The Damage and Tolerance Mechanisms of Pha a Rhodozyma Mutant Strain MK19 Grown at 28 °C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry
Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon Victoria Riley A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2016 Committee: Andrew Hoofnagle Geoffrey Baird Dina Greene Program Authorized to Offer Degree: Laboratory Medicine ©Copyright 2016 Devon V. Riley ii University of Washington Abstract Method Development and Validation of Vitamin D2 and Vitamin D3 Using Mass Spectrometry Devon V. Riley Chair of the Supervisory Committee: Associate Professor Andrew Hoofnagle, MD, PhD Vitamin D has long been known to maintain bone health by regulating calcium and phosphorous homeostasis. In recent years, scientists have discovered additional physiological roles for vitamin D. The complex interaction between the active vitamin D hormone and its metabolic precursors continues to be a rich area of research. Fundamental to this research is the availability of accurate and precise assays. Few published assays for vitamins D2 and D3 have contained sufficient details on method validation or performance characteristics. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay developed for this thesis has undergone a rigorous validation and proven to yield a sensitive and specific method that exceeds the capabilities of all previously published methods. Developing and validating a novel assay is often complicated by the lack of established acceptability standards. This thesis explores this challenge, specifically for establishing meaningful interpretations and qualification standards of the lower limit of the measuring interval. Altogether, future research focused on vitamins D2, D3 and the Vitamin D pathway can benefit from this robust LC-MS/MS assay and the associated quality parameters outlined in this thesis. -
US EPA Inert (Other) Pesticide Ingredients
U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs. -
The Biosynthesis of Carotenoids
THE BIOSYNTHESIS OF CAROTENOIDS C. 0. CHICHESTER Department of Food Science and Technology, University of a4fornia, Davis, Galjf 95616, U.S.A. INTRODUCTION Considerable progress has been made in the field of carotenoid bio- chemistry in the last ten to fifteen years. Prior to that very little, if anything, was known about the units which formed the intermediates of the coloured 40—carbon pigments, or the structures of those that were proposed as intermediates. Like all fields of biochemistry, as knowledge is accumulated specific problems are crystallized. These generally concern key areas, which until an understanding is achieved can substantially hinder the unification of a field or problem. The biochemistry of the carotenoids has arrived at this point. INTERMEDIATE COMPOUNDS IN CAROTENOID BIOSYNTHESIS There is general consensus as to the identity of the intermediate com- pounds which form the building blocks of the carotenoids. Studies in Phycornyces blakesleeanus, tomatoes, corn, carrots, Mucor hiemalis, spinach leaves, and bean leaves all coincide to indicate that the common building block of carotenoids is mevalonic acid'—7. Some experiments concerned with carotenoids, and many with sterols, have shown that /3-methyl-/3- hydroxyglutarate-CoA, and/or acetoacetic-CoA, are the normal sources of inevalonic acid" 8 In Phycomyces blalcesleeanus, as well as tomatoes, it has been shown rather unequivocally that the first steps in the conversion of meva- lonic acid to the C—40's are identical to those postulated for the formation of sterols911. The mevalonic acid is converted via the 5-phosphomevalonic acid to the 5-pyrophosphoryl mevalonic acid'2. This compound is then decarboxylated to form the z3-isopentenol pyrophosphate. -
Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A). -
Possible Inhibition of Hydroxy Methyl Glutaryl Coa Reductase Activity by Nicotinic Acid and Ergosterol: As Targeting for Hypocholesterolemic Action
Possible inhibition of hydroxy methyl glutaryl CoA reductase activity by nicotinic acid and ergosterol: as targeting for hypocholesterolemic action. Said S. Moselhy1,2 ,3,6, Kamal IH1,6,Taha A. Kumosani1,2,4, Huwait EA1,2,4 1. Biochemistry Department, Faculty of science, King Abdulaziz University. 2. Experimental biochemistry unit, King Fahad Medical Research center (KFMRC). 3. Bioactive Natural Products Research Group. 4. Production of bio-products for industrial applications Research group, 5Vitamin D Research group King Abdulaziz University P.O. Box 21424, Jeddah, Saudi Arabia. 6. Biochemistry department, faculty of science, Ain Shams University, Cairo, Egypt. Abstract Objective: Coronary artery diseases including atherosclerosis is considered as commonest problem worldwide. Ergosterols are the main components of vegetable oils and nuts. The objective of this study was to evaluate the potential hypoplipidemic and hypocholesterolemic effects of ergosterol in combination with niacin in rats fed high fat diet (HFD). Methods: Eighty male albino rats were included in this study divided into two main groups: Group I: Normal rats fed stand- ard diet treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/Kg b.w) or both. Group II; rats fed HFD treated with either niacin (8.5 mg /kg b.w) or ergosterol (100 mg/Kg b.w) or both The feeding and treatment lasted for 8 weeks. Results: A significant elevation in the levels of total cholesterol, triacylglycerol, VLDL-c, LDL-c and atherogenic factor (p<0.001) in rats fed on HFD compared with normal control while HDL-c was significantly reduced in HFD rats compared with control group. -
Genetic Modification of Tomato with the Tobacco Lycopene Β-Cyclase Gene Produces High Β-Carotene and Lycopene Fruit
Z. Naturforsch. 2016; 71(9-10)c: 295–301 Louise Ralley, Wolfgang Schucha, Paul D. Fraser and Peter M. Bramley* Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit DOI 10.1515/znc-2016-0102 and alleviation of vitamin A deficiency by β-carotene, Received May 18, 2016; revised July 4, 2016; accepted July 6, 2016 which is pro-vitamin A [4]. Deficiency of vitamin A causes xerophthalmia, blindness and premature death, espe- Abstract: Transgenic Solanum lycopersicum plants cially in children aged 1–4 [5]. Since humans cannot expressing an additional copy of the lycopene β-cyclase synthesise carotenoids de novo, these health-promoting gene (LCYB) from Nicotiana tabacum, under the control compounds must be taken in sufficient quantities in the of the Arabidopsis polyubiquitin promoter (UBQ3), have diet. Consequently, increasing their levels in fruit and been generated. Expression of LCYB was increased some vegetables is beneficial to health. Tomato products are 10-fold in ripening fruit compared to vegetative tissues. the most common source of dietary lycopene. Although The ripe fruit showed an orange pigmentation, due to ripe tomato fruit contains β-carotene, the amount is rela- increased levels (up to 5-fold) of β-carotene, with negli- tively low [1]. Therefore, approaches to elevate β-carotene gible changes to other carotenoids, including lycopene. levels, with no reduction in lycopene, are a goal of Phenotypic changes in carotenoids were found in vegeta- plant breeders. One strategy that has been employed to tive tissues, but levels of biosynthetically related isopre- increase levels of health promoting carotenoids in fruits noids such as tocopherols, ubiquinone and plastoquinone and vegetables for human and animal consumption is were barely altered. -
Vitamin D: Deficiency, Sufficiency and Toxicity
Nutrients 2013, 5, 3605-3616; doi:10.3390/nu5093605 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Vitamin D: Deficiency, Sufficiency and Toxicity Fahad Alshahrani 1 and Naji Aljohani 2,3,4,* 1 Department of Medicine, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia; E-Mail: [email protected] 2 Specialized Diabetes and Endocrine Center, King Fahad Medical City, Riyadh 59046, Saudi Arabia; E-Mail: [email protected] 3 Faculty of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 22490, Saudi Arabia 4 Prince Mutaib Chair for Biomarkers of Osteoporosis, College of Science, King Saud University, Riyadh 11451, Saudi Arabia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +966-1-467-5939; Fax: +966-1-467-5931. Received: 6 May 2013; in revised form: 21 August 2013 / Accepted: 27 August 2013 / Published: 13 September 2013 Abstract: The plethora of vitamin D studies over the recent years highlight the pleomorphic effects of vitamin D outside its conventional role in calcium and bone homeostasis. Vitamin D deficiency, though common and known, still faces several challenges among the medical community in terms of proper diagnosis and correction. In this review, the different levels of vitamin D and its clinical implications are highlighted. Recommendations and consensuses for the appropriate dose and duration for each vitamin D status are also emphasized. Keywords: vitamin D; vitamin D deficiency; vitamin D toxicity 1. Introduction Vitamin D plays an essential role in the regulation of metabolism, calcium and phosphorus absorption of bone health. However, the effects of vitamin D are not limited to mineral homeostasis and skeletal health maintenance. -
Carotenoids, Ergosterol and Tocopherols in Fresh and Preserved Herbage and Their Transfer to Bovine Milk Fat and Adipose Tissues: a Review
J Agrobiol 29(1): 1–13, 2012 Journal of DOI 10.2478/v10146-012-0001-7 ISSN 1803-4403 (printed) AGROBIOLOGY ISSN 1804-2686 (on-line) http://joa.zf.jcu.cz; http://versita.com/science/agriculture/joa REVIEW Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review Pavel Kalač University of South Bohemia, Faculty of Agriculture, Department of Applied Chemistry, České Budějovice, Czech Republic Received: 16th February 2012 Published online: 31st January 2013 Abstract The requirements of cattle for the fat-soluble vitamins A, D and E, their provitamins and some carotenoids have increased under conditions of intensive husbandry with insufficient provision of fresh forage, their cheapest natural source. Moreover, bovine milk fat and adipose tissues participate in the intake of these micronutrients by humans. Four major carotenoids occurring in forage crops are lutein, all-trans-β-carotene, zeaxanthin and epilutein. Fresh forage is their richest source. Losses are significantly higher in hay as compared with silage, particularly if prepared from unwilted herbage. Maize silage is a poor source of carotenoids as compared with ensiled grasses and legumes. Ergosterol contents in forages increase under environmental conditions favourable for the growing of moulds, particularly at higher humidity and lower temperatures. Credible data on changes of ergosterol during herbage preservation, particularly drying and ensiling, have been lacking. Alpha-tocopherol is the most important among eight related compounds marked as vitamin E. It is vulnerable to oxidation and herbage ensiling is thus a safer preservation method than haymaking. As with carotenoids, maize silage is a poor source of α-tocopherol. -
Direct Regulation of Phytoene Synthase Gene Expression and Carotenoid Biosynthesis by Phytochrome-Interacting Factors
Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors Gabriela Toledo-Ortiza, Enamul Huqb, and Manuel Rodríguez-Concepcióna,1 aCentre for Research in Agricultural Genomics, CSIC-IRTA-UAB, 08034 Barcelona, Spain; and bSection of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712 Edited* by Peter H. Quail, University of California, Albany, CA, and approved May 14, 2010 (received for review December 15, 2009) Carotenoids are key for plants to optimize carbon fixing using the known about the specific factors involved in this coordinated energy of sunlight. They contribute to light harvesting but also control, however. channel energy away from chlorophylls to protect the photosyn- Although the main pathway for carotenoid biosynthesis in plants thetic apparatus from excess light. Phytochrome-mediated light has been elucidated (9, 10), we still lack fundamental knowledge of signals are major cues regulating carotenoid biosynthesis in plants, the regulation of carotenogenesis in plant cells (11). In fact, to date but we still lack fundamental knowledge on the components of this no regulatory genes directly controlling carotenoid biosynthetic signaling pathway. Here we show that phytochrome-interacting gene expression have been isolated. Nonetheless, it is known that factor 1 (PIF1) and other transcription factors of the phytochrome- a major driving force for carotenoid production in different plant interacting factor (PIF) family down-regulate the accumulation of species is the transcriptional regulation of genes encoding phy- carotenoids by specifically repressing the gene encoding phytoene toene synthase (PSY), the first and main rate-determining enzyme synthase (PSY), the main rate-determining enzyme of the pathway. -
Multiplicity of Carotene Patterns Derives from Competition Between
www.nature.com/scientificreports OPEN Multiplicity of carotene patterns derives from competition between phytoene desaturase diversifcation and biological environments Mathieu Fournié1,2,3 & Gilles Truan1* Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many diferent carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from diferent clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of fve purifed enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modifed the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classifcation but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps. Carotenoids are organic pigments produced by plants, algae, fungi, and bacteria and can be subdivided into two families of molecules, carotenes and their oxidised counterparts, xanthophylls 1. -
Chemical Inhibition of Lycopene Β-Cyclases Unmask Operation of Phytoene Synthase 2 in 4 Ripening Tomato Fruits
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.452896; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Rameshwar Sharma (orcid.org/0000-0002-8775-8986) 2 Yellamaraju Sreelakshmi (orcid.org/0000-0003-3468-9136) 3 Chemical inhibition of lycopene β-cyclases unmask operation of phytoene synthase 2 in 4 ripening tomato fruits 5 Prateek Gupta1, Marta Rodriguez‐Franco2, Reddaiah Bodanapu1,#, Yellamaraju Sreelakshmi1*, 6 and Rameshwar Sharma1* 7 1Repository of Tomato Genomics Resources, Department of Plant Sciences, University of 8 Hyderabad, Hyderabad-500046, India 9 2Department of Cell Biology, Faculty of Biology, University of Freiburg, Freiburg D‐79104, 10 Germany 11 *Corresponding authors: [email protected], [email protected] 12 Short title: Role of PSY2 in tomato fruit carotenogenesis. 13 *Author for Correspondence 14 # Deceased 15 E-mails authors: [email protected] (PG), [email protected] 16 freiburg.de (MR), [email protected] (YS), [email protected] (RS) 17 Date of Submission: July 2021 18 Tables: Nil. 19 Figures: Six. 20 Supplementary figures: Nine. 21 Supplementary tables: Two. 22 Word count: 5602. 23 Highlight: 24 In tomato phytoene synthase 1 mutant fruit, which is bereft of lycopene, the chemical 25 inhibition of lycopene β-cyclases triggers lycopene accumulation. Above lycopene is likely 26 derived from phytoene synthase 2, which is hitherto presumed to be idle in tomato fruits. -
Free Radicals in Biology and Medicine Page 0
77:222 Spring 2005 Free Radicals in Biology and Medicine Page 0 This student paper was written as an assignment in the graduate course Free Radicals in Biology and Medicine (77:222, Spring 2005) offered by the Free Radical and Radiation Biology Program B-180 Med Labs The University of Iowa Iowa City, IA 52242-1181 Spring 2005 Term Instructors: GARRY R. BUETTNER, Ph.D. LARRY W. OBERLEY, Ph.D. with guest lectures from: Drs. Freya Q . Schafer, Douglas R. Spitz, and Frederick E. Domann The Fine Print: Because this is a paper written by a beginning student as an assignment, there are no guarantees that everything is absolutely correct and accurate. In view of the possibility of human error or changes in our knowledge due to continued research, neither the author nor The University of Iowa nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information. Readers are encouraged to confirm the information contained herein with other sources. All material contained in this paper is copyright of the author, or the owner of the source that the material was taken from. This work is not intended as a threat to the ownership of said copyrights. S. Jetawattana Lycopene, a powerful antioxidant 1 Lycopene, a powerful antioxidant by Suwimol Jetawattana Department of Radiation Oncology Free Radical and Radiation Biology The University