Sarcoptic Mange in Wild Ruminants in Spain: Solving the Epidemiological Enigma Using Microsatellite Markers Barbara Moroni1* , Samer Angelone2, Jesús M

Total Page:16

File Type:pdf, Size:1020Kb

Sarcoptic Mange in Wild Ruminants in Spain: Solving the Epidemiological Enigma Using Microsatellite Markers Barbara Moroni1* , Samer Angelone2, Jesús M Moroni et al. Parasites Vectors (2021) 14:171 https://doi.org/10.1186/s13071-021-04673-x Parasites & Vectors RESEARCH Open Access Sarcoptic mange in wild ruminants in Spain: solving the epidemiological enigma using microsatellite markers Barbara Moroni1* , Samer Angelone2, Jesús M. Pérez3,4, Anna Rita Molinar Min1, Mario Pasquetti1, Paolo Tizzani1 , Jorge Ramón López‑Olvera4, Marta Valldeperes4, José Enrique Granados5 , Santiago Lavín4, Gregorio Mentaberre6 , Leonor Camacho‑Sillero7, Carlos Martínez‑Carrasco8 , Alvaro Oleaga9, Mónica Candela8, Pier Giuseppe Meneguz1 and Luca Rossi1 Abstract Background: In Spain, sarcoptic mange was frst described in native wildlife in 1987 in Cazorla Natural Park, causing the death of nearly 95% of the local native population of Iberian ibex (Capra pyrenaica). Since then, additional out‑ breaks have been identifed in several populations of ibex and other wild ungulate species throughout the country. Although the frst epizootic outbreak in wildlife was attributed to the introduction of an infected herd of domestic goats, the origin and the cause of its persistence remain unclear. The main aims of this study are to understand (i) the number of Sarcoptes scabiei “strains” circulating in wild ruminant populations in Spain, and (ii) the molecular epidemio‑ logical relationships between S. scabiei and its hosts. Methods: Ten Sarcoptes microsatellite markers were used to characterize the genetic structure of 266 mites obtained from skin scrapings of 121 mangy wild ruminants between 2011 and 2019 from 11 areas in Spain. Results: Seventy‑three diferent alleles and 37 private alleles were detected. The results of this study show the exist‑ ence of three genetic strains of S. scabiei in the wild ruminant populations investigated. While two genetic clusters of S. scabiei were host‑ and geography‑related, one cluster included multi‑host mites deriving from geographically distant populations. Conclusions: Keywords: Sarcoptes scabiei, Ruminant populations, Spain, Wildlife, Molecular markers, Molecular epidemiology, Host specifcity, Genetic structure Background populations, this disease has received particular attention Te ubiquitous mite Sarcoptes scabiei afects more than in wildlife conservation and management for decades [1]. 100 mammalian species worldwide, causing a highly con- In Spain, sarcoptic mange was frst described in native tagious skin disease known as sarcoptic mange or scabies. free-ranging wild ruminants in late 1987 in the Cazorla Since it can result in signifcant declines in local wildlife Natural Park [2], causing a decline of nearly 95% in the local native population of Iberian ibex (Capra pyrenaica) over 4 years [3]. Since then, additional mange outbreaks have been identifed in other wild ungulate popula- *Correspondence: [email protected] tions, including red deer (Cervus elaphus) [4], Canta- 1 Department of Veterinary Science, University of Turin, Largo Braccini 2, brian chamois (Rupicapra pyrenaica parva) [5, 6], fallow 10095 Grugliasco, Italy Full list of author information is available at the end of the article deer (Dama dama) [7], roe deer (Capreolus capreolus) © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Moroni et al. Parasites Vectors (2021) 14:171 Page 2 of 10 [8], European moufon (Ovis aries musimon) [2], and the same habitat is possible and may result in efective the non-native Barbary sheep (Ammotragus lervia) [9]. multi-host transmission of S. scabiei. Environmental Whereas high mortality rates and associated population transmission is also a viable transmission model for declines have been recorded in Cantabrian chamois and sarcoptic mange in wild ungulates, as hypothesized by Iberian ibex [2], in the remaining species the infection several authors in typical resting sites such as caves seems to be less deleterious [4, 10]. in Cazorla Natural Park [2] and in salt lick sites in the Since the direct life cycle of S. scabiei relies on suitable Alps [23], where the frequent and alternative transition hosts, a multi-host system can provide the parasite with of infected animals, or even the presence of infected higher opportunities to persist and spread [11]. Wild carcasses, might favor the indirect transmission of the ruminants in Spain share habitat with diferent recog- disease. Although the frst epizootic outbreak reported nized wild hosts for S. scabiei, such as red fox and Iberian in wildlife in the Iberian Peninsula was attributed to wolf (Vulpes vulpes and Canis lupus signatus, respec- the introduction of an infected herd of domestic goats tively) [12] and wild boar (Sus scrofa). While foxes are [2], the origin and the cause of the persistence of S. scavengers and might represent only a marginal and weak scabiei in wild ruminant populations are still unclear. transmission pattern of sarcoptic mange for wild cervids Some decades ago, wild ungulate populations in Spain and bovids, top predators such as the Iberian wolf, which were largely evenly distributed in mountain territories, is currently present in Spain mostly in the northern with rare interactions among free-ranging communi- region (Asturias, Cantabria), might have prey–predator ties located in the diferent mountain systems. In recent interactions with red and roe deer and, on rare occasions, years, wild ungulates have increased in both number with chamois [13, 14]. Interestingly, sarcoptic mange epi- and range in Spain, as in the rest of Europe, favored by sodes in wild boar in Spain have never been reported in rural abandonment, reforestation, reintroduction, and the scientifc literature, although serological positivity to legislative changes [24]. Tis has connected formerly S. scabiei has been detected [15], and wildlife operators isolated populations through corridors. While the re- have occasionally reported crusted lesions compatible creation of connection has a major positive efect on with sarcoptic mange in wild boars. biodiversity, it also can favor the spread and transmis- Although morphological studies of S. scabiei mites sion of pathogens such as S. scabiei. Whether livestock have failed to recognize host-specifc diferences [16, or human-driven wildlife movement and introduction 17], epidemiological and pathological fndings have play a key role in the spread of this parasitosis is still an detected geographical and host-specifc patterns of ongoing and open debate [25]. mange epidemics in wildlife [10, 12, 18]. In turn, these Using S. scabiei mites isolated from 11 populations of fndings and growing molecular epidemiological data six wild ruminant species in Spain, this study aims to [19–22] have called into question the traditional, still describe the genetic structure of the circulating S. scabiei widely accepted, classifcation of S. scabiei into species- “strains,” namely (i) the number of S. scabiei strains that specifc variants [11]. Recently, the use of molecular can be molecularly identifed in wild ruminant popula- markers such as microsatellites (known as short tan- tions in Spain, and (ii) the epidemiological relationships dem repeats [STR] or simple sequence repeats [SSR]) between S. scabiei and the wild ruminant communities has revealed the existence of host-specifc genetic within the main outbreak areas countrywide. “strains.” While the traditional classifcation of spe- cies-specifc variants is based on clinical, epidemio- logical, and biological criteria, host-specifc strains are Methods based on population genetic criteria that clearly iden- Collection of mites tifed diferences between sarcoptic mange outbreaks Skin samples from 121 mangy wild ruminants were col- in various animal species and areas. In particular, two lected during regular management plan activities or main transmission models based on genetic structure seasonal culling programs between 2011 and 2019 in 11 were proposed, namely the “host–taxon” law [19] and areas in Spain (Fig. 1 and Table 1). Te samples belonged the “prey-to-predator” interaction [20]. A third model to six ungulate species, namely Iberian ibex (83), Canta- revealing a possible cryptic transmission of S. scabiei brian chamois (16), red deer (18), roe deer (2), aoudad between raccoon dogs and Japanese serow with weak (1), and European moufon (1) (Table 1). Skin samples prey–predator interaction (in contrast to the strong were stored at −20 °C or in 70% ethanol tubes until mite prey-to-predator interaction highlighted between chee- isolation. For each skin sample, three mites were isolated tahs and Tompson gazelle in Kenya
Recommended publications
  • Contributions to the 12Th Conference of the European Wildlife Disease Association (EWDA) August 27Th – 31St, 2016, Berlin
    12th Conference of the European Wildlife Disease Association (EWDA), Berlin 2016 Contributions to the 12th Conference of the European Wildlife Disease Association (EWDA) August 27th – 31st, 2016, Berlin, Germany Edited by Anke Schumann, Gudrun Wibbelt, Alex D. Greenwood, Heribert Hofer Organised by Leibniz Institute for Zoo and Wildlife Research (IZW) Alfred-Kowalke-Straße 17 10315 Berlin Germany www.izw-berlin.de and the European Wildlife Disease Association (EWDA) https://sites.google.com/site/ewdawebsite/ & ISBN 978-3-9815637-3-3 12th Conference of the European Wildlife Disease Association (EWDA), Berlin 2016 Published by Leibniz Institute for Zoo and Wildlife Research (IZW) Alfred-Kowalke-Str. 17, 10315 Berlin (Friedrichsfelde) PO Box 700430, 10324 Berlin, Germany Supported by Deutsche Forschungsgemeinschaft (DFG) [German Research Foundation] Kennedyallee 40, 53175 Bonn, Germany Printed on Forest Stewardship Council certified paper All rights reserved, particularly those for translation into other languages. It is not permitted to reproduce any part of this book by photocopy, microfilm, internet or any other means without written permission of the IZW. The use of product names, trade names or other registered entities in this book does not justify the assumption that these can be freely used by everyone. They may represent registered trademarks or other legal entities even if they are not marked as such. Processing of abstracts: Anke Schumann, Gudrun Wibbelt Setting and layout: Anke Schumann, Gudrun Wibbelt Cover: Diego Romero, Steven Seet, Gudrun Wibbelt Word cloud: ©Tagul.com Printing: Spree Druck Berlin GmbH www.spreedruck.de Order: Leibniz Institute for Zoo and Wildlife Research (IZW) Forschungsverbund Berlin e.V. PO Box 700430, 10324 Berlin, Germany [email protected] www.izw-berlin.de 12th Conference of the European Wildlife Disease Association (EWDA), Berlin 2016 CONTENTS Foreword .................................................................................................................
    [Show full text]
  • Evolución De La Organización Territorial Y Administrativa Del Espacio Del Adelantamiento De Cazorla En La Edad Media. Fuentes Escritas, Arqueología Y Poliorcética. Alumno/A
    UNIVERSIDAD DE JAÉN Facultad de Humanidades y Ciencias de la Educación Trabajo Fin de Grado Evolución de la organización territorial y administrativa del espacio del Adelantamiento de Cazorla en la Edad Media. Fuentes escritas, arqueología y poliorcética. Alumno/a: María Martínez Merino Tutor/a: Juan Carlos Castillo Armenteros Dpto.: Patrimonio Histórico 1 FACULTAD DE HUMANIDADES Y CIENCIAS DE LA EDUCACIÓN DE CIENCIAS Y HUMANIDADES DE FACULTAD Evolución de la organización territorial y administrativa del espacio del Adelantamiento de Cazorla en la Edad Media. Fuentes escritas, arqueología y poliorcética ÍNDICE Resumen y palabras clave……………………...…………………………………….............4 Introducción..............................................................................................................................4 El territorio................................................................................................................................7 El Alto Guadalquivir. ................................................................................................................. 7 El territorio en el Adelantamiento de Cazorla. ........................................................................... 9 Evolución histórica del señorío..............................................................................................11 Antecedentes islámicos. ....................................................................................................... ....11 Conquista del territorio del Adelantamiento de Cazorla. ........................................................
    [Show full text]
  • Cic Pheonotype List Caprinae©
    v. 5.25.12 CIC PHEONOTYPE LIST CAPRINAE © ARGALI 1. Altai Argali Ovis ammon ammon (aka Altay Argali) 2. Khangai Argali Ovis ammon darwini (aka Hangai & Mid Altai Argali) 3. Gobi Argali Ovis ammon darwini 4. Northern Chinese Argali - extinct Ovis ammon jubata (aka Shansi & Jubata Argali) 5. Northern Tibetan Argali Ovis ammon hodgsonii (aka Gansu & Altun Shan Argali) 6. Tibetan Argali Ovis ammon hodgsonii (aka Himalaya Argali) 7. Kuruk Tagh Argali Ovis ammon adametzi (aka Kuruktag Argali) 8. Karaganda Argali Ovis ammon collium (aka Kazakhstan & Semipalatinsk Argali) 9. Sair Argali Ovis ammon sairensis 10. Dzungarian Argali Ovis ammon littledalei (aka Littledale’s Argali) 11. Tian Shan Argali Ovis ammon karelini (aka Karelini Argali) 12. Kyrgyz Argali Ovis ammon humei (aka Kashgarian & Hume’s Argali) 13. Pamir Argali Ovis ammon polii (aka Marco Polo Argali) 14. Kara Tau Argali Ovis ammon nigrimontana (aka Bukharan & Turkestan Argali) 15. Nura Tau Argali Ovis ammon severtzovi (aka Kyzyl Kum & Severtzov Argali) MOUFLON 16. Tyrrhenian Mouflon Ovis aries musimon (aka Sardinian & Corsican Mouflon) 17. Introd. European Mouflon Ovis aries musimon (aka European Mouflon) 18. Cyprus Mouflon Ovis aries ophion (aka Cyprian Mouflon) 19. Konya Mouflon Ovis gmelini anatolica (aka Anatolian & Turkish Mouflon) 20. Armenian Mouflon Ovis gmelini gmelinii (aka Transcaucasus or Asiatic Mouflon, regionally as Arak Sheep) 21. Esfahan Mouflon Ovis gmelini isphahanica (aka Isfahan Mouflon) 22. Larestan Mouflon Ovis gmelini laristanica (aka Laristan Mouflon) URIALS 23. Transcaspian Urial Ovis vignei arkal (Depending on locality aka Kopet Dagh, Ustyurt & Turkmen Urial) 24. Bukhara Urial Ovis vignei bocharensis 25. Afghan Urial Ovis vignei cycloceros 26.
    [Show full text]
  • Guía De Del Parque Natural Sierra De Cazorla, Segura Y Las Villas Y Su
    Guía del Parque Natural Sierras de Cazorla, Segura y Las Villas y su entorno Guía del Parque Natural Sierras de Cazorla, Segura y Las Villas y su entorno -- 1ª ed. -- Sevilla : Consejería de Turismo, Comercio y Deporte, 2008 168 p. : il. col. ; 21 cm. -- (Turismo sostenible) Coordinación de la ed.: Dirección General de Promoción y Comercialización Turística D.L. SE-4705-08 1. Turismo 2. Parques naturales 3. Guías 4. Turismo rural 5. Parque Natural Sierras de Cazorla, Segura y Las Villas (España) 6. Jaén (Provincia: España) 7. Andalucía I. Andalucía. Consejería de Turismo, Comercio y Deporte II. Serie 1ª edición 2008 EDITA Junta de Andalucía Consejería de Turismo, Comercio y Deporte COORDINACIÓN DE LA EDICIÓN Dirección General de Promoción y Comercialización Turística PRODUCCIÓN EDITORIAL y FOTOGRAFÍAS Bosque de Palabras, S.L. IMPRESIÓN y ENCUADERNACIÓN Kadmos, S.L.L. DEPÓSITO LEGAL SE-4705-08 Esta publicación está disponible para la consulta y préstamo en el Centro de Documentación de la Consejería de Turismo, Comercio y Deporte de la Junta de Andalucía y accesible a texto completo en: http://www.juntadeandalucia.es/turismocomercioydeporte/publicaciones Índice • Presentación del Consejero . 5 • Prólogo . 7 • Uso de la guía . 8 • Mapa de carreteras . 10 • Datos básicos . 12 • El Parque Natural . 17 • La zona turística . 35 • Actividades en la naturaleza . 42 • Mapa de uso público . 44 • Senderos . 46 • El Parque y su entorno . Localidades . 67 Arroyo del Ojanco, Beas de Segura, Benatae, Cazorla, Chilluévar, Génave, Hinojares, Hornos de Segura, Huesa, La Iruela, Iznatoraf, Orcera, Peal de Becerro, Pozo Alcón, La Puerta de Segura, Quesada, Santiago- Pontones, Santo Tomé, Segura de la Sierra, Siles, Sorihuela del Guadalimar, Torres de Albanchez, Villacarrillo y Villanueva del Arzobispo .
    [Show full text]
  • Spatial Patterns of Mitochondrial and Nuclear Gene Pools in Chamois (Rupicapra R
    Heredity (2003) 91, 125–135 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Spatial patterns of mitochondrial and nuclear gene pools in chamois (Rupicapra r. rupicapra) from the Eastern Alps H Schaschl, D Kaulfus, S Hammer1 and F Suchentrunk Research Institute of Wildlife Ecology, Veterinary Medicine University of Vienna, Savoyenstrasse 1, A-1160 Vienna, Austria We have assessed the variability of maternally (mtDNA) and variability as a result of immigration of chamois from different biparentally (allozymes) inherited genes of 443 chamois Pleistocene refugia surrounding the Alps after the withdrawal (Rupicapra r. rupicapra) from 19 regional samples in the of glaciers, rather than from topographic barriers to gene Eastern Alps, to estimate the degree and patterns of spatial flow, such as Alpine valleys, extended glaciers or woodlands. gene pool differentiation, and their possible causes. Based However, this striking geographical structuring of the on a total mtDNA-RFLP approach with 16 hexanucleotide- maternal genome was not paralleled by allelic variation at recognizing restriction endonucleases, we found marked 33 allozyme loci, which were used as nuclear DNA markers. substructuring of the maternal gene pool into four phylogeo- Wright’s hierarchical F-statistics revealed that only p0.45% of graphic groups. A hierarchical AMOVA revealed that 67.09% the explained allozymic diversity was because of partitioning of the variance was partitioned among these four mtDNA- among the four mtDNA-phylogroups. We conclude that this phylogroups, whereas only 8.04% were because of partition- discordance of spatial patterns of nuclear and mtDNA gene ing among regional samples within the populations, and pools results from a phylogeographic background and sex- 24.86% due to partitioning among individuals within regional specific dispersal, with higher levels of philopatry in females.
    [Show full text]
  • Temporal Variation in Foraging Activity and Grouping Patterns in a Mountain-Dwelling Herbivore Environmental and Endogenous
    Behavioural Processes 167 (2019) 103909 Contents lists available at ScienceDirect Behavioural Processes journal homepage: www.elsevier.com/locate/behavproc Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: Environmental and endogenous drivers T ⁎ Niccolò Fattorinia, , Claudia Brunettia, Carolina Baruzzia, Gianpasquale Chiatanteb, Sandro Lovaria,c, Francesco Ferrettia a Department of Life Sciences, University of Siena. Via P.A. Mattioli 4, 53100 Siena, Italy b Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy c Maremma Natural History Museum, Strada Corsini 5, 58100 Grosseto, Italy ARTICLE INFO ABSTRACT Keywords: In temperate ecosystems, seasonality influences animal behaviour. Food availability, weather, photoperiod and Seasonality endogenous factors relevant to the biological cycle of individuals have been shown as major drivers of temporal Foraging Activity changes in activity rhythms and group size/structure of herbivorous species. We evaluated how diurnal female Group size foraging activity and grouping patterns of a mountain herbivore, the Apennine chamois Rupicapra pyrenaica Rupicapra ornata, varied during a decreasing gradient of pasture availability along the summer-autumn progression Chamois (July–October), a crucial period for the life cycle of mountain ungulates. Mountain herbivores Females increased diurnal foraging activity, possibly because of constrains elicited by variation in environ- mental factors. Size of mixed groups did not vary, in contrast with the hypothesis that groups should be smaller when pasture availability is lower. Proportion of females in groups increased, possibly suggesting that they concentrated on patchily distributed nutritious forbs. Occurrence of yearlings in groups decreased, which may have depended on dispersal of chamois in this age class.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS 8 Table of contents Landscape 11 Geographical overview 12 Geology 14 Habitats 21 Cabo de Gata and Desierto de Tabernas – the arid southeast 22 Sierra Nevada and Alpujarras 29 The Hoyas – inland plains 35 Cazorla, Mágina, María, Huétor and Almijara – the limestone mountains 37 The Guadalquivir basin 43 The Sierra Morena 45 History 48 Nature conservation 57 Flora and fauna 63 Flora 66 Mammals 78 Birds 83 Reptiles and amphibians 98 Insects and other invertebrates 103 Practical Part 113 The badlands of Almería 114 Route 1: Cabo de Gata 116 Route 2: San José 120 Route 3: Desierto de Tabernas 123 Route 4: The salt pans and dunes of Punta Entinas-Sabinar 127 Additional sites in and around Cabo de Gata 130 The central plains of East Andalucía 135 Route 5: Hoya de Guadix 136 Route 6: Steppes and Mountains of Sierra de María de los Vélez 139 Route 7: Circling around the Maimón mountain 143 Other sites in the area - Hoya de Baza 147 The Sierra Cazorla and Sierra Mágina 148 Route 8: Discovering the Sierra de Cazorla 149 Route 9: Río Borosa 155 TABLE OF CONTENTS 9 Route 10: The plateau of Campos de Hérnan Perea 158 Route 11: Sierra Mágina 162 Route 12: Las Viñas 165 Additional sites in Cazorla 167 The eastern Sierra Morena and Guadalquivir basin 168 Route 13: Exploring the Sierra de Andújar 169 Route 14: Cascada de la Cimbarra 174 Additional sites in the Sierra de Andújar 178 The Sierra Nevada 183 Route 15: Route 15: Sierra de Huétor 184 Route 16: Río Genil 189 Route 17: The Pico Véleta 191 Route 18: The Poqueira valley 196 Route
    [Show full text]
  • Guía De Del Parque Natural Sierra De Cazorla, Segura Y Las Villas
    Guía del Parque Natural Sierras de Cazorla, Segura y Las Villas y su entorno Guía del Parque Natural Sierras de Cazorla, Segura y Las Villas y su entorno -- 1ª ed. -- Sevilla : Consejería de Turismo, Comercio y Deporte, 2008 168 p. : il. col. ; 21 cm. -- (Turismo sostenible) Coordinación de la ed.: Dirección General de Promoción y Comercialización Turística D.L. SE-4705-08 1. Turismo 2. Parques naturales 3. Guías 4. Turismo rural 5. Parque Natural Sierras de Cazorla, Segura y Las Villas (España) 6. Jaén (Provincia: España) 7. Andalucía I. Andalucía. Consejería de Turismo, Comercio y Deporte II. Serie 1ª edición 2008 EDITA Junta de Andalucía Consejería de Turismo, Comercio y Deporte COORDINACIÓN DE LA EDICIÓN Dirección General de Promoción y Comercialización Turística PRODUCCIÓN EDITORIAL y FOTOGRAFÍAS Bosque de Palabras, S.L. IMPRESIÓN y ENCUADERNACIÓN Kadmos, S.L.L. DEPÓSITO LEGAL SE-4705-08 Esta publicación está disponible para la consulta y préstamo en el Centro de Documentación de la Consejería de Turismo, Comercio y Deporte de la Junta de Andalucía y accesible a texto completo en: http://www.juntadeandalucia.es/turismocomercioydeporte/publicaciones Índice • Presentación del Consejero . 5 • Prólogo . 7 • Uso de la guía . 8 • Mapa de carreteras . 10 • Datos básicos . 12 • El Parque Natural . 17 • La zona turística . 35 • Actividades en la naturaleza . 42 • Mapa de uso público . 44 • Senderos . 46 • El Parque y su entorno . Localidades . 67 Arroyo del Ojanco, Beas de Segura, Benatae, Cazorla, Chilluévar, Génave, Hinojares, Hornos de Segura, Huesa, La Iruela, Iznatoraf, Orcera, Peal de Becerro, Pozo Alcón, La Puerta de Segura, Quesada, Santiago- Pontones, Santo Tomé, Segura de la Sierra, Siles, Sorihuela del Guadalimar, Torres de Albanchez, Villacarrillo y Villanueva del Arzobispo .
    [Show full text]
  • Diversity and Evolution of the Mhc-DRB1 Gene in the Two Endemic Iberian Subspecies of Pyrenean Chamois, Rupicapra Pyrenaica
    Heredity (2007) 99, 406–413 & 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00 www.nature.com/hdy ORIGINAL ARTICLE Diversity and evolution of the Mhc-DRB1 gene in the two endemic Iberian subspecies of Pyrenean chamois, Rupicapra pyrenaica J Alvarez-Busto1, K Garcı´a-Etxebarria1, J Herrero2,3, I Garin4 and BM Jugo1 1Genetika, Antropologia Fisikoa eta Animali Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain; 2Departamento de Ecologı´a, Universidad de Alcala´ de Henares, Alcala´ de Henares, Spain; 3EGA Wildlife Consultants, Zaragoza, Spain and 4Zoologı´a eta Animali Zelulen Biologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain Major histocompatibility complex class II locus DRB variation recent parasitic infections by sarcoptic mange. A phyloge- was investigated by single-strand conformation polymorph- netic analysis of both Pyrenean chamois and DRB alleles ism analysis and sequence analysis in the two subspecies of from 10 different caprinid species revealed that the chamois Pyrenean chamois (Rupicapra pyrenaica) endemic to the alleles form two monophyletic groups. In comparison with Iberian Peninsula. Low levels of genetic variation were other Caprinae DRB sequences, the Rupicapra alleles detected in both subspecies, with seven different alleles in R. displayed a species-specific clustering that reflects a large p. pyrenaica and only three in the R. p. parva. After applying temporal divergence of the chamois from other caprinids, as the rarefaction method to cope with the differences in sample well as a possible difference in the selective environment for size, the low allele number of parva was highlighted.
    [Show full text]
  • Infectious Keratoconjunctivitis at the Wildlife-Livestock Interface from Mountain Systems: Dynamics, Functional Roles and Host-Mycoplasma Interactions
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Infectious keratoconjunctivitis at the wildlife‐livestock interface from mountain systems Dynamics, functional roles and host‐ mycoplasma interactions Xavier Fernández Aguilar PHD Thesis Infectious keratoconjunctivitis at the wildlife-livestock interface from mountain systems: dynamics, functional roles and host-mycoplasma interactions Xavier Fernández Aguilar Directors Jorge Ramón López Olvera Óscar Cabezón Ponsoda Tesi Doctoral Departament de Medicina i Cirurgia Animals Facultat de Vetarinària Universitat Autònoma de Barcelona 2017 Drawings and pictures of this thesis are from the author except for: page 31, top: Radomir Jakubowski; page 37, top: Fernando Mostacero; page 48; figure 2.11 C: Arturo Galvez ; page 49, figure 2.12 C: Patrick Deleury, D: Santiago Lavín; page 63, figure 2.15 A, C: Etienne Florence and B, D: Jean Paul Crampe and E: Benoît Dandonneau; page 105, figure 4.2.2: Luca Rossi; page 133, figure 4.3.6:
    [Show full text]
  • Genotyping of Pestivirus a (Bovine Viral Diarrhea Virus 1) Detected in Faeces and in Other Specimens of Domestic and Wild Rumina
    Veterinary Microbiology 235 (2019) 180–187 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic Genotyping of Pestivirus A (Bovine Viral Diarrhea Virus 1) detected in faeces T and in other specimens of domestic and wild ruminants at the wildlife- livestock interface ⁎ Sara Riccia,1,2, Sofia Bartolinia,1,2, Federico Morandib, Vincenzo Cuteria, Silvia Preziusoa, a School of Biosciences and Veterinary Medicine, University of Camerino, Italy b National Park of Monti Sibillini, Visso, MC, Italy ARTICLE INFO ABSTRACT Keywords: Pestiviruses are widespread in the world among ungulates and infect both domestic and wild animals causing Pestivirus A severe economic losses in livestock. Bovine Viral Diarrhea Virus type 1 (BVDV-1), now re-designated as Pestivirus BVDV-1 A, causes diseases mainly in cattle, while few data are available about infection in wild ruminants and about the Genetic typing role of these animals in viral maintenance and spread. In order to investigate BVDV-1 infection in domestic and Domestic and wild ruminants wild ruminants, especially at the wildlife/livestock interface, bulk tank milk from dairy cattle and sheep and Faeces spleen from red deer, roe deer and fallow deer were analysed. Furthermore, faecal samples from Apennine chamois and from wild deer were evaluated as a suitable sample for detecting and genotyping pestiviruses. BVDV-1 RNA was found in all animal species tested but not sheep. Genotyping based on partial 5′UTR and Npro sequences detected BVDV-1a in samples from Apennine chamois, red deer, roe deer and pasture-raised cattle, while BVDV-1c was found in a faecal sample from Apennine chamois and in a spleen sample from roe deer.
    [Show full text]
  • Seasonal Variation in Group Size of Cantabrian Chamois in Relation to Escape Terrain and Food
    Acta Theriologica 39 (3): 295-305,1994. PL ISSN 0001-7051' Seasonal variation in group size of Cantabrian chamois in relation to escape terrain and food F. Javier PÉREZ-BARBERÍA and Carlos NORES Pérez-Barbería F. J. and Ñores C. 1994. Seasonal variation in group size of Cantabrian chamois in relation to escape terrain and food. Acta theriol. 39: 295-305. The herd size of Cantabrian chamois Rupicapra pyrenaica parva (Cabrera, 1910) varied seasonally in relation to escape terrain and food availability in our study area (Asturias, north of Spain). The median group size of females without kids was 1 (mean ± SD = 1.62 ± 1.00), females with kids was 4 (5.59 ± 5.42), males was 1 (1.73 ± 1.78), and mixed group size was 7 (8.91 ± 7.91). The female-kid group size depended more on escape terrain availability than on food quality. Throughout the early weeks of the life of kids, the mothers remained in difficult access areas (cliffs and steep slopes), and showed a weak tendency to aggregate. These areas provided a wide visual range and hiding places for offspring and their use may be an anti-predation strategy. When the kids were able to run quickly, the mothers used subalpine meadows. These areas were very open and exposed kids to predation and human disturbance, however the forage has high nutritive value, and may compensate for the cost of breeding and suckling by the mothers. Aggregation may be selected as an anti-predation strategy in subalpine meadows, allowing a reduction in time spent vigilant by each individual in the group, and increased time available for other activities.
    [Show full text]