Dietary Reference Values for Nutrients Summary Report

Total Page:16

File Type:pdf, Size:1020Kb

Dietary Reference Values for Nutrients Summary Report TECHNICAL REPORT Approved: 4 December 2017 doi: 10.2903/sp.efsa.2017.e15121 Dietary Reference Values for nutrients Summary report European Food Safety Authority (EFSA) Abstract Dietary reference values (DRVs) is an umbrella term for the complete set of nutrient reference values which include population reference intakes (PRIs), the average requirements (ARs), adequate intakes (AIs) and reference intake (RIs) ranges for macronutrients. These values indicate the amount of a nutrient which must be consumed on a regular basis to maintain health in an otherwise healthy individual (or population). In 2005, the European Commission asked EFSA to review the advice of the Scientific Committee for Food (SCF) dated 1993 on DRVs for the European population, to ensure that Community action in the area of nutrition was underpinned by the latest scientific evidence. The task was entrusted to the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). The Panel set the foundations for this task in an inaugural opinion published in 2010, which addressed the general principles for deriving and applying DRVs. A total of 32 scientific opinions were then published over 7 years, covering water, fats, carbohydrates and dietary fibre, protein, energy, as well as 14 vitamins and 13 minerals. This summary report brings together the summaries of the individual opinions, together with synthetic tables and annexes. It provides an overview of the outcome of EFSA’s scientific deliberations for easy reference by end-users. This report is not meant to replace the original opinions. For the detailed reasoning behind individual values, the reader is invited to consult the full opinions. Key words: dietary reference values; nutrients; macronutrients; micronutrients Requestor: EFSA Correspondence: [email protected] www.efsa.europa.eu/publications EFSA Supporting publication 2017:e15121 DRVs summary report Suggested citation: EFSA (European Food Safety Authority), 2017. Dietary reference values for nutrients: Summary report. EFSA supporting publication 2017:e15121. 92 pp. doi:10.2903/sp.efsa.2017.e15121 © European Food Safety Authority, 2017 Reproduction is authorised provided the source is acknowledged. www.efsa.europa.eu/publications 2 EFSA Supporting publication 2017:e15121 DRVs summary report Preface Dietary Reference Values (DRVs) is an umbrella term for the complete set of nutrient reference values which include the Population Reference Intakes (PRIs), the Average Requirements (ARs), Adequate Intakes (AIs) and Reference Intake (RIs) ranges for macronutrients. These values indicate the amount of a nutrient which must be consumed on a regular basis to maintain health in an otherwise healthy individual (or population). They are set on the assumption that the requirements for energy and all other nutrients are already satisfied. DRVs also include the tolerable upper intake levels (ULs), which represent the maximum average daily intake level of nutrients considered to be unlikely to pose a risk of adverse health effects. DRVs are key concepts in the nutrition field. They provide the scientific basis on which nutrition recommendations are built. They are the references used in dietary assessment and diet planning, at the population and individual level. They also serve as the basis for setting reference values in food labelling, and in establishing food based dietary guidelines. For these reasons, they will be helpful to health professionals, scientists, risk managers, policy makers, industry and many more. In 2005, the European Commission asked EFSA to review the advice of the Scientific Committee for Food (SCF)1 dated 1993 on DRVs for the European population, to ensure that Community action in the area of nutrition was underpinned by the latest scientific evidence. The task was entrusted to the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). The Panel set the foundations for this task in an inaugural opinion published in 2010, which addressed the general principles for deriving and applying DRVs (EFSA NDA Panel, 2010a). A total of 32 scientific opinions were then published over 7 years, covering water, fats, carbohydrates and dietary fibre, protein, energy, as well as 14 vitamins and 13 minerals.2 EFSA DRVs opinions share a common structure, which reflects the process by which DRVs are set. Initial sections provide background information on the nutrient under consideration, addressing its chemistry, functions, physiology and metabolism, its interaction with other nutrients, as well as a review of available biomarkers of intake and status. Data on sources of the nutrient and its intake in European countries are then summarised, gathered from national reports or derived from EFSA Comprehensive European Food Consumption database3 and Food Composition database.4 Each opinion also compiles an overview of DRVs and recommendations set by other bodies. The Panel then reviews existing literature on the physiological needs of the nutrient, as well as its association with health outcomes, including the risk of chronic diseases, in order to identify criteria on which to base the DRVs. Finally, the Panel integrates the available evidence and derives DRVs, where possible.5 Because of the length of the individual opinions, it is impractical to publish them as a single report. Therefore, the present summary report puts together the summaries of the individual opinions, together with synthetic tables and annexes. It provides an overview of the outcome of EFSA’s scientific deliberations for easy reference by end-users. This report is not meant to replace the original opinions. For the detailed reasoning behind individual values, the reader is invited to consult the full opinions.6 Many gave their time and energy to the DRVs opinions: EFSA and its NDA Panel are heartily grateful to all of them. Over the past 12 years, WG members on DRVs and NDA Panel members were involved, with a special tribute to Albert Flynn and Ambroise Martin, former chairs of the NDA Panel. This project would not have been completed without the dedication, commitment and high level of 1 SCF (Scientific Committee on Food), 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific Committee for Food, 31st Series. Food - Science and Technique, European Commission, Luxembourg, 248 pp 2 The assessments of sodium and chloride are on-going and are meant for publication in 2019. An update of this summary report will be published once they become available. 3 http://www.efsa.europa.eu/en/food-consumption/comprehensive-database 4 https://www.efsa.europa.eu/en/data/food-composition 5 At the time the task was initiated, an opinion on tolerable upper intake levels for vitamins and minerals had already been published (http://www.efsa.europa.eu/en/science/nda/nda_opinions.html). Therefore, ULs for micronutrients are not addressed in the scientific opinions compiled in the present report. 6 A link to the full opinion is provided at the beginning of the summary for each individual nutrient. 3 DRVs summary report expertise of the EFSA Nutrition Unit, in particular Juliane Kleiner, Leng Heng, Anja Brönstrup, Céline Dumas, Lucia Fabiani, Jelena Gudelj Rakic, Agnès de Sesmaisons Lecarré and Silvia Valtueña Martínez, as well as the trainees and interim staff who have been involved. The support of other EFSA Units, in particular the Evidence Management and Assessment and Methodological Support Units, needs to be acknowledged as well. EFSA NDA Panel also wants to extend its gratitude to stakeholders for their contribution during the public consultations on DRVs opinions, and to European Commission’s Directorate General Santé. Every individual involved in reviewing, interpreting and translating scientific evidence into DRVs made a substantial contribution to public health and to the science and practice of nutrition. Dominique Turck Chair of the NDA Panel Valeriu Curtui Head of EFSA Nutrition Unit 4 DRVs summary report Table of contents Preface... ....................................................................................................................................... 3 1. Background and Terms of Reference .................................................................................... 7 2. General principles ............................................................................................................... 9 3. Energy, macronutrients and water ..................................................................................... 11 3.1. Energy ............................................................................................................................. 11 3.2. Carbohydrates and dietary fibre ......................................................................................... 13 3.3. Fats ................................................................................................................................. 15 3.4. Protein ............................................................................................................................. 18 3.5. Water ............................................................................................................................... 20 Tables of DRVs for energy, carbohydrates, fats, water and protein .................................................. 22 4. Minerals ........................................................................................................................... 25 4.1. Calcium ...........................................................................................................................
Recommended publications
  • Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry
    Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon Victoria Riley A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2016 Committee: Andrew Hoofnagle Geoffrey Baird Dina Greene Program Authorized to Offer Degree: Laboratory Medicine ©Copyright 2016 Devon V. Riley ii University of Washington Abstract Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon V. Riley Chair of the Supervisory Committee: Associate Professor Andrew Hoofnagle, MD, PhD Vitamin D has long been known to maintain bone health by regulating calcium and phosphorous homeostasis. In recent years, scientists have discovered additional physiological roles for vitamin D. The complex interaction between the active vitamin D hormone and its metabolic precursors continues to be a rich area of research. Fundamental to this research is the availability of accurate and precise assays. Few published assays for vitamins D2 and D3 have contained sufficient details on method validation or performance characteristics. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay developed for this thesis has undergone a rigorous validation and proven to yield a sensitive and specific method that exceeds the capabilities of all previously published methods. Developing and validating a novel assay is often complicated by the lack of established acceptability standards. This thesis explores this challenge, specifically for establishing meaningful interpretations and qualification standards of the lower limit of the measuring interval. Altogether, future research focused on vitamins D2, D3 and the Vitamin D pathway can benefit from this robust LC-MS/MS assay and the associated quality parameters outlined in this thesis.
    [Show full text]
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • Possible Inhibition of Hydroxy Methyl Glutaryl Coa Reductase Activity by Nicotinic Acid and Ergosterol: As Targeting for Hypocholesterolemic Action
    Possible inhibition of hydroxy methyl glutaryl CoA reductase activity by nicotinic acid and ergosterol: as targeting for hypocholesterolemic action. Said S. Moselhy1,2 ,3,6, Kamal IH1,6,Taha A. Kumosani1,2,4, Huwait EA1,2,4 1. Biochemistry Department, Faculty of science, King Abdulaziz University. 2. Experimental biochemistry unit, King Fahad Medical Research center (KFMRC). 3. Bioactive Natural Products Research Group. 4. Production of bio-products for industrial applications Research group, 5Vitamin D Research group King Abdulaziz University P.O. Box 21424, Jeddah, Saudi Arabia. 6. Biochemistry department, faculty of science, Ain Shams University, Cairo, Egypt. Abstract Objective: Coronary artery diseases including atherosclerosis is considered as commonest problem worldwide. Ergosterols are the main components of vegetable oils and nuts. The objective of this study was to evaluate the potential hypoplipidemic and hypocholesterolemic effects of ergosterol in combination with niacin in rats fed high fat diet (HFD). Methods: Eighty male albino rats were included in this study divided into two main groups: Group I: Normal rats fed stand- ard diet treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/Kg b.w) or both. Group II; rats fed HFD treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/Kg b.w) or both The feeding and treatment lasted for 8 weeks. Results: A significant elevation in the levels of total cholesterol, triacylglycerol, VLDL-c, LDL-c and atherogenic factor (p<0.001) in rats fed on HFD compared with normal control while HDL-c was significantly reduced in HFD rats compared with control group.
    [Show full text]
  • Vitamin D: Deficiency, Sufficiency and Toxicity
    Nutrients 2013, 5, 3605-3616; doi:10.3390/nu5093605 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Vitamin D: Deficiency, Sufficiency and Toxicity Fahad Alshahrani 1 and Naji Aljohani 2,3,4,* 1 Department of Medicine, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia; E-Mail: [email protected] 2 Specialized Diabetes and Endocrine Center, King Fahad Medical City, Riyadh 59046, Saudi Arabia; E-Mail: [email protected] 3 Faculty of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 22490, Saudi Arabia 4 Prince Mutaib Chair for Biomarkers of Osteoporosis, College of Science, King Saud University, Riyadh 11451, Saudi Arabia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +966-1-467-5939; Fax: +966-1-467-5931. Received: 6 May 2013; in revised form: 21 August 2013 / Accepted: 27 August 2013 / Published: 13 September 2013 Abstract: The plethora of vitamin D studies over the recent years highlight the pleomorphic effects of vitamin D outside its conventional role in calcium and bone homeostasis. Vitamin D deficiency, though common and known, still faces several challenges among the medical community in terms of proper diagnosis and correction. In this review, the different levels of vitamin D and its clinical implications are highlighted. Recommendations and consensuses for the appropriate dose and duration for each vitamin D status are also emphasized. Keywords: vitamin D; vitamin D deficiency; vitamin D toxicity 1. Introduction Vitamin D plays an essential role in the regulation of metabolism, calcium and phosphorus absorption of bone health. However, the effects of vitamin D are not limited to mineral homeostasis and skeletal health maintenance.
    [Show full text]
  • Carotenoids, Ergosterol and Tocopherols in Fresh and Preserved Herbage and Their Transfer to Bovine Milk Fat and Adipose Tissues: a Review
    J Agrobiol 29(1): 1–13, 2012 Journal of DOI 10.2478/v10146-012-0001-7 ISSN 1803-4403 (printed) AGROBIOLOGY ISSN 1804-2686 (on-line) http://joa.zf.jcu.cz; http://versita.com/science/agriculture/joa REVIEW Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review Pavel Kalač University of South Bohemia, Faculty of Agriculture, Department of Applied Chemistry, České Budějovice, Czech Republic Received: 16th February 2012 Published online: 31st January 2013 Abstract The requirements of cattle for the fat-soluble vitamins A, D and E, their provitamins and some carotenoids have increased under conditions of intensive husbandry with insufficient provision of fresh forage, their cheapest natural source. Moreover, bovine milk fat and adipose tissues participate in the intake of these micronutrients by humans. Four major carotenoids occurring in forage crops are lutein, all-trans-β-carotene, zeaxanthin and epilutein. Fresh forage is their richest source. Losses are significantly higher in hay as compared with silage, particularly if prepared from unwilted herbage. Maize silage is a poor source of carotenoids as compared with ensiled grasses and legumes. Ergosterol contents in forages increase under environmental conditions favourable for the growing of moulds, particularly at higher humidity and lower temperatures. Credible data on changes of ergosterol during herbage preservation, particularly drying and ensiling, have been lacking. Alpha-tocopherol is the most important among eight related compounds marked as vitamin E. It is vulnerable to oxidation and herbage ensiling is thus a safer preservation method than haymaking. As with carotenoids, maize silage is a poor source of α-tocopherol.
    [Show full text]
  • Genome-Wide Association Study Identifies Vitamin B5 Biosynthesis As a Host Specificity Factor in Campylobacter
    Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter Samuel K. Shepparda,b,1, Xavier Didelotc, Guillaume Mericb, Alicia Torralbod, Keith A. Jolleya, David J. Kellye, Stephen D. Bentleyf,g, Martin C. J. Maidena, Julian Parkhillf, and Daniel Falushh aDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; bInstitute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom; cSchool of Public Health, St. Mary’s Campus, Imperial College London, London SW7 2AZ, United Kingdom; dDepartment of Animal Health, University of Cordoba, 14071 Cordoba, Spain; eDepartment of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; fWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; gDepartment of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0SP, United Kingdom; and hMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved June 3, 2013 (received for review March 22, 2013) Genome-wide association studies have the potential to identify sources and locations by multilocus sequence typing (MLST) has causal genetic factors underlying important phenotypes but have shown that there is genetic differentiation among sequence types rarely been performed in bacteria. We present an association (STs) associated with different hosts (8). Among wild birds, spe- mapping method that takes into account the clonal population cific bird species most often harbor their own Campylobacter lin- structure of bacteria and is applicable to both core and accessory eages (8, 9). However, in agricultural animals, although there are genome variation.
    [Show full text]
  • 5,10-Methylenetetrahydrofolate Dehydrogenasefrom
    JOURNAL OF BACTERIOLOGY, Feb. 1991, p. 1414-1419 Vol. 173, No. 4 0021-9193/91/041414-06$02.00/0 Copyright 0 1991, American Society for Microbiology Purification and Characterization of NADP+-Dependent 5,10-Methylenetetrahydrofolate Dehydrogenase from Peptostreptococcus productus Marburg GERT WOHLFARTH, GABRIELE GEERLIGS, AND GABRIELE DIEKERT* Institutfur Mikrobiologie, Universitat Stuttgart, Azenbergstrasse 18, D-7000 Stuttgart 1, Federal Republic of Germany Received 19 June 1990/Accepted 7 December 1990 The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophicaily grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 ,M, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric a2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to >95% in the soluble (supernatant) fraction. Sodium (10 FM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P.
    [Show full text]
  • Effect-Of-Various-Calcium-Salts.Pdf
    Journal of Trace Elements in Medicine and Biology 49 (2018) 8–12 Contents lists available at ScienceDirect Journal of Trace Elements in Medicine and Biology journal homepage: www.elsevier.com/locate/jtemb Effect of various calcium salts on non-heme iron bioavailability in fasted women of childbearing age T Valeria Candiaa, Israel Ríos-Castilloa,b, Frank Carrera-Gilc, Berta Vizcarraa, Manuel Olivaresa, ⁎ Sotiris Chaniotakisd, Fernando Pizarroa, a Laboratory of Micronutrients, Institute of Nutrition and Food Technologies, University of Chile, Santiago, Chile b Food and Agriculture Organization of the United Nations, Sub Regional Office for Mesoamerica. Panama City, Panama c Nutrition and Dietetic Department, Fundación Valle del Lili Academic Hospital, Cali, Colombia d Department of Graduate Medical Sciences, Boston University School of Medicine, Boston, United States ARTICLE INFO ABSTRACT Keywords: Introduction: Micronutrient deficiencies are one of the most important public health issues worldwide and iron Iron bioavailability (Fe) deficiency anemia is the most prevalent micronutrient deficiency. Iron deficiency often coexists with cal- Iron absorption cium deficiency and iron and calcium supplementation often overlap. This has led to investigations into the Iron interaction between these two minerals, and whether calcium may inhibit iron absorption in the gut. Calcium Objective: To determine the effect of various calcium salts on non-heme iron bioavailability in fasted women of Women childbearing age. Methods: A randomized and single blinded trial was conducted on 27 women of childbearing age (35–45 years old) divided into 2 groups (n1 = 13 and n2 = 14, respectively). On four different days, after an overnight fast, 55 59 they received 5 mg of Fe as FeSO4 (labeled with Fe or Fe) with 800 mg of elemental calcium in the form of either calcium chloride, calcium gluconate, calcium citrate, calcium carbonate, calcium lactate, calcium sulfate or calcium phosphate.
    [Show full text]
  • Vitamin D Is a Membrane Antioxidant Ability to Inhibit Iron-Dependent Lipid
    Volume 326, number 1,2,3, 285-288 FEBS 12707 July 1993 © 1993 Federation of European Biochemical Societies 00145793/93/$6.00 Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action Helen Wiseman Pharmacology Group, King's College, University of London, Manresa Road, London S W3 6LX, UK Received 17 May 1993 Vitamin D is a membrane antioxidant: thus Vitamin D 3 (cholecalciferol) and its active metabolite 1,25-dihydroxycholecalciferol and also Vitamin D 2 (ergocalciferol) and 7-dehydrocholesterol (pro-Vitamin D3) all inhibited iron-dependent liposomal lipid peroxidation. Cholecalciferol, 1,25- dihydroxycholecalciferol and ergocalciferol were all of similar effectiveness as inhibitors of lipid peroxidation but were less effective than 7- dehydrocholesterol; this was a better inhibitor of lipid peroxidation than cholesterol, though not ergosterol. The structural basis for the antioxidant ability of these Vitamin D compounds is considered in terms of their molecular relationship to cholesterol and ergosterol. Furthermore, the antioxidant ability of Vitamin D is compared to that of the anticancer drug tamoxifen and its 4-hydroxy metabolite (structural mimics of cholesterol) and discussed in relation to the anticancer action of this vitamin. Vitamin D; Liposomal lipid peroxidation; Anticancer action; Tamoxifen; Membrane antioxidant; Cholesterol 1. INTRODUCTION tabolite 1,25-dihydroxycholecalciferol and 7-dehydro- cholesterol are derived from and structurally related to Vitamin D, which includes Vitamin D 3 (cholecalci- cholesterol, whereas ergosterol is the parent compound ferol) and Vitamin D 2 (ergocalciferol), is a lipid soluble of ergocalciferol and this led us to investigate their anti- vitamin, which is metabolized to the hormonally active oxidant abilities.
    [Show full text]
  • How Do Bacterial Cells Ensure That Metalloproteins Get the Correct Metal?
    REVIEWS How do bacterial cells ensure that metalloproteins get the correct metal? Kevin J. Waldron and Nigel J. Robinson Abstract | Protein metal-coordination sites are richly varied and exquisitely attuned to their inorganic partners, yet many metalloproteins still select the wrong metals when presented with mixtures of elements. Cells have evolved elaborate mechanisms to scavenge for sufficient metal atoms to meet their needs and to adjust their needs to match supply. Metal sensors, transporters and stores have often been discovered as metal-resistance determinants, but it is emerging that they perform a broader role in microbial physiology: they allow cells to overcome inadequate protein metal affinities to populate large numbers of metalloproteins with the right metals. It has been estimated that one-quarter to one-third of all Both monovalent (cuprous) copper, which is expected proteins require metals, although the exploitation of ele- to predominate in a reducing cytosol, and trivalent ments varies from cell to cell and has probably altered over (ferric) iron, which is expected to predominate in an the aeons to match geochemistry1–3 (BOX 1). The propor- oxidizing periplasm, are also highly competitive, as are tions have been inferred from the numbers of homologues several non-essential metals, such as cadmium, mercury of known metalloproteins, and other deduced metal- and silver6 (BOX 2). How can a cell simultaneously contain binding motifs, encoded within sequenced genomes. A some proteins that require copper or zinc and others that large experimental estimate was generated using native require uncompetitive metals, such as magnesium or polyacrylamide-gel electrophoresis of extracts from iron- manganese? In a most simplistic model in which pro- rich Ferroplasma acidiphilum followed by the detection of teins pick elements from a cytosol in which all divalent metal in protein spots using inductively coupled plasma metals are present and abundant, all proteins would bind mass spectrometry4.
    [Show full text]
  • MOCS2 Gene Molybdenum Cofactor Synthesis 2
    MOCS2 gene molybdenum cofactor synthesis 2 Normal Function The MOCS2 gene provides instructions for making two different proteins, MOCS2A and MOCS2B, which combine to form an enzyme called molybdopterin synthase. Molybdopterin synthase performs the second of a series of reactions in the formation ( biosynthesis) of a molecule called molybdenum cofactor. Molybdenum cofactor, which contains the element molybdenum, is essential to the function of several enzymes called sulfite oxidase, aldehyde oxidase, xanthine dehydrogenase, and mitochondrial amidoxime reducing component (mARC). These enzymes help break down (metabolize) different substances in the body, some of which are toxic if not metabolized. Health Conditions Related to Genetic Changes Molybdenum cofactor deficiency MOCS2 gene mutations cause a disorder called molybdenum cofactor deficiency. This disorder is characterized by seizures that begin early in life and brain dysfunction that worsens over time (encephalopathy); the condition is usually fatal by early childhood. At least a dozen mutations in the MOCS2 gene have been found to cause a form of the disorder designated type B or complementation group B. The MOCS2 gene mutations involved in molybdenum cofactor deficiency likely eliminate the function of MOCS2A, MOCS2B, or both, although in rare cases that are less severe, some protein function may remain. Without either piece of molybdopterin synthase, molybdenum cofactor biosynthesis is impaired. Loss of the cofactor impedes the function of the metabolic enzymes that rely on it. The resulting loss of enzyme activity leads to buildup of certain chemicals, including sulfite, S-sulfocysteine, xanthine, and hypoxanthine, and low levels of another chemical called uric acid. (Testing for these chemicals can help in the diagnosis of this condition.) Sulfite, which is normally broken down by sulfite oxidase, is toxic, especially to the brain.
    [Show full text]
  • Copper, Magnesium, Zinc and Calcium Status in Osteopenic and Osteoporotic Post-Menopausal Women
    02-Mahdaviroshan_- 25/05/15 15:48 Pagina 18 Mini-review Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women Marjan Mahdavi-Roshan 1 seems to be due to an imbalance between bone resorption and Mehrangiz Ebrahimi 2 bone formation at older ages (1-3), and is widely recognized as Aliasgar Ebrahimi 3 a major public health problem, especially for women (4). Osteopenia, defined as a bone mineral density that is lower than normal but not low enough to be classified as osteo - 1 Department of Community Medicine, School of Medicine, porosis, generally increases in severity with age and is most Guilan University of Medical Science, Rasht, Iran prevalent in women who are postmenopausal. Osteopenia is 2 Faculty of Health and Nutrition Sciences, Tabriz University often called ‘pre-osteoporosis’ as it sometimes leads to os - of Medical Sciences, Tabriz, Iran teoporosis (5). The etiology of osteoporosis and osteopenia 3 Department of Rheumatology, School of Medicine, Tabriz, is multi-factorial. Many factors – genetic differences, en - University of Medical Sciences, Tabriz, Iran docrine factors and lifestyle behaviour, such as physical ac - tivity and diet, especially mineral deficiency due to reduced dietary intake and reduced absorption of these nutrients – are thought to play important role in osteopenia or osteo - Address for correspondence: porosis and its prevention (5, 6). Marjan Mahdavi-Roshan Minerals such as magnesium, zinc, copper and calcium are Department of Community Medicine all essential for health. They help promote strong bones and School of Medicine, Guilan University of Medical Science are involved in the interaction of more than 300 enzyme re - Rasht, Iran actions.
    [Show full text]