Differential Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Differential Geometry Di®erential Geometry Michael E. Taylor 1 2 Contents The Basic Object 1. Surfaces, Riemannian metrics, and geodesics Vector Fields and Di®erential Forms 2. Flows and vector ¯elds 3. Lie brackets 4. Integration on Riemannian manifolds 5. Di®erential forms 6. Products and exterior derivatives of forms 7. The general Stokes formula 8. The classical Gauss, Green, and Stokes formulas 8B. Symbols, and a more general Green-Stokes formula 9. Topological applications of di®erential forms 10. Critical points and index of a vector ¯eld Geodesics, Covariant Derivatives, and Curvature 11. Geodesics on Riemannian manifolds 12. The covariant derivative and divergence of tensor ¯elds 13. Covariant derivatives and curvature on general vector bundles 14. Second covariant derivatives and covariant-exterior derivatives 15. The curvature tensor of a Riemannian manifold 16. Geometry of submanifolds and subbundles The Gauss-Bonnet Theorem and Characteristic Classes 17. The Gauss-Bonnet theorem for surfaces 18. The principal bundle picture 19. The Chern-Weil construction 20. The Chern-Gauss-Bonnet theorem Hodge Theory 21. The Hodge Laplacian on k-forms 22. The Hodge decomposition and harmonic forms 23. The Hodge decomposition on manifolds with boundary 24. The Mayer-Vietoris sequence for deRham cohomology 3 Spinors 25. Operators of Dirac type 26. Cli®ord algebras 27. Spinors 28. Weitzenbock formulas Minimal Surfaces 29. Minimal surfaces 30. Second variation of area 31. The Minimal surface equation Appendices A. Metric spaces, compactness, and all that B. Topological spaces C. The derivative D. Inverse function and implicit function theorem E. Manifolds F. Vector bundles G. Fundamental existence theorem for ODE H. Lie groups I. Frobenius' theorem J. Exercises on determinants and cross products K. Exercises on the Frenet-Serret formulas L. Exercises on exponential and trigonometric functions M. Exponentiation of matrices N. Isothermal coordinates O. Sard's theorem P. Variational Property of the Einstein tensor Q. A generalized Gauss map R. Moser's area preservation result S. The Poincar¶edisc and Ahlfors' inequality T. Rigid body motion in Rn and geodesics on SO(n) U. Adiabatic limit and parallel transport V. Grassmannians (symmetric spaces, and KÄahlermanifolds) W. The Hopf invariant X. Jacobi ¯elds and conjugate points Y. Isometric imbedding of Riemannian manifolds Z. DeRham cohomology of compact symmetric spaces 4 Introduction These are notes for a course in di®erential geometry, for students who had a course on manifold theory the previous semester, which in turn followed a course on the elementary di®erential geometry of curves and surfaces. Section 1 recalls some basic concepts of elementary geometry, and extends them from surfaces in R3 to hypersurfaces in Rn; and then to manifolds with Riemannian metrics, de¯ning arc length and deriving the ODE for a geodesic. The ODE in general has a somewhat messy form; a more elegant form will be produced in x11, following some material on vector ¯elds and related topics in xx2{10. These sections also contain a review of material from the previous course on manifold theory, such as di®erential forms and deRham cohomology. The material in xx11{16, on geodesics, covariant derivatives, and curvature, is the heart of the course. We take the intrinsic de¯nitions of these objects as fun- damental, though the very important relations between curvature and the second fundamental form are studied in x16, in the general context of one Riemannian manifold imbedded in another (not necessarily Euclidean space). In xx17{20 we cover the famous Gauss-Bonnet Theorem, and its higher dimen- sional extension, which involves a study of characteristic classes, certain deRham cohomology classes derived from curvature. An essential tool is the Chern-Weil theory of characteristic classes, developed in x19. This in turn is treated most con- veniently in terms of a \principal bundle," a structure which is in a sense more fundamental than that of a vector bundle. Section 18 develops the basic theory of principal bundles. Sections 21{24 study the Hodge theory, representing elements of deRham co- homology by harmonic forms. This leads to simple proofs of some fundamental results, such as Poincare duality and the Kunneth formula, for products of man- ifolds. Parts of this study make use of the theory of elliptic partial di®erential equations, not presented here, but contained in the author's book [T1]. Sections 25{28 study spinors and some applications. This is a situation in which it is particularly helpful to use concepts involving principal bundles, developed in x18. Sections 29{31 are devoted to minimal surfaces, which to some extent are higher dimensional analogues of geodesics. At the end are a number of appendices, on various background or auxiliary ma- terial useful for understanding the main body of the text. This includes de¯nitions of metric and topological spaces, manifolds, vector bundles, and Lie groups, and proofs of some basic results, such as the inverse function theorem and the local existence of solutions to ODE. There are also sets of exercises, on determinants, the cross product, and trigonometric functions, intended to give the reader a fresh perspective of these elementary topics, which appear frequently in the study of 5 di®erential geometry. In addition, the ¯nal handful of appendices deal with some special topics in di®erential geometry, which complement material in the main text but did not ¯nd space there. We close this introduction with some comments on where this material comes from and where it is going. Most of the main body of the text (xx2{31) was adapted from material in di®erential geometry scattered through the three-volume text [T1]. This was augmented by the introductory material in x1, developed in an advanced calculus course. The material in xx1{10 has since been rewritten and appears, in more polished form, in [T4]. The text [T3] treats linear algebra, and contains further material on exterior algebra and Cli®ord algebra, as well as more detailed presentations of other linear algebra topics, such as given here in Appendices J and M. The theory of Lie groups, sketched here in Appendix H and used in a number of other sections, receives a fairly thorough treatment in [T2]. 6 1. Surfaces, Riemannian metrics, and geodesics ¡ ¢ n Suppose S is a smooth hypersurface in R : If γ(t) = x1(t); : : : ; xn(t) ; a · t · b; is a smooth curve in S, its length is Z b (1.1) L = kγ0(t)k dt: a where Xn 0 2 0 2 (1.2) kγ (t)k = xj(t) : j=1 A curve γ is said to be a geodesic if, for jt1 ¡ t2j su±ciently small, tj 2 [a; b]; the curve γ(t); t1 · t · t2 has the shortest length of all smooth curves in ­ from γ(t1) to γ(t2): Our ¯rst goal is to derive an equation for geodesics. So let γ0(t) be a smooth curve in S (a · t · b), joining p and q: Suppose γs(t) is a smooth family of such curves. We look for a condition guaranteeing that γ0(t) has minimum length. Since the length of a curve is independent of its parametrization, we may as well suppose 0 (1.3) kγ0(t)k = c0; constant, for a · t · b: Let N denote a ¯eld of normal vectors to S: Note that, with @sγs(t) = (@=@s)γs(t), (1.4) V = @sγs(t) ? N: Also, any vector ¯eld V ? N over the image of γ0 can be obtained by some variation γs of γ0; provided V = 0 at p and q: Recall we are assuming γs(a) = p; γs(b) = q: If L(s) denotes the length of γs; we have Z b 0 (1.5) L(s) = kγs(t)k dt; a and hence Z 1 b ¡ ¢ L0(s) = kγ0 (t)k¡1@ γ0 (t); γ0 (t) dt 2 s s s s (1.6) a Z b 1 ¡ 0 0 ¢ = @sγs(t); γs(t) dt; at s = 0: c0 a 7 Using the identity d ¡ ¢ ¡ ¢ ¡ ¢ (1.7) @ γ (t); γ0 (t) = @ γ0 (t); γ0 (t) + @ γ (t); γ00(t) ; dt s s s s s s s s s together with the fundamental theorem of calculus, in view of the fact that (1.8) @sγs(t) = 0 at t = a and b; we have Z b 0 1 ¡ 00 ¢ (1.9) L (s) = ¡ V (t); γs (t) dt; at s = 0: c0 a Now, if γ0 were a geodesic, we would have (1.10) L0(0) = 0; 00 for all such variations. In other words, we must have γ0 (t) ? V for all vector ¯elds V tangent to S (and vanishing at p and q), and hence 00 (1.11) γ0 (t)kN: This vanishing of the tangential curvature of γ0 is the geodesic equation for a hypersurface in Rn: We proceed to derive from (1.11) an ODE in standard form. Suppose S is de¯ned locally by u(x) = C; ru 6= 0: Then (1.11) is equivalent to 00 (1.12) γ0 (t) = Kru(γ0(t)) for a scalar K which remains to be determined. But the condition that u(γ0(t)) = C implies 0 γ0(t) ¢ ru(γ0(t)) = 0; and di®erentiating this gives 00 0 2 0 (1.13) γ0 (t) ¢ ru(γ0(t)) = ¡γ0(t) ¢ D u(γ0(t)) ¢ γ0(t) where D2u is the matrix of second order partial derivatives of u: Comparing (1.12) and (1.13) gives K; and we obtain the ODE ¯ ¯¡2h i 00 ¯ ¡ ¢¯ 0 2 ¡ ¢ 0 ¡ ¢ (1.14) γ0 (t) = ¡¯ru γ0(t) ¯ γ0(t) ¢ D u γ0(t) ¢ γ0(t) ru γ0(t) for a geodesic γ0 lying in S: A smooth m-dimensional surface M ½ Rn is characterized by the following property.
Recommended publications
  • Topology and Physics 2019 - Lecture 2
    Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i.
    [Show full text]
  • Some Aspects in Cosmological Perturbation Theory and F (R) Gravity
    Some Aspects in Cosmological Perturbation Theory and f (R) Gravity Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Leonardo Castañeda C aus Tabio,Cundinamarca,Kolumbien Bonn, 2016 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Peter Schneider 2. Gutachter: Prof. Dr. Cristiano Porciani Tag der Promotion: 31.08.2016 Erscheinungsjahr: 2016 In memoriam: My father Ruperto and my sister Cecilia Abstract General Relativity, the currently accepted theory of gravity, has not been thoroughly tested on very large scales. Therefore, alternative or extended models provide a viable alternative to Einstein’s theory. In this thesis I present the results of my research projects together with the Grupo de Gravitación y Cosmología at Universidad Nacional de Colombia; such projects were motivated by my time at Bonn University. In the first part, we address the topics related with the metric f (R) gravity, including the study of the boundary term for the action in this theory. The Geodesic Deviation Equation (GDE) in metric f (R) gravity is also studied. Finally, the results are applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric and some perspectives on use the of GDE as a cosmological tool are com- mented. The second part discusses a proposal of using second order cosmological perturbation theory to explore the evolution of cosmic magnetic fields. The main result is a dynamo-like cosmological equation for the evolution of the magnetic fields.
    [Show full text]
  • LP THEORY of DIFFERENTIAL FORMS on MANIFOLDS This
    TRANSACTIONSOF THE AMERICAN MATHEMATICALSOCIETY Volume 347, Number 6, June 1995 LP THEORY OF DIFFERENTIAL FORMS ON MANIFOLDS CHAD SCOTT Abstract. In this paper, we establish a Hodge-type decomposition for the LP space of differential forms on closed (i.e., compact, oriented, smooth) Rieman- nian manifolds. Critical to the proof of this result is establishing an LP es- timate which contains, as a special case, the L2 result referred to by Morrey as Gaffney's inequality. This inequality helps us show the equivalence of the usual definition of Sobolev space with a more geometric formulation which we provide in the case of differential forms on manifolds. We also prove the LP boundedness of Green's operator which we use in developing the LP theory of the Hodge decomposition. For the calculus of variations, we rigorously verify that the spaces of exact and coexact forms are closed in the LP norm. For nonlinear analysis, we demonstrate the existence and uniqueness of a solution to the /1-harmonic equation. 1. Introduction This paper contributes primarily to the development of the LP theory of dif- ferential forms on manifolds. The reader should be aware that for the duration of this paper, manifold will refer only to those which are Riemannian, compact, oriented, C°° smooth and without boundary. For p = 2, the LP theory is well understood and the L2-Hodge decomposition can be found in [M]. However, in the case p ^ 2, the LP theory has yet to be fully developed. Recent appli- cations of the LP theory of differential forms on W to both quasiconformal mappings and nonlinear elasticity continue to motivate interest in this subject.
    [Show full text]
  • Killing Spinor-Valued Forms and the Cone Construction
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
    MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles .............................
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Kähler Manifolds, Ricci Curvature, and Hyperkähler Metrics
    K¨ahlermanifolds, Ricci curvature, and hyperk¨ahler metrics Jeff A. Viaclovsky June 25-29, 2018 Contents 1 Lecture 1 3 1.1 The operators @ and @ ..........................4 1.2 Hermitian and K¨ahlermetrics . .5 2 Lecture 2 7 2.1 Complex tensor notation . .7 2.2 The musical isomorphisms . .8 2.3 Trace . 10 2.4 Determinant . 11 3 Lecture 3 11 3.1 Christoffel symbols of a K¨ahler metric . 11 3.2 Curvature of a Riemannian metric . 12 3.3 Curvature of a K¨ahlermetric . 14 3.4 The Ricci form . 15 4 Lecture 4 17 4.1 Line bundles and divisors . 17 4.2 Hermitian metrics on line bundles . 18 5 Lecture 5 21 5.1 Positivity of a line bundle . 21 5.2 The Laplacian on a K¨ahlermanifold . 22 5.3 Vanishing theorems . 25 6 Lecture 6 25 6.1 K¨ahlerclass and @@-Lemma . 25 6.2 Yau's Theorem . 27 6.3 The @ operator on holomorphic vector bundles . 29 1 7 Lecture 7 30 7.1 Holomorphic vector fields . 30 7.2 Serre duality . 32 8 Lecture 8 34 8.1 Kodaira vanishing theorem . 34 8.2 Complex projective space . 36 8.3 Line bundles on complex projective space . 37 8.4 Adjunction formula . 38 8.5 del Pezzo surfaces . 38 9 Lecture 9 40 9.1 Hirzebruch Signature Theorem . 40 9.2 Representations of U(2) . 42 9.3 Examples . 44 2 1 Lecture 1 We will assume a basic familiarity with complex manifolds, and only do a brief review today. Let M be a manifold of real dimension 2n, and an endomorphism J : TM ! TM satisfying J 2 = −Id.
    [Show full text]
  • Quantum Dynamical Manifolds - 3A
    Quantum Dynamical Manifolds - 3a. Cold Dark Matter and Clifford’s Geometrodynamics Conjecture D.F. Scofield ApplSci, Inc. 128 Country Flower Rd. Newark, DE, 19711 scofield.applsci.com (June 11, 2001) The purpose of this paper is to explore the concepts of gravitation, inertial mass and spacetime from the perspective of the geometrodynamics of “mass-spacetime” manifolds (MST). We show how to determine the curvature and torsion 2-forms of a MST from the quantum dynamics of its constituents. We begin by reformulating and proving a 1876 conjecture of W.K. Clifford concerning the nature of 4D MST and gravitation, independent of the standard formulations of general relativity theory (GRT). The proof depends only on certain derived identities involving the Riemann curvature 2-form in a 4D MST having torsion. This leads to a new metric-free vector-tensor fundamental law of dynamical gravitation, linear in pairs of field quantities which establishes a homeomorphism between the new theory of gravitation and electromagnetism based on the mean curvature potential. Its generalization leads to Yang-Mills equations. We then show the structure of the Riemann curvature of a 4D MST can be naturally interpreted in terms of mass densities and currents. By using the trace curvature invariant, we find a parity noninvariance is possible using a de Sitter imbedding of the Poincar´egroup. The new theory, however, is equivalent to the Newtonian one in the static, large scale limit. The theory is compared to GRT and shown to be compatible outside a gravitating mass in the absence of torsion. We apply these results on the quantum scale to determine the gravitational field of leptons.
    [Show full text]
  • DIFFERENTIAL GEOMETRY Contents 1. Introduction 2 2. Differentiation 3
    DIFFERENTIAL GEOMETRY FINNUR LARUSSON´ Lecture notes for an honours course at the University of Adelaide Contents 1. Introduction 2 2. Differentiation 3 2.1. Review of the basics 3 2.2. The inverse function theorem 4 3. Smooth manifolds 7 3.1. Charts and atlases 7 3.2. Submanifolds and embeddings 8 3.3. Partitions of unity and Whitney’s embedding theorem 10 4. Tangent spaces 11 4.1. Germs, derivations, and equivalence classes of paths 11 4.2. The derivative of a smooth map 14 5. Differential forms and integration on manifolds 16 5.1. Introduction 16 5.2. A little multilinear algebra 17 5.3. Differential forms and the exterior derivative 18 5.4. Integration of differential forms on oriented manifolds 20 6. Stokes’ theorem 22 6.1. Manifolds with boundary 22 6.2. Statement and proof of Stokes’ theorem 24 6.3. Topological applications of Stokes’ theorem 26 7. Cohomology 28 7.1. De Rham cohomology 28 7.2. Cohomology calculations 30 7.3. Cechˇ cohomology and de Rham’s theorem 34 8. Exercises 36 9. References 42 Last change: 26 September 2008. These notes were originally written in 2007. They have been classroom-tested twice. Address: School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia. E-mail address: [email protected] Copyright c Finnur L´arusson 2007. 1 1. Introduction The goal of this course is to acquire familiarity with the concept of a smooth manifold. Roughly speaking, a smooth manifold is a space on which we can do calculus. Manifolds arise in various areas of mathematics; they have a rich and deep theory with many applications, for example in physics.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • HARMONIC MAPS Contents 1. Introduction 2 1.1. Notational
    HARMONIC MAPS ANDREW SANDERS Contents 1. Introduction 2 1.1. Notational conventions 2 2. Calculus on vector bundles 2 3. Basic properties of harmonic maps 7 3.1. First variation formula 7 References 10 1 2 ANDREW SANDERS 1. Introduction 1.1. Notational conventions. By a smooth manifold M we mean a second- countable Hausdorff topological space with a smooth maximal atlas. We denote the tangent bundle of M by TM and the cotangent bundle of M by T ∗M: 2. Calculus on vector bundles Given a pair of manifolds M; N and a smooth map f : M ! N; it is advantageous to consider the differential df : TM ! TN as a section df 2 Ω0(M; T ∗M ⊗ f ∗TN) ' Ω1(M; f ∗TN): There is a general for- malism for studying the calculus of differential forms with values in vector bundles equipped with a connection. This formalism allows a fairly efficient, and more coordinate-free, treatment of many calculations in the theory of harmonic maps. While this approach is somewhat abstract and obfuscates the analytic content of many expressions, it takes full advantage of the algebraic symmetries available and therefore simplifies many expressions. We will develop some of this theory now and use it freely throughout the text. The following exposition will closely fol- low [Xin96]. Let M be a smooth manifold and π : E ! M a real vector bundle on M or rank r: Throughout, we denote the space of smooth sections of E by Ω0(M; E): More generally, the space of differential p-forms with values in E is given by Ωp(M; E) := Ω0(M; ΛpT ∗M ⊗ E): Definition 2.1.
    [Show full text]