Palaeontological Society of Japan

Total Page:16

File Type:pdf, Size:1020Kb

Palaeontological Society of Japan ISSN 0031-0204 Transactions and Proceedings of the Palaeontological Society of Japan New Series No. 165 Palaeontological Society of Japan April 30, 1992 Co-Editors Tsunemasa Saito and Kei Mori Language Editor Martin Janal (New York) Editorial Board Kunihiro lshizaki (Tohoku University), Yukio Isozaki (Yamaguchi University), Tomoki Kase (National Science Museum), Itaru Koizumi (Hokkaido University), Yasumochi Matoba (Akita University), Kei Mori (Tohoku University), Hiroshi N oda (University ofTsukuba), Tsunemasa Saito (Tohoku University), Yokichi Takayanagi (Ishinomaki Senshu University), Kazushige Tanabe (University of Tokyo), Yukimitsu Tomida (National Science Museum), Kazuhiko Uemura (National Science Museum) Officers for 1991-1992 President: Kiyotaka Chinzei Honorary President: Teiichi Kobayashi Councillors: Kiyotaka Chinzei, Takashi Hamada, Y oshikazu Hasegawa, Itaru Hayami, Hiromichi Hirano, Hisayoshi Igo, Noriyuki Ikeya, Junji Itoigawa, Tomoki Kase, Makoto Kato, Tatsuaki Kimura, Itaru Koizumi, Kei Mori, Hiroshi Noda, Ikuo Obata, Kenshiro Ogasawara, Tomoo Ozawa, Tsunemasa Saito, Yokichi Takayanagi, Kazushige Tanabe Members of Standing Committee: Hiromichi Hirano (General Affairs), Tomoki Kase (Finance), Tsunemasa Saito (Editor in Chief, TPPSJ), Kei Mori (Co-Editor, TPPSJ), Noriyuki Ikeya (Planning), Hiroshi Noda (Membership; Co-Editor, Special Papers), Kazushige Tanabe (Foreign Affairs), Haru Hayami (Editor, "Fossils"), Juichi Yanagida (Co-Editor, Special Papers), Tatsuaki Kimura (Friends of Fossils) Secretaries: Akito Asai, Tatsuo Oji (General Affairs), Masanori Shimamoto (Editorial of l'PPSJ), Hiroshi Kitazato (Planning), Katsuo Sashida (Membership), Yukimitsu Tomida (Foreign Affairs), Katsumi Abe (Editorial of "Fossils"), Takeshi Ishibashi (Editorial of Special Papers), Tamiko Ohana (Friends of Fossils) Auditor: Kuniteru Matsumaru The fossil on the cover is Trilophodon sendaicus Matsumoto, an extinct elephant, which was described from the Pliocene Tatsunokuchi Formation developed in the vicinity of Sendai, Northeast Honshu, Japan. (IGPS colI. cat no. 87759 (A), length about 18.5 cm) All communication relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Honkemagome 5-16-9, Bunkyou-ku, Tokyo 113, Japan Trans. Proc. Palaeont. Soc. Japan, N.S., No. 165, pp. 1009-1023, 3 Figs., April 30, 1992 932. MOLLUSCAN FAUNA FROM THE LATE MIOCENE HATS USE FORMATION IN THE MIURA PENINSULA, KANAGAWA PREFECTURE, JAPAN* KIYOSHI OKUMURA Department of Natural Science, Naruto University of Education, Naruto City, Tokushima Prefecture, 772 and YUT AKA Y AMAGISHI Kurihama Junior High School, Yokosuka City, Kanagawa Prefecture, 238 Abstract. The Hatsuse Formation distributed in the southern part of the Miura Peninsula mainly consists of well-bedded marine tuff breccia, lappili tuff, and scoriaccous sandstone and siltstone of marine origin with intercalated thin layers of pumice and conglo­ meratic sandstone. The molluscan fossils occur from a rather coarse-grained sandstonc associatcd with fragments of pyroclastic rocks. The Hatsuse Fauna named herein is com­ posed of three species of Gastropoda, one species of Scaphopoda, and 15 species of Bivalvia. The Hatsuse Fauna is characteristically an admixture of euneritic and subneritic forms, though all of them are warm-water dwellers. In consideration of specics composition and their mode of occurrence, the shallow-water dwellers arc interpreted to bc the ones which were displaced into the outcr neritic environment. The geologic age of the Hatsuse Fauna indicates Late Miocene, and is correlated with the Zushi Fauna distributed in the northern part of the Miura Peninsula, Kanagawa Prefecture and the Senhata Fauna of the Boso Peninsula, Chiba Prefecturc. Key words. Hatsuse, Miura, Zushi, Senhata, Mollusca. Introduction ed in the southern part of the Miura Penin­ sula have been lithologically divided into the The Hatsuse Formation was originally Misaki, Aburatsubo and Hatsuse Formations described by Suzuki (1932) for the marine in ascending order, and those formations have strata distributed around Hatsuse-Machi in tentatively been correlated with Tertiary the northern part of Miura City, southern­ strata in the northern part of the Miura most part of the Miura Peninsula, Kanagawa Peninsula (Akamine el al., 1956; Mitsuna­ Prefecture. He also reported a large number shi and Yabe, 1968). The precise geological of molluscan fossils from this formation, age of these strata has remained undeter­ though these fossils were undoubtedly col­ mined. One important reason for this is that, lected from part of the Pleistocene Miyata hitherto, no fossils have been found from the Formation. Hatsuse Formation. Subsequentely, the Tertiary strata distribut- Recently, numerous fossil molluscs were 'Received Sepember I, 1991; accepted Decembcr 20, collected by the present authors from the 1991 Hatsuse Formation. This is probably the 1009 1010 Kiyoshi Okumura and Yutaka Yamagishi first fossil collection from this formation. Formation (Pleistocene) consists mainly of This fauna i ncl udes some characteristic loose sandstone. species as shown in Table 1. It can be con­ The Hatsuse Formation shows a strike tren­ sidered that those fossil moll.uscs carry very ding generally from N 60"W to EW with the important information for age determination exception of the N agahama and Arasaki areas and correlation of the Tertiary strata in this where it trends from N 30"E to N60"E. Also, area. marked folds and faults which trend in a The purpose of the present work is to northwest-to-southeast direction are devel­ discriminate the molluscan fossils from the oped in this formation. Hatsuse Formation, to attempt to determine There are three major synclines in Mito, the geological age, and to correlate these Nagahama and Kaneda and two anticlines in strata with molluscan faunas in the northern Kurosaki-no-Hana and Kami-Miyada. part of the Miura and Boso Peninsulas. Their axes cross the line of strike of the Hatsuse Formation (Figure I). The Acknowledgments Minami-Shitaura and Hikihashi faults are reverse faults thrusting up from southwest to The authors wish to express their apprecia­ northeast and can be observed in several tion to Dr. Saburo Kanno, former Professor places. The Hikihashi Fault, one of the of the University of Tsukuba for his kind thrust faults, is the boundary between the encouragement during the present study and Hatsuse and Aburatsubo Formations. critical reading of the manuscript. The maximum thickness of the Hatsuse Formation is estimated to be about 460 m by Brief note on the geology around Akamine et al. (1956). the fossil localities Fossil localities and fossil occurrences The Miocene strata, in which the present fossil localities are incl uded, are overlain Molluscan fossils were collected from two unconformably by the Pleistocene Miyata localities near the Wakamiya Shrine, Kanda, Formation. According to Akamine et al. Hatsuse-machi, Miura City. One (Loc. A) is (1956), the Miocene strata distributed in the a small exposure on the east side of the Public southern part of the Miura Peninsula can be Hall of Kanda region, Miura City and other divided into three stratigraphic units: Misa­ one (Loc. B) is a small cutting exposed on the ki, Aburatsubo and Hatsuse Formations in mountain foot about 250 m south of the ascending order. These formations are main­ shrine, and about 450 m northeast of Loc. A ly characterized by pyroclastic rocks. (Figure I). Both fossil localities can be The Misaki Formation is overlain confor­ regarded as of equivalent stratigraphic posi­ mably by the Aburatsubo Formation, which tion. is overlain partially by the Hatsuse Forma­ Loc. A: Molluscan fossils occurred from a tion. The Hatsuse Formation consists main­ massive, conglomeratic tuffaceous sandstone. ly of brownish or yellowish andesitic tuff Most of the molluscs are sporadically scat­ breccia and lapilli tuff which are partially tered, and are mostly inner or outer molds, interbedded with scoriaceous sandstone, pyro­ except for the following species; Glycymeris clastic siltstone and thin layers of pumic and rotunda (Dunker), Chlamys miurensis (Yo­ conglomeratic sandstone. Cross-laminations koyama), Miyagipecten matsumoriensis are well developed in this formation and serve Masuda, and Amussiopecten akiyamae to distinguish it from the underlying Abura­ Masuda. tsubo Formation. The overlying Miyata The dominant species at Loc. A include 932. Molluscan Fauna from the Hatsuse Formation 1011 Glycymeris rotunda, Chlamys miurensis, rocky or gravelly bottoms at depths ranging Amllssiopecten akiyamae, Miyagipecten ma­ from about 50 to 200 m (Habe and Kosuge, tSlimoriensis, Laevicardium sp., and Clinocar­ 1967), whereas the latter inhabits rocky or dillm sp. shelly bottom from littoral depths to 180 m Loc. B: Molluscan fossils occured from a (Keen, 1963). Another rather deep-water pyroclastic, conglomeratic sandstone. F os­ dweller is Fissidentalium found at Loc. Band sils are sporadically scattered as in Loc. A, this species presently lives from about 50 to but are more dense in this locality than in 200 m depth (Habe and Kosuge, 1967). Loc. A. The dominant species from this In terms of faunal similarities between the locality are as follows; Glycymeris rotunda, A and B localities, only a few species are In docrassatella cf. tenuilirata (Shuto), common to both, namely Glycymeris rotunda, Laevicardium a ngustum (Y 0 koyama), Chlamys miurensis, Amussiopecten akiyamae
Recommended publications
  • United Nations Unep/Med Wg.474/3 United
    UNITED NATIONS UNEP/MED WG.474/3 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN 24 Avril 2019 Original: English Meeting of the Ecosystem Approach of Correspondence Group on Monitoring (CORMON), Biodiversity and Fisheries. Rome, Italy, 12-13 May 2019 Agenda item 3: Guidance on monitoring marine benthic habitats (Common Indicators 1 and 2) Monitoring protocols of the Ecosystem Approach Common Indicators 1 and 2 related to marine benthic habitats For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP SPA/RAC - Tunis, 2019 Note by the Secretariat The 19th Meeting of the Contracting Parties to the Barcelona Convention (COP 19) agreed on the Integrated Monitoring and Assessment Programme (IMAP) of the Mediterranean Sea and Coast and Related Assessment Criteria which set, in its Decision IG.22/7, a specific list of 27 common indicators (CIs) and Good Environmental Status (GES) targets and principles of an integrated Mediterranean Monitoring and Assessment Programme. During the initial phase of the IMAP implementation (2016-2019), the Contracting parties to the Barcelona Convention updated the existing national monitoring and assessment programmes following the Decision requirements in order to provide all the data needed to assess whether ‘‘Good Environmental Status’’ defined through the Ecosystem Approach process has been achieved or maintained. In line with IMAP, Guidance Factsheets were developed, reviewed and agreed by the Meeting of the Ecosystem Approach Correspondence Group on Monitoring (CORMON) Biodiversity and Fisheries (Madrid, Spain, 28 February-1 March 2017) and the Meeting of the SPA/RAC Focal Points (Alexandria, Egypt, 9-12 May 2017) for the Common Indicators to ensure coherent monitoring.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • A Record of Solecurtus Scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover
    A record of Solecurtus scopula (Turton, 1822) (Mollusca: Bivalvia: Solecurtidae) from the Strait of Dover Frank Nolf Pr. Stefanieplein, 43/8 – B-8400 Oostende [email protected] Keywords: BIVALVIA, SOLECURTIDAE, Recently, in November 2007, a live specimen Solecurtus scopula, Strait of Dover. was caught by a fishing boat from Zeebrugge (Belgium) at a depth of 40-42 m at 8 miles west Abstract: The presence of Solecurtus scopula of Boulogne-sur-Mer, NE France. This species is (Turton, 1822) in waters near the North Sea is rarely reported from this area. The specimen confirmed by the record of a single live-caught measures: H. 17.95 mm. and L. 42.36 mm. specimen trawled off Boulogne-sur-Mer, NE France. Since Forbes & Hanley (1853), it has been assumed that the genus Solecurtus is Abbreviations: represented by a species initially named as S. FN: Private collection of Frank Nolf candidus (Renier, 1804) in the British and Irish H: height waters. The synonymy of Forbes & Hanley L: length (1853) also contained Psammobia scopula Turton, 1822. Jeffreys (1865) considered S. Material examined: One specimen of Solecurtus candidus, S. scopula and the fossil species S. scopula (Turton, 1822), trawled by fishermen multistriatus (Scacchi, 1835) synonymous. After from Zeebrugge (Belgium) at a depth of 40-42 m, the rejection of Renier’s work by the ICZN 8 miles west of Boulogne-sur-Mer. November (1954), the British shells were named S. scopula 2007. (Plate I, Figs 1-4). (Turton, 1822). This is the name used by McMillan (1968) and Tebble (1969) who thought that only one Solecurtus-species occurred in British waters.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • An Assessment of Latest Cretaceous Pycnodonte Vesicularis (Lamarck, 1806) Shells As Records for Palaeoseasonality: a Multi-Proxy Investigation
    Clim. Past, 14, 725–749, 2018 https://doi.org/10.5194/cp-14-725-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation Niels J. de Winter1,*, Johan Vellekoop1,2,*, Robin Vorsselmans2, Asefeh Golreihan2, Jeroen Soete2, Sierra V. Petersen3, Kyle W. Meyer3, Silvio Casadio4, Robert P. Speijer2, and Philippe Claeys1 1Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium 2Department of Earth and Environmental Science, KU Leuven, Heverlee, Belgium 3Earth and Environmental Sciences Department, University of Michigan, Ann Arbor, Michigan, USA 4Escuela de Geología, Paleontología y Enseñanza de las Ciencias, Universidad Nacional de Río Negro, CONICET, General Roca, Argentina *These authors contributed equally to this work. Correspondence: Niels J. de Winter ([email protected]) Received: 26 September 2017 – Discussion started: 11 October 2017 Revised: 4 April 2018 – Accepted: 21 May 2018 – Published: 8 June 2018 Abstract. In order to assess the potential of the honey- tiate between well-preserved and diagenetically altered por- comb oyster Pycnodonte vesicularis for the reconstruction tions of the shells and provides an improved methodology for of palaeoseasonality, several specimens recovered from late reconstructing palaeoenvironmental conditions in deep time. Maastrichtian strata in the Neuquén Basin (Argentina) were While establishing a chronology for these shells was compli- subject to a multi-proxy investigation, involving scanning cated by growth cessations and diagenesis, cyclicity in trace techniques and trace element and isotopic analysis. Com- elements and stable isotopes allowed for a tentative interpre- bined CT scanning and light microscopy reveals two cal- tation of the seasonal cycle in late Maastrichtian palaeoen- cite microstructures in P.
    [Show full text]
  • Predation, Resistance, and Escalation in Sessile Crinoids
    Predation, resistance, and escalation in sessile crinoids by Valerie J. Syverson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in the University of Michigan 2014 Doctoral Committee: Professor Tomasz K. Baumiller, Chair Professor Daniel C. Fisher Research Scientist Janice L. Pappas Professor Emeritus Gerald R. Smith Research Scientist Miriam L. Zelditch © Valerie J. Syverson, 2014 Dedication To Mark. “We shall swim out to that brooding reef in the sea and dive down through black abysses to Cyclopean and many-columned Y'ha-nthlei, and in that lair of the Deep Ones we shall dwell amidst wonder and glory for ever.” ii Acknowledgments I wish to thank my advisor and committee chair, Tom Baumiller, for his guidance in helping me to complete this work and develop a mature scientific perspective and for giving me the academic freedom to explore several fruitless ideas along the way. Many thanks are also due to my past and present labmates Alex Janevski and Kris Purens for their friendship, moral support, frequent and productive arguments, and shared efforts to understand the world. And to Meg Veitch, here’s hoping we have a chance to work together hereafter. My committee members Miriam Zelditch, Janice Pappas, Jerry Smith, and Dan Fisher have provided much useful feedback on how to improve both the research herein and my writing about it. Daniel Miller has been both a great supervisor and mentor and an inspiration to good scholarship. And to the other paleontology grad students and the rest of the department faculty, thank you for many interesting discussions and much enjoyable socializing over the last five years.
    [Show full text]
  • GSSP and Stratotypes
    1st International Congress on Stratigraphy – STRATI 2013 GSSP and Stratotypes 41 Ciências da Terra (UNL), nº especial VII 42 1st International Congress on Stratigraphy – STRATI 2013 Redefining the Devonian-Carboniferous boundary: overview on problems and possible solutions Markus Aretz Université de Toulouse (UPS), GET (OMP), 14 Avenue E. Belin, 31400 Toulouse, France, [email protected], Tel : +33 5 61 33 26 74, Fax: +33 5 61 33 25 60 The discussion where the Devonian-Carboniferous boundary (DCB) should be placed has a long tradition. The current boundary criterion and the GSSP at La Serre have become under critics already when they were defined, and the work of the last two decades have highlighted several problems. Findings of supposed Carboniferous taxa in Devonian strata (including the guide fossil) and taxonomic problems with the conodont lineage to define the DCB revived the discussions in the last years not only on the suitability of the GSSP section, but also on the criterion itself. Several diverging approaches exist for the definition of a DCB, but none of them offers an easy solution. Future work has to focus on detailed biostratigraphic work in different groups and should respect stratigraphic stability for the DCB. The profound changes in the latest Devonian – earliest Carboniferous biosphere culminated in the Hangenberg Event, which is found below, but not too far from the DCB. It is easily recognizable in many sections without specific knowledge in the taxonomy of a specific fossil group. Hence, the Hangenberg interval offers not only an alternative for a more or less accurate placement of the DCB, which is sufficient for many geologists, but the extinctions and appearances around the level offers a great potential for detailed biostratigraphic zonations, and thus a precise definition of the DCB.
    [Show full text]
  • Volume Degli Abstract
    115° Congresso della Società Botanica Italiana Online 9 - 11 settembre 2020 Volume degli abstract ISBN 978-88-85915-24-4 Comitato Scientifico Comitato Tecnico e Organizzativo Consolata Siniscalco (Torino) (President) Chiara Barletta Maria Maddalena Altamura (Roma) Gianniantonio Domina Stefania Biondi (Bologna) Lorenzo Lazzaro Alessandro Chiarucci (Bologna) Marcello Salvatore Lenucci Salvatore Cozzolino (Napoli) Stefano Martellos Lorenzo Peruzzi (Pisa) Giovanni Salucci Ferruccio Poli (Bologna) Lisa Vannini Carlo Blasi (Università La Sapienza, Roma) Luca Bragazza (Università di Ferrara) Giuseppe Brundu (Università di Sassari) Stefano Chelli (Università di Camerino) Vincenzo De Feo (Università di Salerno) Giuseppe Fenu (Università di Cagliari) Goffredo Filibeck (Università della Tuscia) Marta Galloni (Università di Bologna) Lorenzo Gianguzzi (Università di Palermo) Stefano Martellos (Università di Trieste) Anna Maria Mercuri (Università di Modena e Reggio Emilia) Lorella Navazio (Università di Padova) Alessio Papini (Università di Firenze) Anna Maria Persiani (Università La Sapienza, Roma) Rossella Pistocchi (Università di Bologna) Marta Puglisi (Università di Catania) Francesco Maria Raimondo (Università di Palermo) Luigi Sanità di Toppi (Università di Pisa) Fabio Taffetani (Università delle Marche) Sponsor 115° Congresso della Società Botanica Italiana onlus Online, 9-11 settembre 2020 Programma Mercoledì 9 settembre 2020 SIMPOSIO GENERALE “I VARI VOLTI DELLA BOTANICA” (Moderatori: A. Canini e A. Chiarucci) 9.00-11.00 Comunicazioni • Luigi Cao Pinna, Irena Axmanová, Milan Chytrý et al. (15 + 5 min) “La biogeografia delle piante aliene nel bacino del Mediterraneo” • Andrea Genre, Veronica Volpe, Teresa Mazzarella et al. (15 + 5 min) “Risposte trascrizionali in radici di Medicago truncatula esposte all'applicazione esogena di oligomeri di chitina a catena corta” • Gianluigi Ottaviani, Luisa Conti, Francisco E.
    [Show full text]
  • Environmental Setting of Deep-Water Oysters in the Bay of Biscay
    Deep Sea Research Part I: Oceanographic Archimer Research Papers http://archimer.ifremer.fr December 2010, Volume 57 (12), pp. 1561-1572 http://dx.doi.org/10.1016/j.dsr.2010.09.002 © 2010 Elsevier Ltd. All rights reserved. ailable on the publisher Web site Environmental setting of deep-water oysters in the Bay of Biscay D. Van Rooija, *, L. De Mola, E. Le Guillouxb, M. Wisshakc, V.A.I. Huvenned, R. Moeremanse, a, J.-P. Henrieta a Renard Centre of Marine Geology, Ghent University, Krijgslaan 281 S8, B-9000 Gent, Belgium b IFREMER, Laboratoire Environnement Profond, BP70, F-29280 Plouzané, France c GeoZentrum Nordbayern, Erlangen University, Loewenichstr. 28, D-91054 Erlangen, Germany d Geology and Geophysics Group, National Oceanography Centre, European Way, SO14 3 ZH Southampton, UK e Scripps Institution of Oceanography, UCSD, La Jolla, CA, United States of America blisher-authenticated version is av *: Corresponding author : David Van Rooij, Tel.: +32 9 2644583 ; fax: +32 9 2644967 ; email address : [email protected] Abstract : We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks.
    [Show full text]
  • A Mediterranean Mesophotic Coral Reef Built by Non-Symbiotic
    www.nature.com/scientificreports OPEN A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians Received: 30 July 2018 Giuseppe Corriero1,2, Cataldo Pierri1,3, Maria Mercurio1,2, Carlotta Nonnis Marzano1,2, Accepted: 8 February 2019 Senem Onen Tarantini1, Maria Flavia Gravina4,2, Stefania Lisco5,2, Massimo Moretti5,2, Published: xx xx xxxx Francesco De Giosa6, Eliana Valenzano5, Adriana Giangrande2,7, Maria Mastrodonato1, Caterina Longo 1,2 & Frine Cardone 1,2 This is the frst description of a Mediterranean mesophotic coral reef. The bioconstruction extended for 2.5 km along the Italian Adriatic coast in the bathymetric range −30/−55 m. It appeared as a framework of coral blocks mostly built by two scleractinians, Phyllangia americana mouchezii (Lacaze- Duthiers, 1897) and Polycyathus muellerae (Abel, 1959), which were able to edify a secondary substrate with high structural complexity. Scleractinian corallites were cemented by calcifed polychaete tubes and organized into an interlocking meshwork that provided the reef stifness. Aggregates of several individuals of the bivalve Neopycnodonte cochlear (Poli, 1795) contributed to the compactness of the structure. The species composition of the benthic community showed a marked similarity with those described for Mediterranean coralligenous communities and it appeared to be dominated by invertebrates, while calcareous algae, which are usually considered the main coralligenous reef- builders, were poorly represented. Overall, the studied reef can be considered a unique environment, to be included in the wide and diversifed category of Mediterranean bioconstructions. The main reef- building scleractinians lacked algal symbionts, suggesting that heterotrophy had a major role in the metabolic processes that supported the production of calcium carbonate.
    [Show full text]