Stingless Bee, Meliponula Bocandei (Spinola)

Total Page:16

File Type:pdf, Size:1020Kb

Stingless Bee, Meliponula Bocandei (Spinola) .��v, .j3io¡. Trop., 11(1 ): 25-45, 1963 Phylogenetic Significan ce of an Unusual African Stingless Bee, Meliponula bocandei (Spinola) by Alvaro Wille* (Received for publication February 7, 1963) The main purpo'Se of this paper is, first, to show that a general knowledge of Meliponula bocandei is essent:al in obtaining a better and greater understanding of the phylogeny of the stingless bees, and second, to indicate the systematic position of this unusual African species. Meliponula bocandei is found throughout most of Africa (Liberia, Ni­ geria, French Cameroons, Guinea, Congo, Uganda, Angola, Mozambique) where it is highly regarded by the people because of its honey, M. bocandei being the best producer among the African stingless bees. It is said that one nest can yield from 5 to 18 liters of good honey, and the bees are easy to handle. In general appearance M. bocandei looks like a rusty yello".' brown Melipona of almost a centimeter in length. Its tegument is minutely granulo se, w:th the thorax covered with dense and short pilosity. A worker of M. bocandei can be easily differentiat­ ed from the other species by the very robust hind legs. The femur is stout and swollen; the tibia sub-spatulate, with the lower two-fifths concave, shiny, and slightly bent inwards, while the upper three-fifths is convex, swollen, dull, and finely granulose. The species M. bocandei was qescribed by SPINOLA (12) in 1853 and was regarded for many years as be10nging to the genus Trigona. In 1934, howev­ er, COCKERELL (1) propased Meliponula as a subgenus of Melipona to include M. bocandei and eight more species. Later, it was found that the additional eight species were not actually very close to M. bocandei. For this rcason, M. bocandel became the only known species of the group Meliponula which was then raised to generic status. The fact that M. bocandei has been included both in the genus Trigona and in Melipona shows already that this species has an unusual set of characters. * Department of Entomology, University of Costa Rica, San José. 25 REVISTA' DE BIOLOGIA TROPICAL 26 MAJOR EVOLUTIONARY TRENDS AMONG THE STINGLESS BEES In order to analyze the position of Meliponula bocandei it is necessary to review the major evolutionary trends among the stingless bees. If we ignore for the moment the species M. bocandei, it is possible to distinguish two majar and diverging lines among the stingless bees. For convenience these two evolu­ tionary trends can be called the Trigona line and the Melipona lineo That these two lines actually represent monophyletic lines is strongly indicated by the whole constellation of morphological and biological trends and characters .. ' by which these two groups can be separated. For the differences in morphology, reference should be made to TabIe 1, in which the main morphologicaI differences are TABLE 1 Morphological characters differentiating the Trigona line fl'om the Melipona line Characters Trígona line Melipona line Size usually small from 2 to 8 mm Usually rather Iarge (from 8 to in length) and slender 15 mm in length) and róbust Pubeseenee usually short and sparse upper half of head and thorax densely hairy, hairs long Basal area of propodeum usually glabrous, but sometimes tessellate and entirely tessellate and pubeseent pubeseent Length of fore wing usually long and extending well relatively short and not, or beyond apex of abdomen slightly surpassing tip of abdomen Pterostigma realtively broad, and distinetly poorly developed, narrow to rounded or convex below linear, not rounded below Submarginal angle (basal angle of first variable distirtetIy aeute R eell) Hamuli usually from 5 to 8 from 9 to 16 Shape of hind tibia variable normal, without any type of depression Nerve system abdominal ganglion 3 abdominal ganglion 3 loeated in first metasomal located in thorax segement Dorsal vessel thoracÍe portion straight thoracÍe portion making an arch between longitudinal muscles of thorax WILLE: PHYLOGENETIC SIGNI FICANC E OF MELIPONULA BOCANDEr 27 tabulated. In Table 2 the major biological characters are inJicated. When a trend rather than an invariable charaeter is described, the word "usually" is added. TABLE 2 Biological characters differentiating the Trigona line fl'OlII the Melipona fine Characters Trigona line Melipona line Determination of presumably trophicaUy supposedly geneticaUy workers and queens determined determined Size of the virgin qucens larger than workers, with smalIer than workers, especiaUy a notably wider thorax, in width of thorax, and reared ' reared from 'larger royal ceUs from ordinary comb ceUs Ovaries of the newly weU developed underdeveloped emerged queens Rate of production of queens relatively rarely produced frequentIy produced Location of royal ceUs near periphery of combs intermingled in the combs with ceUs of workers and males Nature of the nest entrance usuaUy made out of cerumen usualIy made out of mud and batumen plates Typically, the Mel¡pona line is represented by the genus Melipona and the Trigona line by the genus Trigona. Other recognized genera are merely specíalized branches of the Trigona lineo These two evolutionary trends or lines have been regarded by MOURE (8) as tri bes, namely, the Meliponini and Trigonini. How­ ever, we should point out that the gap between them is much smaller than that normally found between tribes (e.g., in those recognized by MICHENER (6). The narrowness of this gap is suggested by the difficulty many investigators encoun­ tered for almost a century in separating Melipona and Trigona. Although it is true that the separation of Melipona and Trigona has been made easier in recent years by the discovery of new and apparently valid taxonomic charaeters, such as those conterned with the dorsal vessel (WILLE, 14) and the ventral nerve cord (WILLE, 16), it is also true that the separation becomes apparently more difficult and uncertain when the characteristics of M. bocandei are considered. For this reason, a careful stlldy of M. bocandei is necessary in order to obtain a better understanding of the general phylogeny of the stingless bees. TRIGONA-LIKE CHARACTERS OF MELIPONULA BOCANDEI Morphologically there are three struetures in Meliponula bocandei which are typically Trigona-like. These structures are: the forewing, the hind tibia, and the ventral nerve cord. 28 REVISTA DE BIOLOGIA TROPICAL FO REWING (Fig. 1): Although the length oE the forewing in M. bocandei is not as great as the most typical Trigona, it is relatively long and extends beyond the apex oE the abdomen. However, the Eeature which gives the Eorewing an unmistakable Trigona-like character is the pterostigma, which, even though smaU, is distinctly rounded below. AIso the submarginal angle is slight1y greater than 90Q• In aH the species of Melipona that are known the sub­ marginal angle is slightly less than 90Q• HIND TIBIA (Fig. 2): The hind tibia of M. bocandei is definitely not of the Mefipona type, since it is not triangular in shape, and lacks the posterior apical angle. On the contrary, the shape of the hind tibia in M. bocandei is sub­ spatulate, with the distal posterior comer obliquely truncate and armed with a rasteUum (comb, in MOURE'S terminology, 8) made up of rather weak bristles. Furthermore, the inner side of the tibia has a posterior and slightly depressed bare strip, suggesting that of Plebeia and Scallra. VENTRAL NERVE CORD (Fig. 3) : In M. bocandei abdominal ganglion 3 is locat,ed in the first metasomal segment, as in aH the species of Trigona and unlike Melipona. Moreover, ganglia 6 and 7 in M. bocandei are located in the fifth abdominal segment (fourth metasomal segment); these ganglia are very close, almost fused (Fig. 3, B). It should be pointed out that one of the two males dissected has ganglia 6 and 7 completely fused (Fig. \ C), while, on the other hand, the other male had the same ganglia well separated, with ganglion 7 located in the sixth abdominal segment (Fig. 3, A). These differences in the two males are not very surprising, since it has been shown elsewhere that specimens occasionaHy differ somewhat from the normal types. It is possible, however, that our first male represents the normal type for the males and that the second is an abnormal example. ActuaUy, the second case (Fig. 3 A) is a very primitive condition found previously (WILLE, 16) only in Trigona flllviventris Guérin. In any case, these two mal e examples illustrate the evolutionary trend in M. bocandei toward the fusion of abdominal gangb 6 and 7 as shown in figure 3. BiologicaHy it seems that M. bocandei is similar to Trigona rather than to Melipona. At least, we know from the work of PORTU GAL-ARAÚ]O (9) that the virgin queens of M. bacandei are larger than the workers, and are reared from specialized royal ceUs. MELIPONA-LIKE CHARACTERS OF MELIPONULA BOCANDEI Besides the Trigona characters discussed aboye, MeliPonllla bocandei also possesses certain important features which are typical of Melipona. These are general appearance, body surface, and the dorsal vessel. GENERAL ApPEARANCE: M. bacandei is a very robust bee of about 8 mm in length, with a short and stout abdomen that gives it an unmistakable appear­ ance of Melipona. It seems appropriate to discuss here the number of hamuli, since, as has be en shown by SCHWARZ (10), the number tends to be correlated with the size oE the bee. Thus, species of small size usuaUy have fewer hamuli, while species of more robust build frequently have a larger number. In M. bo- II7lLLE: PHYLOGENETIC SIGNIFICANCE OF MELlPONULA BOCANDEI 29 candei the average number is nine; this number seems a consequence of the Melipona- like build. The size also explains the specimens of the largest Trigona, like T.
Recommended publications
  • Recruitment Behavior in Stingless Bees, Melipona Scutellaris and M
    Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance Stefan Jarau, Michael Hrncir, Ronaldo Zucchi, Friedrich Barth To cite this version: Stefan Jarau, Michael Hrncir, Ronaldo Zucchi, Friedrich Barth. Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie, Springer Verlag, 2000, 31 (1), pp.81-91. 10.1051/apido:2000108. hal-00891699 HAL Id: hal-00891699 https://hal.archives-ouvertes.fr/hal-00891699 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 31 (2000) 81–91 81 © INRA/DIB/AGIB/EDP Sciences Original article Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance Stefan JARAUa, Michael HRNCIRa, Ronaldo ZUCCHIb, Friedrich G. BARTHa* a Universität Wien, Biozentrum, Institut für Zoologie, Abteilung Physiologie – Neurobiologie, Althanstraβe 14, A-1090 Wien, Austria b Universidade de São Paulo, Faculdade de Filosofia e Letras, Departamento de Biologia 14040-901 Ribeirão Preto, SP, Brazil (Received 28 April 1999; revised 6 September 1999; accepted 22 September 1999) Abstract – The two stingless bee species Melipona scutellaris and M.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Comparative Temperature Tolerance in Stingless Bee Species from Tropical
    Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini) José Macías-Macías, José Quezada-Euán, Francisca Contreras-Escareño, José Tapia-Gonzalez, Humberto Moo-Valle, Ricardo Ayala To cite this version: José Macías-Macías, José Quezada-Euán, Francisca Contreras-Escareño, José Tapia-Gonzalez, Hum- berto Moo-Valle, et al.. Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini). Apidologie, Springer Verlag, 2011, 42 (6), pp.679-689. 10.1007/s13592-011-0074-0. hal-01003611 HAL Id: hal-01003611 https://hal.archives-ouvertes.fr/hal-01003611 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2011) 42:679–689 Original article * INRA, DIB-AGIB and Springer Science+Business Media B.V., 2011 DOI: 10.1007/s13592-011-0074-0 Comparative temperature tolerance in stingless bee species from
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • (Hymenoptera, Apidae, Meliponini) in Cameroon
    International Journal of Research in Agricultural Sciences Volume 5, Issue 6, ISSN (Online): 2348 – 3997 Nest Architecture and Colony Characteristics of Meliponula bocandei (Hymenoptera, Apidae, Meliponini) in Cameroon NJOYA Moses Tita Mogho1*, SEINO Richard Akwanjoh2, Dieter Wittmann3 and Tah Kenneth2 1*. Bee Research Unit, Faculty of Science, The University of Bamenda – Cameroon. 2. Department of Biological Sciences, Faculty of Science, The University of Bamenda – Cameroon. 3. Institute of Landscape and Animal Ecology, University of Bonn – Germany. 4. Apiculture and Nature Conservation Organization (ANCO). Date of publication (dd/mm/yyyy): 29/11/2018 Abstract – There are several hundred species of stingless mainly in forested areas. The forest species, such as bees existing worldwide, which differ significantly in colour, Meliponula beccarii (Gribodo) and Meliponula bocandei body and colony size. In Africa stingless are distributed (Spinola) nest on the ground or in trees (Kajobe, 2007a; throughout the tropical and subtropical parts where they Njoya, 2009). Other species, such as Meliponula nebulata occur sympatrically with the honeybees. Stingless bees have (Smith), nest in the cavities of trees or in termite mounds evolved adaptive nest constructions strategies which have resulted in sophisticated nest architecture in many species (Brosset et al., 1967; Darchen, 1969; Kajobe, 2007a; Njoya, while others lack certain structural components. Meliponula 2009). Central African countries have the highest reported bocandei is one species of stingless bees with limited or no diversity of Meliponini, with 17 species; 16 of these 17 information on its nest biology. This study therefore is aimed species have been reported in Gabon (Fabre Anguilet, at contributing to knowledge on the nest architecture and 2015).
    [Show full text]
  • Distributional Analysis of Melipona Stingless Bees (Apidae: Meliponini) in Central America and Mexico: Setting Baseline Information for Their Conservation Carmen L
    Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation Carmen L. Yurrita, Miguel A. Ortega-Huerta, Ricardo Ayala To cite this version: Carmen L. Yurrita, Miguel A. Ortega-Huerta, Ricardo Ayala. Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation. Apidologie, Springer Verlag, 2017, 48 (2), pp.247-258. 10.1007/s13592-016-0469- z. hal-01591725 HAL Id: hal-01591725 https://hal.archives-ouvertes.fr/hal-01591725 Submitted on 21 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:247–258 Original article * INRA, DIB and Springer-Verlag France, 2016 DOI: 10.1007/s13592-016-0469-z Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation 1,2 1 1 Carmen L. YURRITA , Miguel A. ORTEGA-HUERTA , Ricardo AYALA 1Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Apartado postal 21, San Patricio, Jalisco 48980, México 2Centro de Estudios Conservacionistas, Universidad de San Carlos de Guatemala (USAC), Guatemala, Guatemala Received 27 November 2015 – Revised 30 July 2016 – Accepted 17 August 2016 Abstract – Melipona stingless bee species of Central America and Mexico are important ecologically, culturally, and economically as pollinators and as a source of food and medicine.
    [Show full text]
  • Pollinator Biodiversity in Uganda and in Sub- Sahara Africa: Landscape and Habitat Management Strategies for Its Conservation
    International Journal of Biodiversity and Conservation Vol. 3(11), pp. 551-609, 19 October, 2011 Available online at http://www.academicjournals.org/IJBC ISSN 2141-243X ©2011 Academic Journals Full Length Research Paper Pollinator biodiversity in Uganda and in Sub- Sahara Africa: Landscape and habitat management strategies for its conservation M. B. Théodore MUNYULI1, 2 1Department of Biology, National Center for Research in Natural Sciences, CRSN-Lwiro, D.S. Bukavu, South-Kivu Province, Democratic Republic of Congo. 2Department of Environmental and Natural Resource Economics, Faculty of Natural Resources and Environmental Sciences, Namasagali Campus, Busitema University., P .0. Box. 236, Tororo, eastern Uganda. E-mail: [email protected], [email protected], [email protected] Tel: +256-757356901, +256-772579267, +243997499842. Accepted 9 July, 2011 Previous pollinator faunistic surveys conducted in 26 different sites indicated that farmlands of central Uganda supported more than 650 bee species, 330 butterfly species and 57 fly species. Most crop species grown in Uganda are pollinator-dependents. There is also a high dependency of rural communities on pollination services for their livelihoods and incomes. The annual economic value attributable to pollinating services delivered to crop production sector was estimated to be worth of US$0.49 billion for a total economic value of crop production of US$1.16 billion in Uganda. Despite the great contribution of pollinators to crop yields, there is still lack of knowledge of their
    [Show full text]
  • Hymenoptera, Apidae, Meliponini) Workers and Males
    REGULAR PAPER COMPARATIVE ULTRASTRUCTURE OF THE MANDIBULAR GLAND IN Scaptotrigona postica (HYMENOPTERA, APIDAE, MELIPONINI) WORKERS AND MALES Luciana Fioretti Gracioli-Vitti1 and Fábio Camargo Abdalla2 1Department of Biology, Institute of Biosciences, Paulista State University (UNESP), Rio Claro and 2Department of Biology, Federal University of São Carlos (UFSCar), Sorocaba, SP, Brazil. ABSTRACT Differences in the ultrastructure and function of the mandibular glands in developing workers and mature males of the meliponine stingless bee Scaptotrigona postica suggest that there are age-dependent variations in the contents of the secretion and glandular functions. In this work, we used transmission (TEM) and scanning (SEM) electron microscopy to examine the mandibular glands of S. postica workers of different ages and compared them with those of mature males. The gland anatomy did not vary between workers and males. However, the ultrastructure of the gland cells changed according to the worker’s age, task, and sex. The mandibular gland cells in workers and males had a well developed smooth endoplasmic reticulum and pleomorphic mitochondria, indicating that the cells were involved in lipid synthesis. However, the secretion varied in morphology and electrondensity between workers and males, which suggested differences in its contents and, possibly, in glandular functions. Key words: Labor division, morphology, secretion, scanning electron microscopy, stingless bee, transmission electron microscopy INTRODUCTION reception and dehydration (21-45 days old), colony In eusocial bees, tasks are allocated to individuals defense (31-40 days old) and, finally, foraging (26- according to their capacity, which depends on their 60 days old) [29]. Although these tasks are generally sex, caste and physiological status.
    [Show full text]
  • Towards Sustainable Crop Pollination Services Measures at Field, Farm and Landscape Scales
    EXTENSION OF KNOWLEDGE BASE ADAPTIVE MANAGEMENT CAPACITY BUILDING MAINSTREAMING TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE POLLINATION SERVICES FOR SUSTAINABLE AGRICULTURE TOWARDS SUSTAINABLE CROP POLLINATION SERVICES MEASURES AT FIELD, FARM AND LANDSCAPE SCALES B. Gemmill-Herren, N. Azzu, A. Bicksler, and A. Guidotti [eds.] FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2020 Required citation: FAO. 2020. Towards sustainable crop pollination services – Measures at field, farm and landscape scales. Rome. https://doi.org/10.4060/ca8965en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132578-0 © FAO, 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited.
    [Show full text]
  • A Preliminary Study of Chemical Profiles of Honey, Cerumen
    foods Article A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee Meliponula ferruginea Milena Popova 1 , Dessislava Gerginova 1 , Boryana Trusheva 1 , Svetlana Simova 1, Alfred Ngenge Tamfu 2 , Ozgur Ceylan 3, Kerry Clark 4 and Vassya Bankova 1,* 1 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] (M.P.); [email protected] (D.G.); [email protected] (B.T.); [email protected] (S.S.) 2 Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon; [email protected] 3 Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, 48147 Ula Mugla, Turkey; [email protected] 4 Volunteer Advisor in Beekeeping and Bee Products with Canadian Executive Services Organization, P.O. Box 2090, Dawson Creek, BC V1G 4K8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +359-2-9606-149 Abstract: Recently, the honey and propolis of stingless bees have been attracting growing atten- tion because of their health-promoting properties. However, studies on these products of African Meliponini are still very scarce. In this preliminary study, we analyzed the chemical composition of honey, two cerumen, and two resin deposits (propolis) samples of Meliponula ferruginea from Tanzania. The honey of M. ferruginea was profiled by NMR and indicated different long-term stability Citation: Popova, M.; Gerginova, D.; from Apis mellifera European (Bulgarian) honey. It differed significantly in sugar and organic acids Trusheva, B.; Simova, S.; Tamfu, A.N.; content and had a very high amount of the disaccharide trehalulose, known for its bioactivities.
    [Show full text]
  • Wasps and Bees in Southern Africa
    SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI.
    [Show full text]