Wai University of Idaho In collaboration with: Idaho National Laboratory Jack Law, Technical POC James Bresee, Federal POC 1 Ionic Liquid and Supercritical Fluid Hyphenated Techniques For Dissolution and Separation of Lanthanides and Actinides DOE-NEUP Project (TO 00058) Final Technical Report Principal Investigator: Chien M. Wai Department of Chemistry, University of Idaho, Moscow, Idaho 83844 Date: December 1, 2012 2 Table of Contents Project Summary 3 Publications Derived from the Project 5 Chapter I. Introduction 6 Chapter II. Uranium Dioxide in Ionic Liquid with a TP-HNO3 Complex – Dissolution and Coordination Environment 9 1. Dissolution of UO2 in Ionic Liquid with TBP(HNO3)1.8(H2O)0.6 2. Raman Spectra of Dissolved Uranyl Species in IL 13 3. Transferring Uranium from IL Phase to sc-CO2 15 Chapter III. Kinetic Study on Dissolution of Uranium Dioxide and Neodymium Sesquioxide in Ionic Liquid 19 1. Rate of Dissolution of UO2 and Nd2O3 in RTIL 19 2. Temperature Effect on Dissolution of UO2 and Nd2O3 24 3. Viscosity Effect on Dissolution of UO2 in IL with TBP(HNO3)1.8(H2O)0.6 Chapter IV. Separation of UO2(NO3)2(TBP)2 and Nd(NO3)3(TBP)3 in Ionic Liquid Using Diglycolamide and Supercritical CO2 Extraction 30 1. Complexation of Uranyl with Diglycolamide TBDGA in Ionic Liquid 31 2. Complexation of Neodymium(III) with TBDGA in Ionic Liquid 35 3. Solubility and Distribution Ratio of UO2(NO3)2(TBP)2 and Nd(NO3)3(TBP)3 in Supercritical CO2 Phase 38 4. -
The Role of Supercritical CO2 in the Drying of Porous Silicon
Rev. Energ. Ren.: ICPWE (2003) 99-102 The Role of Supercritical CO2 in the Drying of Porous Silicon M. Bouchaour, N. Diaf, A. Ould-Abbas, M. Benosman, L. Merad and N-E. Chabane-Sari Laboratoire de Matériaux & Energies Renouvelables (LMER), Faculté des Sciences, Université Abou Bekr Belkaïd, B. P 119, Tlemcen,13000, Algérie. E-mail : [email protected] Abstract – The study of light emission from porous silicon has attracted great interest since the first observation of its photoluminescence at room temperature [1]. Recently, particular interest is devoted to supercritical fluid CO2 [2] applications on the drying of this semiconductor. This fluid is inotoxic, non- flammable, unreactive under most conditions, leaves no liquid waste. It has a potential to ameliorate environmental safety and health impact and it enables innovative processing technologies and material protection [3]. This talk reviews the mechanism of supercritical drying of porous silicon and the role of this fluid in this process. Résumé – L'étude de l'émission de la lumière du silicium poreux a attiré un grand intérêt depuis la première observation de la photoluminescence à la température ambiante [1]. Récemment, l'intérêt particulier est consacré aux applications du fluide supercritique CO2 [2] sur le séchage de ce semi-conducteur. Ce fluide est non toxique, inflammable. Il offre des possibilités intéressantes d'améliorer la sûreté environnementale et est utilisé dans des nouvelles technologies afin d’assurer la protection matérielle [3]. Ce papier concerne le mécanisme du séchage supercritique du silicium poreux et le rôle du fluide supercritique CO2 dans ce processus. Key-Words: Porous silicon – Supercritical drying – Supercritical fluid CO2. -
Liquid-Liquid Transition in Supercooled Aqueous Solution Involving a Low-Temperature Phase Similar to Low-Density Amorphous Water
Liquid-liquid transition in supercooled aqueous solution involving a low-temperature phase similar to low-density amorphous water * * # # Sander Woutersen , Michiel Hilbers , Zuofeng Zhao and C. Austen Angell * Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands # School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA The striking anomalies in physical properties of supercooled water that were discovered in the 1960-70s, remain incompletely understood and so provide both a source of controversy amongst theoreticians1-5, and a stimulus to experimentalists and simulators to find new ways of penetrating the "crystallization curtain" that effectively shields the problem from solution6,7. Recently a new door on the problem was opened by showing that, in ideal solutions, made using ionic liquid solutes, water anomalies are not destroyed as earlier found for common salt and most molecular solutes, but instead are enhanced to the point of precipitating an apparently first order liquid-liquid transition (LLT)8. The evidence was a spike in apparent heat capacity during cooling that could be fully reversed during reheating before any sign of ice crystallization appeared. Here, we use decoupled-oscillator infrared spectroscopy to define the structural character of this phenomenon using similar down and upscan rates as in the calorimetric study. Thin-film samples also permit slow scans (1 Kmin-1) in which the transition has a width of less than 1 K, and is fully reversible. The OH spectrum changes discontinuously at the phase- transition temperature, indicating a discrete change in hydrogen-bond structure. -
Using Supercritical Fluid Technology As a Green Alternative During the Preparation of Drug Delivery Systems
pharmaceutics Review Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems Paroma Chakravarty 1, Amin Famili 2, Karthik Nagapudi 1 and Mohammad A. Al-Sayah 2,* 1 Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] (P.C.); [email protected] (K.N.) 2 Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] * Correspondence: [email protected]; Tel.: +650-467-3810 Received: 3 October 2019; Accepted: 18 November 2019; Published: 25 November 2019 Abstract: Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API’s dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF’s non-toxic, inert, economical, and environmentally friendly properties. The SCF’s advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes. -
Glossary of Terms
GLOSSARY OF TERMS For the purpose of this Handbook, the following definitions and abbreviations shall apply. Although all of the definitions and abbreviations listed below may have not been used in this Handbook, the additional terminology is provided to assist the user of Handbook in understanding technical terminology associated with Drainage Improvement Projects and the associated regulations. Program-specific terms have been defined separately for each program and are contained in pertinent sub-sections of Section 2 of this handbook. ACRONYMS ASTM American Society for Testing Materials CBBEL Christopher B. Burke Engineering, Ltd. COE United States Army Corps of Engineers EPA Environmental Protection Agency IDEM Indiana Department of Environmental Management IDNR Indiana Department of Natural Resources NRCS USDA-Natural Resources Conservation Service SWCD Soil and Water Conservation District USDA United States Department of Agriculture USFWS United States Fish and Wildlife Service DEFINITIONS AASHTO Classification. The official classification of soil materials and soil aggregate mixtures for highway construction used by the American Association of State Highway and Transportation Officials. Abutment. The sloping sides of a valley that supports the ends of a dam. Acre-Foot. The volume of water that will cover 1 acre to a depth of 1 ft. Aggregate. (1) The sand and gravel portion of concrete (65 to 75% by volume), the rest being cement and water. Fine aggregate contains particles ranging from 1/4 in. down to that retained on a 200-mesh screen. Coarse aggregate ranges from 1/4 in. up to l½ in. (2) That which is installed for the purpose of changing drainage characteristics. -
Investigations of Liquid Steel Viscosity and Its Impact As the Initial Parameter on Modeling of the Steel Flow Through the Tundish
materials Article Investigations of Liquid Steel Viscosity and Its Impact as the Initial Parameter on Modeling of the Steel Flow through the Tundish Marta Sl˛ezak´ 1,* and Marek Warzecha 2 1 Department of Ferrous Metallurgy, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland 2 Department of Metallurgy and Metal Technology, Faculty of Production Engineering and Materials Technology, Cz˛estochowaUniversity of Technology, Al. Armii Krajowej 19, 42-201 Cz˛estochowa,Poland; [email protected] * Correspondence: [email protected] Received: 14 September 2020; Accepted: 5 November 2020; Published: 7 November 2020 Abstract: The paper presents research carried out to experimentally determine the dynamic viscosity of selected iron solutions. A high temperature rheometer with an air bearing was used for the tests, and ANSYS Fluent commercial software was used for numerical simulations. The experimental results obtained are, on average, lower by half than the values of the dynamic viscosity coefficient of liquid steel adopted during fluid flow modeling. Numerical simulations were carried out, taking into account the viscosity standard adopted for most numerical calculations and the average value of the obtained experimental dynamic viscosity of the analyzed iron solutions. Both qualitative and quantitative analysis showed differences in the flow structure of liquid steel in the tundish, in particular in the predicted values and the velocity profile distribution. However, these differences are not significant. In addition, the work analyzed two different rheological models—including one of our own—to describe the dynamic viscosity of liquid steel, so that in the future, the experimental stage could be replaced by calculating the value of the dynamic viscosity coefficient of liquid steel using one equation. -
A Review of Supercritical Fluid Extraction
NAT'L INST. Of, 3'«™ 1 lY, 1?f, Reference NBS PubJi- AlllDb 33TA55 cations /' \ al/l * \ *"»e A U O* * NBS TECHNICAL NOTE 1070 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards 100 LI5753 No, 1070 1933 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ot physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, -
OP03 Contribution of Computational Fluid Dynamics And
OP03 Contribution of Computational Fluid Dynamics and Thermodynamics to the development of supercritical carbon dioxide extraction processes Renan RAVETTI DURAN, Mouna LAZRAG, Romain PRIVAT, Cécile LEMAITRE, Danielle BARTH* Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine 1 rue Grandville-BP20451-54001 NANCY-France * [email protected] ABSTRACT In supercritical CO2 extraction process , there are two essential steps: the extraction step in the extractor where the SC-CO2 allows the solvent or extract removal from product structure and the separation step which consists of the separation of CO2-solvents or CO2-extract in a cascade of cyclone separators downstream the extractor. Cyclone separators are separation devices that use the centrifugal and gravity forces to remove liquid phase from flue gases. Two supercritical extraction processes are studied here: organogels supercritical drying for aerogels production and supercritical extraction of polar compounds from natural products. Concerning the first process, the organogel is prepared by an aminoacid-type organogelator with aromatic solvents such as tetralin or toluene. The experimental results showed a good solvent recovery rate in the case of tetralin, exceeding 90% but an unsatisfactory separation for toluene with a yield below 65%. In order to understand the experimental results a thermodynamic study and a hydrodynamic study (CFD) of the mixture separation in the cyclones are carried out. Supercritical extraction of polar compounds from natural products using a CO2 + aqueous ethanol mixture as solvent requires a reliable knowledge of vapor-liquid equilibria of the carbon dioxide + ethanol + water system in order to size and optimize the extraction process. -
Plasma Discharge in Water and Its Application for Industrial Cooling Water Treatment
Plasma Discharge in Water and Its Application for Industrial Cooling Water Treatment A Thesis Submitted to the Faculty of Drexel University by Yong Yang In partial fulfillment of the Requirements for the degree of Doctor of Philosophy June 2011 ii © Copyright 2008 Yong Yang. All Rights Reserved. iii Acknowledgements I would like to express my greatest gratitude to both my advisers Prof. Young I. Cho and Prof. Alexander Fridman. Their help, support and guidance were appreciated throughout my graduate studies. Their experience and expertise made my five year at Drexel successful and enjoyable. I would like to convey my deep appreciation to the most dedicated Dr. Alexander Gutsol and Dr. Andrey Starikovskiy, with whom I had pleasure to work with on all these projects. I feel thankful for allowing me to walk into their office any time, even during their busiest hours, and I’m always amazed at the width and depth of their knowledge in plasma physics. Also I would like to thank Profs. Ying Sun, Gary Friedman, and Alexander Rabinovich for their valuable advice on this thesis as committee members. I am thankful for the financial support that I received during my graduate study, especially from the DOE grants DE-FC26-06NT42724 and DE-NT0005308, the Drexel Dean’s Fellowship, George Hill Fellowship, and the support from the Department of Mechanical Engineering and Mechanics. I would like to thank the friendship and help from the friends and colleagues at Drexel Plasma Institute over the years. Special thanks to Hyoungsup Kim and Jin Mu Jung. Without their help I would not be able to finish the fouling experiments alone. -
Installation Manual
HUB 82267 REV 6/20 INSTALLATION MANUAL ZIPSYSTEM.COM HUB 81670 REV 06/20 ZIP SYSTEMTM LIQUID FLASH INSTALLATION MANUAL 2 ATTENTION: This installation guide is intended to provide general information for the designer and end user. The following guidelines will help you properly apply ZIP System™ liquid flash. We urge anyone installing this product to read these guidelines in order to minimize any risk of safety hazards and to prevent voiding any applicable warranties. This manual is a general installation guide and does not cover every installation condition. Proper installation shall be deemed to mean the most restrictive requirement specified by Huber Engineered Woods (HEW), local building code, engineer or architect of record or other authority having jurisdiction. You are fully and solely responsible for all safety requirements and code compliance. For additional information, contact Huber Engineered Woods, LLC. 10925 David Taylor Drive, Suite 300 Charlotte, NC 28262 Phone: 800.933.9220 // Fax: 704.547.9228 HUB 81670 REV 06/20 ZIP SYSTEMTM LIQUID FLASH INSTALLATION MANUAL 3 SAFETY GUIDELINES: Follow all OSHA regulations and any other safety guidelines and safety practices during installation and construction. Use approved safety belts and/or harnesses or other fall protection equipment. Install ZIP SystemTM liquid flash only clean surfaces under safe construction site conditions. Install when temperatures are 35 °F and above. Wear rubber-soled or other high-traction footwear while on elevated surfaces. Do not wear footwear with worn soles or heels. Ensure the surfaces are free from oil, chemicals, sawdust, dirt, tools, electric cords, air hoses, clothing and anything else that might create a tripping hazard.