Upregulation of Homeobox Gene Is Correlated with Poor Survival Outcomes in Cervical Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Upregulation of Homeobox Gene Is Correlated with Poor Survival Outcomes in Cervical Cancer www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 48), pp: 84396-84402 Research Paper Upregulation of homeobox gene is correlated with poor survival outcomes in cervical cancer Kyung Jin Eoh1, Hee Jung Kim1, Jung-Yun Lee1, Eun Ji Nam1, Sunghoon Kim1, Sang Wun Kim1 and Young Tae Kim1 1Institute of Women’s Medical Life Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea Correspondence to: Young Tae Kim, email: [email protected] Keywords: cervical cancer, homeobox genes, survival, TCGA, biomarker Received: July 20, 2017 Accepted: August 09, 2017 Published: September 16, 2017 Copyright: Eoh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT HOX family members encode transcription factors crucial for embryogenesis and may be associated with carcinogenesis. Here, we evaluated the expression of 39 HOX genes in cervical cancer by using clinicopathological information and gene expression data of 308 patients from The Cancer Genome Atlas (TCGA) database. Correlations between mRNA expression of HOX family members and clinicopathological variables were explored. Seventy-three (23.7%) patients died during the follow-up period (median, 22.0 months). Overall mortality was significantly associated with advanced FIGO stage, lymph node metastasis, lymphovascular invasion, and increased HOXA1, HOXA5, HOXA6, and HOXC11 mRNA expression. Kaplan–Meier survival analysis revealed that overall survival was significantly shorter in patients with high HOXA rather than low HOXA expression (HOXA1, P = 0.012; HOXA5, P = 0.008; and HOXA6, P = 0.006). Upregulated HOXA1, HOXA5, and HOXA6 expression are significantly correlated with unfavorable overall survival and increased mortality in cervical cancer patients. Therefore, HOXA expression is a potential cervical cancer prognostic indicator. INTRODUCTION commonly share a 120-base pair DNA sequence called the homeobox, which codes a 61-amino acid peptide termed Cervical cancer is a multifactorial disease caused as the homeodomain. This domain has been characterized due to genetic, environmental, and epigenetic factors, as previously using nuclear magnetic resonance spectroscopy well as infection by human papillomavirus [1]. Recently, [6, 7]. HOX genes and their protein structures have also alterations in the expression of transcription factors have been found in humans [8, 9]. In the human genome, there been focused upon for its importance in the development are 39 HOX genes located on four different chromosomes, of this malignancy. and these genes are the structural and functional homologs A large amount of scientific evidence indicates that of the homeotic complex of Drosophila [10]. the expression levels of many genes involved in normal Previous studies have reported that upregulation of embryo development are aberrant in and contribute to the HOX gene is related to adverse prognostic factors in carcinogenesis [2]. Homeobox (HOX) genes encode cervical cancer, but the majority of these studies have been homeoproteins, which function as transcription factors limited by small sample sizes and have been performed in the differentiation and proliferation processes at the only in vitro. Aberrant expression of HOXD9, HOXC5, time of development of embryonic structures, and their HOXC8, and HOXB2, HOXB4, HOXC10, and HOXD13 aberrant expression has been found to be associated with has been found in cervical cancer cell lines [11–13]. A carcinogenesis and aggressiveness [3, 4]. HOX genes recent study focused on the mechanism of HPV16 E7- were first described as factors involved in embryogenesis mediated epigenetic regulation of HOX genes showed in the fruit fly, Drosophila melanogaster [5]. HOX genes the master regulatory role of HPV16 E7 in modulating www.impactjournals.com/oncotarget 84396 Oncotarget the expression of HOX cluster genes [14]. Several studies expression levels had significantly unfavorable overall have also revealed the potential roles of HOX antisense survival than those with a lower level of expression long non-coding RNAs in cervical cancer aggressiveness of these genes (P = 0.012, P = 0.008, and P = 0.006, [15–17]. These results suggest that aberrant expression respectively) (Figure 1). of HOX-related genes is associated with the process of cervical carcinogenesis. DISCUSSION Therefore, in this study, we aimed to analyze the mRNA expression levels of all the 39 HOX genes using In this study, we showed that the increased mRNA data from The Cancer Genome Atlas (TCGA) database expression of four HOX genes—HOXA1, HOXA5, [18]. We then went on to explore their correlations with HOXA6, and HOXC11—is independently associated with clinical data including survival outcomes in cervical mortality in cervical cancer based on data from TCGA cancer and evaluated the prognostic value of HOX gene [18]. Several HOX genes were shown to be correlated expression analysis. To the best of our knowledge, this is with risk factors for poor prognoses including advanced the first study to analyze the expression of all HOX genes FIGO stage, high grade, lymph node metastasis, and using data from the TCGA database. Our findings indicate lymphovascular invasion. Interestingly, high expression that measurement of HOX gene expression can help of most of the HOX genes was found to be strongly predict prognosis and overall survival in cervical cancer. associated with squamous cell type histology. In particular, the upregulation of the HOXA1, HOXA5, and HOXA6 RESULTS genes were found to be significantly associated with unfavorable overall survival in patients with cervical A total of 308 cervical cancer cases were included cancer. in this study; of these, 253 were squamous cell carcinoma, Cancers have been revealed as aberrations in 28 adenocarcinomas, 17 mucinous carcinomas, three the growth, differentiation, and organization of cell endometrioid carcinomas, and seven adenosquamous populations [19]. These basic processes are supposed to be carcinoma cases. The median follow-up period was tightly coordinated and controlled during embryogenesis 22.0 months (range: 0.1–213.6 months). Among the as well as in adult tissues [20]. The oncogerminative clinicopathological features, overall mortality was found theory of cancer development suggests that malignant to be associated with FIGO stage III/IV, lymph node transformation occurs due to the aberrant expression of metastasis, and lymphovascular invasion (Table 1). development-related genes [21]. According to this concept, Table 2 shows the correlations between the carcinogenesis is a dynamic self-organizing process that clinicopathological features and the mRNA expression resembles the process of early embryo development. The levels of HOX family genes. When the cases were malignant transformation that arises from gene mutations categorized into low and high mRNA expression groups in combination with epigenetic dysregulation eventually based on cut-off values determined as medians for each results in reprogramming of somatic cells into immortal gene, higher HOXA1, HOXA5, HOXA6, and HOXC11 cells that simulate germline cells, which is consistent with expression was found to be associated with increased the characteristics of cancer stem cells or, in other words, overall mortality (odds ratio (OR): 1.858, 95% confidence oncogerminative cells. interval (CI): 1.086–3.178; OR: 2.003, 95% CI: 1.167– As a developing malignant transformation, the 3.438; OR: 2.162, 95% CI: 1.256–3.724; and OR: 1.724, oncogerminative cell is considered to follow the same 95% CI: 1.011–2.942, respectively). High FIGO stage biological principles as those in play in a germline cell also highly correlated with high HOXB7 expression, as it develops into a blastocyst-stage embryo [21]. and lymph node metastasis was found to be associated The oncogerminative theory of cancer development with high HOXD12 and HOXD13 expression (P < 0.01). hypothesizes that to have a cancer is the same as Moreover, squamous cell histologic type was found to gestating a damaging embryo. This oncogerminative be highly correlated with high expression of HOXA1, hypothesis of tumor growth includes five stages of tumor HOXA4, HOXA7, HOXA9, HOXB2, HOXB3, HOXB5–9, development: (i) malignant transformation of normal cells HOXC4, HOXC5, HOXC13, HOXD1, HOXD9, HOXD10, into oncogerminative cells, i.e. cancer stem cells; (ii) HOXD11, and HOXD13 (P < 0.001). reproduction of the oncogerminative cells; (iii) formation Linear regression analysis indicated that overall of a multicellular spheroid (a parody of blastocyst mortality was significantly associated with high mRNA formation) characterized by a heterogeneous population expression levels of HOXA1 (t = 3.033, P = 0.003) (Table of cells in addition to the oncogerminative cells; (iv) 3). High expression of the HOXA1 gene was also found to vascularization of the oncospheroid and its growth; and (v) be positively correlated with squamous cell histologic type development of the majority of malignant tumors together and lymph node metastasis. with disaggregation of the oncogerminative cells, their In Kaplan–Meier survival analyses, we found that migration into the organism’s tissues, and development of groups with higher HOXA1, HOXA5, and HOXA6 mRNA metastatic foci of tumor growth [22]. www.impactjournals.com/oncotarget 84397 Oncotarget
Recommended publications
  • Homeobox Gene Methylation in Lung Cancer Studied by Genome-Wide Analysis with a Microarray-Based Methylated Cpg Island Recovery Assay
    Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay Tibor Rauch*, Zunde Wang*, Xinmin Zhang†, Xueyan Zhong*, Xiwei Wu‡, Sean K. Lau§, Kemp H. Kernstine¶, Arthur D. Riggs*ʈ, and Gerd P. Pfeifer*ʈ *Division of Biology, ‡Division of Information Sciences, §Division of Pathology, and ¶Division of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA 91010; and †NimbleGen Systems, Inc., Madison, WI 53711 Contributed by Arthur D. Riggs, February 5, 2007 (sent for review December 11, 2006) De novo methylation of CpG islands is a common phenomenon in and in this way they are key determinants of cell identity and human cancer, but the mechanisms of cancer-associated DNA potential targets during tumorigenesis. methylation are not known. We have used tiling arrays in combi- We recently developed a DNA methylation detection technique, nation with the methylated CpG island recovery assay to investi- the methylated CpG island recovery assay (MIRA) (12). This gate methylation of CpG islands genome-wide and at high reso- technique is based on the high affinity of a complex of the MBD2b lution. We find that all four HOX gene clusters on chromosomes 2, and MBD3L1 proteins for CpG-methylated DNA (13) and is 7, 12, and 17 are preferential targets for DNA methylation in cancer compatible with microarray-based methodology (14). We previ- cell lines and in early-stage lung cancer. CpG islands associated ously found that several homeobox genes were methylated in a lung with many other homeobox genes, such as SIX, LHX, PAX, DLX, and cancer cell line (14).
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Continuous MLL-ENL Expression Is Necessary to Establish a ''Hox Code'' and Maintain Immortalization of Hematopoietic Progenitor Cells
    Research Article Continuous MLL-ENL Expression Is Necessary to Establish a ‘‘Hox Code’’ and Maintain Immortalization of Hematopoietic Progenitor Cells Sarah J. Horton,1 David G. Grier,3 Glenda J. McGonigle,3 Alexander Thompson,3 Michelle Morrow,1 Inusha De Silva,1 Dale A. Moulding,1 Dimitris Kioussis,2 Terence R.J. Lappin,3 Hugh J.M. Brady,1 and Owen Williams1 1Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London; 2Division of Molecular Immunology, National Institute for Medical Research, London, United Kingdom; and 3Department of Child Health, Queen’s University, Belfast, United Kingdom Abstract essential for definitive hematopoiesis and that it is required to The t[(11;19)(p22;q23)] translocation, which gives rise to the maintain, but not to initiate, the expression of multiple Hox genes MLL-ENL fusion protein, is commonly found in infant acute during embryogenesis (5–9). Some Hox genes are oncogenic when leukemias of both the myeloid and lymphoid lineage. To overexpressed in hematopoietic progenitor cells (10, 11). Taken investigate the molecular mechanism of immortalization by together, this suggests that aberrant regulation of Hox genes by MLL-ENL we established a Tet-regulatable system of MLL- MLL fusion proteins is the basis for leukemias involving MLL ENL expression in primary hematopoietic progenitor cells. translocations (12). Several recent publications do indeed suggest Immortalized myeloid cell lines were generated, which that Hox genes may play an important role in leukemia induced by are dependent on continued MLL-ENL expression for their MLL fusion proteins (13–16). survival and proliferation. These cells either terminally MLL translocations result in the generation of an in-frame differentiate or die when MLL-ENL expression is turned chimeric fusion in which MLL is joined to one of over 40 different off with doxycycline.
    [Show full text]
  • Rabbit Anti-HOXA6/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-HOXA6/FITC Conjugated antibody SL11294R-FITC Product Name: Anti-HOXA6/FITC Chinese Name: FITC标记的同源盒基因HOXA6蛋白抗体 HOX1B; Homeo box 1B; Homeo box A6; Homeobox 1B; Homeobox A6; Homeobox protein Hox A6; Homeobox protein Hox-1B; Homeobox protein Hox-A6 antibody Alias: Homeobox protein HoxA6; HOX 1; Hox 1B; HOX1; HOX1.2; Hox1B; HOXA6; HX A6; HXA6; HXA6_HUMAN. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Horse,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 23kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human HOXA6/HOX1B (171-233aa) Lsotype: IgG Purification: affinitywww.sunlongbiotech.com purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: The Hox homeobox genes encode proteins that are transcriptional regulators with an established role in embryonic development. HoxA6 (homeobox A6), also known as Product Detail: HOX1B, is a 233 amino acid protein that localizes to the nucleus.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Cyp24a1 Attenuation Limits Progression of Brafv600e-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720 Minjing Zou1, Essa Y
    Published OnlineFirst February 27, 2017; DOI: 10.1158/0008-5472.CAN-16-2066 Cancer Tumor and Stem Cell Biology Research Cyp24a1 Attenuation Limits Progression of BrafV600E-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720 Minjing Zou1, Essa Y. Baitei1, Huda A. BinEssa1, Futwan A. Al-Mohanna2, Ranjit S. Parhar2,ReneSt-Arnaud3, Shioko Kimura4, Catrin Pritchard5, Ali S. Alzahrani6, Abdullah M. Assiri7, Brian F. Meyer1, and Yufei Shi1 Abstract CYP24A1, the primary inactivating enzyme for vitamin D, is nocompromised nude mice. This phenotype was associated with often overexpressed in human cancers, potentially neutralizing the downregulation of the MAPK, PI3K/Akt, and TGFb signaling path- antitumor effects of calcitriol, the active form of vitamin D. How- ways and a loss of epithelial–mesenchymal transition (EMT) in ever, it is unclear whetherCYP24A1expression serves asa functional BVECyp24a1-null cells, associated with downregulation of genes contributor versus only a biomarker for tumor progression. In this involved in EMT, tumor invasion, and metastasis. While calcitriol study, we investigated the role of CYP24A1 on malignant progres- treatment did not decrease cell proliferation in BVECyp24a1-null cells, sion of a murine model of BrafV600E-induced papillary thyroid it strengthened antitumor responses to the BRAFV600E inhibitor cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our find- developed PTC at 5 weeks of age. Mice harboring a homozygous ings offer direct evidence that Cyp24a1 functions as an oncogene in deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction PTC, where its overexpression activates multiple signaling cascades in tumor growth.
    [Show full text]
  • Expression Pattern of the Class I Homeobox Genes in Ovarian Carcinoma
    J Gynecol Oncol Vol. 21, No. 1:29-37, March 2010 DOI:10.3802/jgo.2010.21.1.29 Original Article Expression pattern of the class I homeobox genes in ovarian carcinoma Jin Hwa Hong1, Jae Kwan Lee1, Joong Jean Park2, Nak Woo Lee1, Kyu Wan Lee1, Jung Yeol Na1 Departments of 1Obstetrics and Gynecology, 2Physiology, Korea University College of Medicine, Seoul, Korea Objective: Although some sporadic reports reveal the link between the homeobox (HOX) genes and ovarian carcinoma, there is no comprehensive analysis of the expression pattern of the class I homeobox genes in ovarian carcinoma that determines the candidate genes involved in ovarian carcinogenesis. Methods: The different patterns of expression of 36 HOX genes were analyzed, including 4 ovarian cancer cell lines and 4 normal ovarian tissues. Using a reverse transcription-polymerase chain reaction (RT-PCR) and quantification analysis, the specific gene that showed a significantly higher expression in ovarian cancer cell lines than in normal ovaries was selected, and western blot analysis was performed adding 7 ovarian cancer tissue specimens. Finally, immunohistochemical and immunocytochemical analyses were performed to compare the pattern of expression of the specific HOX gene between ovarian cancer tissue and normal ovaries. Results: Among 36 genes, 11 genes had a different level of mRNA expression between the cancer cell lines and the normal ovarian tissues. Of the 11 genes, only HOXB4 had a significantly higher level of expression in ovarian cancer cell lines than in normal ovaries (p=0.029). Based on western blot, immunohistochemical, and immunocytochemical analyses, HOXB4 was expressed exclusively in the ovarian cancer cell lines or cancer tissue specimens, but not in the normal ovaries.
    [Show full text]
  • Motor Neuron Columnar Fate Imposed by Sequential Phases of Hox-C Activity
    articles Motor neuron columnar fate imposed by sequential phases of Hox-c activity Jeremy S. Dasen1, Jeh-Ping Liu2 & Thomas M. Jessell1 1Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York, New York 10032, USA 2University of Virginia School of Medicine, Department of Neuroscience, Lane Road extended, MR4, Room 5032, Charlottesville, Virginia 22908, USA ........................................................................................................................................................................................................................... The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization. Columns are basic units of neuronal organization in the vertebrate neural Hox protein expression, and the establishment of spinal MN central nervous system (CNS)1,2, but the mechanisms that control columnar identity, if any, remains obscure. their assembly remain unclear.
    [Show full text]
  • Supplementary Material Computational Prediction of SARS
    Supplementary_Material Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets Sheet_1 List of potential stem-loop structures in SARS-CoV-2 genome as predicted by VMir. Rank Name Start Apex Size Score Window Count (Absolute) Direct Orientation 1 MD13 2801 2864 125 243.8 61 2 MD62 11234 11286 101 211.4 49 4 MD136 27666 27721 104 205.6 119 5 MD108 21131 21184 110 204.7 210 9 MD132 26743 26801 119 188.9 252 19 MD56 9797 9858 128 179.1 59 26 MD139 28196 28233 72 170.4 133 28 MD16 2934 2974 76 169.9 71 43 MD103 20002 20042 80 159.3 403 46 MD6 1489 1531 86 156.7 171 51 MD17 2981 3047 131 152.8 38 87 MD4 651 692 75 140.3 46 95 MD7 1810 1872 121 137.4 58 116 MD140 28217 28252 72 133.8 62 122 MD55 9712 9758 96 132.5 49 135 MD70 13171 13219 93 130.2 131 164 MD95 18782 18820 79 124.7 184 173 MD121 24086 24135 99 123.1 45 176 MD96 19046 19086 75 123.1 179 196 MD19 3197 3236 76 120.4 49 200 MD86 17048 17083 73 119.8 428 223 MD75 14534 14600 137 117 51 228 MD50 8824 8870 94 115.8 79 234 MD129 25598 25642 89 115.6 354 Reverse Orientation 6 MR61 19088 19132 88 197.8 271 10 MR72 23563 23636 148 188.8 286 11 MR11 3775 3844 136 185.1 116 12 MR94 29532 29582 94 184.6 271 15 MR43 14973 15028 109 183.9 226 27 MR14 4160 4206 89 170 241 34 MR35 11734 11792 111 164.2 37 52 MR5 1603 1652 89 152.7 118 53 MR57 18089 18132 101 152.7 139 94 MR8 2804 2864 122 137.4 38 107 MR58 18474 18508 72 134.9 237 117 MR16 4506 4540 72 133.8 311 120 MR34 10010 10048 82 132.7 245 133 MR7 2534 2578 90 130.4 75 146 MR79 24766 24808 75 127.9 59 150 MR65 21528 21576 99 127.4 83 180 MR60 19016 19049 70 122.5 72 187 MR51 16450 16482 75 121 363 190 MR80 25687 25734 96 120.6 75 198 MR64 21507 21544 70 120.3 35 206 MR41 14500 14542 84 119.2 94 218 MR84 26840 26894 108 117.6 94 Sheet_2 List of stable stem-loop structures based on MFE.
    [Show full text]
  • Mammalian-Specific Ectodermal Enhancers Control the Expression of Hoxc Genes in Developing Nails and Hair Follicles
    Mammalian-specific ectodermal enhancers control the expression of Hoxc genes in developing nails and hair follicles Marc Fernandez-Guerreroa, Nayuta Yakushiji-Kaminatsuib,1, Lucille Lopez-Delisleb, Sofía Zdrala, Fabrice Darbellayb,2, Rocío Perez-Gomeza, Christopher Chase Boltb, Manuel A. Sanchez-Martinc, Denis Dubouleb,d,e,3, and Marian A. Rosa,f,3 aInstituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas–Universidad de Cantabria–Sociedad para el Desarrollo de Cantabria, 39011 Santander, Spain; bSchool of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland; cDepartment of Medicine, University of Salamanca, 37007 Salamanca, Spain; dDepartment of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; eCollège de France, Paris, France; and fDepartamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain Contributed by Denis Duboule, October 6, 2020 (sent for review June 1, 2020; reviewed by Nadav Ahituv and Robert Hill) Vertebrate Hox genes are critical for the establishment of structures and thus to show less functional redundancy. Examples of this during the development of the main body axis. Subsequently, they situation may be found either in the function of some Hoxa genes play important roles either in organizing secondary axial structures in uterine physiology (9–11) or in the apparent specialization of such as the appendages, or during homeostasis in postnatal stages some Hoxc genes for epidermal derivatives (12, 13), while other and adulthood. Here, we set up to analyze their elusive function in clusters apparently do not play any detectable function there. the ectodermal compartment, using the mouse limb bud as a model.
    [Show full text]
  • Differentiation and Cell-Type-Restricted Expression of HOXC4, HOXCS and HOXC6 M Myeloid Leukemias and Normal Myeloid Cells
    Leukemia 11998) 12, 1724-1 732 © 1998 Stockton Press All rights reserved 0887-6924/98 $12.00 1724 http://www.stockton-press.eo.uk/leu Differentiation and cell-type-restricted expression of HOXC4, HOXCS and HOXC6 m myeloid leukemias and normal myeloid cells 1 2 1 2 1 JJ Bijl , JW van Oostveen , JMM Walboomers', ATP Brink', W Vos , GJ Ossenkoppele and C)LM Meijer ' Department of Pathology and 'Department of Hematology, Academic Hospital of the Vrije Universiteit, Amsterdam, The Netherlands HOX genes have shown a lineage-specific expression in hema­ eage-restricted expression pattern s of HOX genes were found topoiesis and are suggested as being involved in the 5 6 in hematopoietic cells. · HOXC genes are found to be expression of certain adhesion molecules. Recently, we have expressed in human and mouse lymphocytic and myeloid cell demonstrated that HOXC4 and HOXC6, but not HOXC5, are 5 7 9 expressed during lymphoid differentiation. Reports on the lines. • - It appeared that from these genes HOXC8 was expression of these genes in myeloid leukemias and normal ubiquitously expressed in lymphoid, myeloid, erythroid and myeloid cells are still scarce. Therefore, we have investigated megakaryocytic cell lines. Expression of HO XC4 was found the expression of HOXC4, HOXC5 and HOXC6 in purified sub­ to be restricted to lymphoid cells.7 However, the reported data populations of bone marrow in addition to 36 specimens of are obtained by techniques with different sensitivity levels, acute myeloid leukemias (AMLs), eight chronic myeloid leuke­ hindering a reliable comparison. Therefore, we applied a mias (CMLs), several myeloid cell lines and cutaneous localiza­ 10 tions of three myelomonocytic leukemias and one granulocytic sensitive RT-PCR specific for HOXC4, HOXCS and HOXC6.
    [Show full text]