The Effects of Livestock Grazing and Climate Variation on Vegetation and Grasshopper Communities in the Northern Chihuahuan Desert

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Livestock Grazing and Climate Variation on Vegetation and Grasshopper Communities in the Northern Chihuahuan Desert Research Article D.C. LIGHTFOOTJournal of Orthoptera Research 2018, 27(1): 35-5135 The effects of livestock grazing and climate variation on vegetation and grasshopper communities in the northern Chihuahuan Desert DAVID C. LIGHTFOOT1 1 Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, NM, USA, 87131. Corresponding author: David C. Lightfoot ([email protected]) Academic editor: Tim Gardiner | Received 1 August 2017 | Accepted 9 November 2017 | Published 12 June 2018 http://zoobank.org/C95315B9-EF67-4505-AD53-76A849F6E645 Citation: Lightfoot DC (2018) The effects of livestock grazing and climate variation on vegetation and grasshopper communities in the northern Chihuahuan Desert. Journal of Orthoptera Research 27(1): 35–51. https://doi.org/10.3897/jor.27.19945 Abstract by species adaptations to local soils and vegetation composition and structure (e.g. Anderson 1964, Mulkern 1967, 1982, Otte Grasshoppers are important herbivores of North American semi-arid and Joern 1977, Joern 1979, 1982, Kang et al. 1989, Fielding and grasslands and shrublands, and vegetation and climate are key factors con- Brusven 1995a, Torrusio et al. 2002, Cigliano et al. 2010, Savitsky trolling their species compositions and population dynamics. Domestic 2010). Population densities of many grasshopper species fluctuate livestock grazing is a historic and a current landscape-scale ecological per- widely over time, apparently largely due to bottom-up changes in turbation that has caused reductions of perennial grasses and increases in food plant availability and quality, caused not only by variation woody shrubs and weedy annual herbs in desert grassland communities. Climate variation also affects vegetation and grasshopper production, and in precipitation, but also by physiological responses to variation the combined effects of livestock grazing and climate variation on vegeta- in temperature and moisture conditions (Rodell 1977, Capinera tion and grasshoppers have not been adequately studied in the American 1987, Fielding and Brusven 1990, Joern and Gaines 1990, Belov- Southwest. I measured vegetation and grasshoppers for five years at a series sky and Joern 1995). Density-dependent effects of other grass- of five semi-arid sites in the northern Chihuahuan Desert to evaluate the hoppers, predators, parasitoids, and disease also interact to affect interactive effects of short-term livestock grazing and climate variation on grasshopper populations (Dempster 1963, Street and McGuire plant and grasshopper community structure and species abundances. The 1990). How grasshopper communities and populations respond study sites ranged from shrub dominated to grass dominated landscapes, to environmental disturbance such as domestic livestock grazing with livestock fence lines separating land that was grazed at 30% annual and climate change depends to what extent soil, vegetation and forage utilization, and lands on the other sides of the fences excluded from weather conditions change in magnitude, space and time, and to grazing for at least 20 years. I assigned grasshopper species to life-form guilds based on their ecomorphologies and their microhabitat substrate what extent different grasshopper species with variable environ- uses that I observed. A wet spring/dry summer El Niño event occurred at mental tolerances are affected by the changes. Some species are the beginning of the study, and a dry spring/wet summer La Niña event oc- likely to respond in certain ways, while other species may show curred at the end of the study. Livestock grazing changed plant and grass- different responses (Fielding and Brusven 1996). hopper species compositions and abundances significantly during those Convergence or divergence in grasshopper species ecologies wet years, further favoring annual forbs, annual grasses and non-gramini- and specializations are likely driven by the evolution of ecological cole grasshoppers on grazed lands during wet years, while favoring peren- traits (e.g. Van der Plas et al. 2012). Grasshoppers that occur in nial grasses and graminicoles on non-grazed lands also during wet years. particular types of habitats and feed on particular types of plants The biotic communities at all sites probably supported more perennial have morphological, physiological and behavioral adaptations, grasses and more graminicoles prior to European settlement and livestock or ecological traits that maximize evolutionary fitness for those grazing that began over a century before this study. species in their particular environments. Grasshopper species that Key words share similar ecological traits for morphology, diet and behavior are ecological guilds; groups of species that exploit the same class Acrididae, desertification, ecological disturbance, guilds, life-forms of environmental resources in a similar way (Root 1967, Diamond 1975). How one choses to describe grasshopper community structure, including guilds, depends upon the purpose for such Introduction description (Lockwood 2011), and the guild concept is useful for understanding higher level ecological structure that may show pat- Grasshoppers are important primary consumers in semi-arid terns beyond taxonomically constrained species, tribes, subfamily regions throughout the world (Uvarov 1977), and grasshopper and family ranks. The grasshopper community guild concept has species compositions are determined largely by geographic prox- been used to describe grasshopper community structure for spe- imity to evolutionary source regions (Key 1959, Otte 1976) and cific assemblages and locations in North America (e.g. Joern and JOURNAL OF ORTHOPTERA RESEARCH 2018, 27(1) 36 D.C. LIGHTFOOT Lawlor 1981), China (Hong-Shi 1991, Sun et al. 2013) and Africa grasshopper species compositions and population densities in (Prendini et al. 1996). Those studies assigned grasshopper species savanna, shrub-steppe and desert grassland environments (e.g. from local assemblages to guilds based on microhabitat and food Capinera and Sechrist 1982, Jepsen-Innes and Bock 1989, Quinn resource use, which provided good descriptions of the ecological and Walgenbach 1990, Fielding and Brusven 1993, 1995b, 1996, structures of those grasshopper communities. Prendini et al. 1996, Gebeyehu and Samways 2003, Debano 2006, Uvarov (1977) described grasshopper life-forms that occur Kang and Chen 2008, Branson and Sword 2010). Results of studies globally, and that correspond to ecological/morphological traits vary, especially between grasslands/savanna and desert grasslands, of grasshoppers that live in particular types of microhabitats, such but grasshoppers that prefer more open microhabitats with spars- as open bare soil, grass, forbs and shrubs and trees. I previously er and lower stature vegetation tend to respond more favorably to applied Uvarov’s life-form concept to describe grasshopper guild livestock grazing than those that prefer taller and denser herba- structure in North American desert grasshopper communities ceous vegetation (e.g. Prendini et al. 1996). Livestock grazing also in the cool-temperate Great Basin Desert and in the warm sub- can reduce grasshopper diversity, and favor fewer ecological gener- tropical Chihuahuan Desert, based on substrate use by individual alist grasshopper species (e.g. Fielding and Brusven 1993) that can grasshoppers (Lightfoot 1985). I found that life-forms reflected shift the temporal stabilities of such communities, making them the ecological traits of grasshopper species: 1) terricoles live on more sensitive to changes in climate. bare soil or rock surfaces and feed on grasses and forbs, 2) herbi- Fielding and Brusven (1996) provided a literature review of coles live and feed on forbs, 3) graminicoles live on and feed on livestock grazing effects on semi-arid region grasshoppers of North grasses, and 4) arbusticoles live on and feed on woody shrubs (a America. They concluded that there is no one answer to the ques- subset of arboricoles). The life-form guild structure was similar tion of how livestock grazing effects grasshoppers; each situation in both deserts, while the species were not. Grasshopper species is different, and each depends upon current and historic grazing within life-form guilds should exhibit similar responses to chang- regimes, local environments, grasshopper species ecologies, and es in vegetation resources, relative to other responses of species in ecological, temporal, spatial and functional characteristics of the other guilds. Grasshopper life-form guilds have also proved useful system studied. Of particular importance is the differentiation of for documenting the effects of burrowing rodents (Cynomys spp.) short-term (< 10 years) vs. long-term (decades to centuries) effects and livestock grazing on plant and grasshopper communities in of grazing on soils, vegetation and grasshoppers. Long-term graz- the northern Chihuahuan Desert (Davidson and Lightfoot 2008, ing can permanently change soils, vegetation and grasshoppers, Davidson et al. 2010). Just as grasshopper species with different while the impacts of short-term grazing may revert back to origi- ecologies can serve as species indicators of environmental change nal conditions within a few years if grazing ceases (Fielding and in local geographic regions (Bazelet and Samways 2011), grasshop- Brusven 1996). per life-form guilds transcend regional taxonomic constraints of Variation in weather or long-term climate is known to be a key species (Uvarov 1977), and have the potential to serve globally
Recommended publications
  • Literature Cited
    LITERATURE CITED Abercrombie, M., C. J. Hichman, and M. L. Johnson. 1962. A Dictionary of Biology. Chicago: Aldine Publishing Company. Adkisson, C. S. 1996. Red Crossbill (Loxia curvirostra). In The Birds of North America, No. 256 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists’ Union, Washington, D.C. Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Covelo, CA. Albert, S. K., N. Luna, and A. L. Chopito. 1995. Deer, small mammal, and songbird use of thinned piñon–juniper plots: preliminary results. Pages 54–64 in Desired future conditions for piñon–juniper ecosystems (D. W. Shaw, E. F. Aldon, and C. LaSapio, eds.). Gen. Tech. Rep. GTR–RM–258. Fort Collins, CO: Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture. Aldrich, J. W. 1946. New subspecies of birds from western North America. Proceedings of the Biological Society of Washington 59:129–136. Aldrich, J. W. 1963. Geographic orientation of American Tetraonidae. Journal of Wildlife Management 27:529–545. Allen, R. K. 1984. A new classification of the subfamily Ephemerellinae and the description of a new genus. Pan–Pacific Entomologist 60(3): 245–247. Allen, R. K., and G. F. Edmunds, Jr. 1976. A revision of the genus Ametropus in North America (Ephemeroptera: Ephemerellidae). Journal of the Kansas Entomological Society 49:625–635. Allen, R. P. 1958. A progress report on the wading bird survey. National Audubon Society, unpubl. rep., Tavernier, FL. American Ornithologists’ Union. 1931. Check–list of North American birds. 4th ed. American Ornithologists’ Union, Lancaster, PA.
    [Show full text]
  • Diet-Mixing in a Generalist Herbivore: Trade-Offs Between Nutrient And
    DIET-MIXING IN A GENERALIST HERBIVORE: TRADE-OFFS BETWEEN NUTRIENT AND ALLELOCHEMICAL REGULATION A Dissertation by MARION LE GALL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Spencer Behmer Committee Members, Micky Eubanks Keyan Zhu-Salzman Gil Rosenthal Jon Harrison Head of Department, David Ragsdale May 2014 Major Subject: Entomology Copyright 2014 Marion Le Gall ABSTRACT Despite decades of research, many key aspects related to the physiological processes and mechanisms insect herbivores use to build themselves remain poorly understood, and we especially know very little about how interactions among nutrients and allelochemicals drive insect herbivore growth processes. Understanding the physiological effects of these interactions on generalist herbivores is a critical step to a better understanding and evaluation of the different hypothesis that have been emitted regarding the benefits of polyphagy. I used both lab and field experiments to disentangle the respective effect of protein, carbohydrates and allelochemicals on a generalist herbivore, the grasshopper Melanoplus differentialis. The effect of protein and carbohydrates alone were examined using artificial diets in choice and no-choice experiments. Results were plotted using a fitness landscape approach to evaluate how protein-carbohydrate ratio and/or concentration affected performance and consumption. Growth was best near the self-selected ratio obtained from the choice experiment, most likely due to the fact that the amount of food digested was also higher on that ratio. By contrast, development time was not best near the preferred ratio most likely due to the trade-off existing between size and development time.
    [Show full text]
  • SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES in LUNA COUNTY, NEW MEXICO Niccole D
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 10, No 4, 2021, 105 – 115 2277-663X (P) SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES IN LUNA COUNTY, NEW MEXICO Niccole D. Rech1*, Brianda Alirez2 and Lauren Paulk2 1Western New Mexico University, Deming, New Mexico 2Early College High School, Deming, New Mexico E-mail: [email protected] (*Corresponding Author) Abstract: The Chihuahua Desert is the largest hot desert (BWh) in North America. Orthopterans are an integral part of desert ecosystems. They include grasshoppers, katydids and crickets. A large section of the Northern Chihuahua Desert is in Luna County, New Mexico. There is a dearth of information on the Orthopterans in this area. Between May and October of 2020, sixty adult grasshoppers, two katydids and one camel cricket were captured from a 5-hectare (ha) area at base of the Florida Mountains, which is the extreme southern portion of Luna County. Luna County was in a severe drought during 2020. The insects were identified using several taxonomic keys (Cigliano, Braun, Eades & Otte, 2018; Guala & Doring, 2019; Triplehorn & Johnson, 2005; Richman, Lightfoot, Sutherland & Fergurson, 1993, Otte, 1984, 1981; Tinkham, 1944). A previous New Mexico State University (NMSU) survey from 1993 had only documented grasshoppers in the Acrididae and Romaleidae families. The objective of this continuing study is to identify and document all species of Orthopterans found in Luna County, and correlate the populations with changing weather patterns. In this portion of the study, the majority of Orthopterans captured were Leprus wheeleri (Thomas), a previously documented specie. However, seven undocumented species were also captured.
    [Show full text]
  • Temperature-Dependent Phenology and Predation in Arthropod Systems
    ecological modelling 196 (2006) 471–482 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/ecolmodel Temperature-dependent phenology and predation in arthropod systems J. David Logan a,∗, William Wolesensky b, Anthony Joern c a Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, Unites States b Program in Mathematics, College of St. Mary, Omaha, NE 68134, Unites States c Division of Biology, Kansas State University, Manhattan, KS 66506, Unites States article info abstract Article history: A central issue in ecology is to determine how environmental variations associated with Received 22 April 2005 global climate change, especially changing temperatures, affect trophic interactions in var- Received in revised form 14 ious ecosystems. This paper develops a temperature-dependent, stage-based, discrete, co- December 2005 hort model of the population dynamics of an insect pest under pressure from a predator. Accepted 9 February 2006 Guided by experimental data, the model is applied specifically to predation of grasshoppers Published on line 17 April 2006 by rangeland lycosid spiders. The development rate of insect arthropods is strongly affected by temperature, and these temperature-dependent phenological effects couple with shifts in Keywords: the daily activity periods for both prey and predator, thereby increasing or decreasing oppor- Predator–prey models tunities for interaction. The model addresses these effects quantitatively by introducing a Temperature temperature-dependent, joint-activity factor that enters the predator’s functional response. Phenology The model also includes a prey mortality rate that is temperature-dependent through the Grasshoppers prey development rate. The model is parameterized using field and experimental data for Lycosid spiders spiders and grasshoppers.
    [Show full text]
  • Table of Contents: Vol
    Journal of Range Management, Volume 49, Number 6 (November 1996) Item Type Journal; text Publisher Society for Range Management Journal Journal of Range Management Rights Copyright © Society for Range Management. Download date 24/09/2021 04:32:42 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/650560 TABLE OF CONTENTS: VOL. 49, NO. 6, November 1996 ARTICLES Animal Ecology 482 Cattle distribution, habitats, and diets in the Sierra Nevada of California by John G. Kie and Brian B. Boroski 489 Wildlife numbers on excellent and good condition Chihuahuan Desert rangelands: An observation by Gretchen Smith, Jerry L. Holechek, and Manual Cardenas 494 Importance of grasshopper defoliation period on southwestern blue grama- dominated rangeland by David C. Thompson, and Kevin T Gardner Plant Animal 499 Mule deer and elk foraging preference for 4 sagebrush taxa by Carl L. wambdt Plant Ecology 504 Perennial grass establishment in relationship to seeding dates in the Northern Great Plains by R.E. Ries and L. Hofmann 509 Emergence and seedling survival of Lotus tenuis in Festuca arundinacea pastures by G.H. Sevilla, O.N. Fernandez, RR Miiion, and L. Montcs 512 Sahelian rangeland development; a catastrophe? by Max Rietkerk, Pie&r Ketner, Leo Stroosnijder, and Herbert H.T. Prins 520 Buffaloberry [Shepherdia canadensis (L.) Nutt.] fruit production in fire- successional bear feeding sites by David Hamer 530 Shifts in botanical composition of flatwoods following fertilization by Rob Kalmbacher and Frank Martin Grazing Management 535 I&rea&g utilization efficiency of continuously stocked Old World bluestem pasture by W.R.
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • State-Of-The-Art on Use of Insects As Animal Feed
    State-of-the-art on use of insects as animal feed Harinder P.S. Makkar1, Gilles Tran2, Valérie Heuzé2 and Philippe Ankers1 1 Animal Production and Health Division, FAO, Rome 2 Association Française de Zootechnie, Paris, France Full reference of the paper: Animal Feed Science and Technology, Volume 197, November 2014, pages 1-33 Link: http://www.animalfeedscience.com/article/S0377-8401(14)00232-6/abstract http://dx.doi.org/10.1016/j.anifeedsci.2014.07.008 Abstract A 60-70% increase in consumption of animal products is expected by 2050. This increase in the consumption will demand enormous resources, the feed being the most challenging because of the limited availability of natural resources, ongoing climatic changes and food-feed-fuel competition. The costs of conventional feed resources such as soymeal and fishmeal are very high and moreover their availability in the future will be limited. Insect rearing could be a part of the solutions. Although some studies have been conducted on evaluation of insects, insect larvae or insect meals as an ingredient in the diets of some animal species, this field is in infancy. Here we collate, synthesize and discuss the available information on five major insect species studied with respect to evaluation of their products as animal feed. The nutritional quality of black soldier fly larvae, the house fly maggots, mealworm, locusts- grasshoppers-crickets, and silkworm meal and their use as a replacement of soymeal and fishmeal in the diets of poultry, pigs, fish species and ruminants are discussed. The crude protein contents of these alternate resources are high: 42 to 63% and so are the lipid contents (up to 36% oil), which could possibly be extracted and used for various applications including biodiesel production.
    [Show full text]
  • Modeling and Popula
    IV.6 Melanoplus sanguinipes Phenology North–South Across the Western United States J. R. Fisher, W. P. Kemp, and J. S. Berry Distribution and abundance of an insect species are A. elliotti hatchlings typically appear earlier in the spring affected by its habitat requirements, such as food and/or than M. sanguinipes hatchlings (Kemp and Sanchez climatic resources. As requirements become more spe- 1987), mainly because the pods of A. elliotti are nearer cific, distribution and abundance become more limited. the surface of the soil and are generally laid in areas de- For instance, Melanoplus bowditchi, a grasshopper found void of vegetation. Heat reaches the A. elliotti eggs ear- in many Western States, is limited to the range of its pri- lier in the spring, and thus they begin to develop earlier mary host plants, silver sagebrush and sand sagebrush than M. sanguinipes eggs, which are placed 0.4 inch (1 (Pfadt 1994). In fact, the relative abundance of these cm) deeper in the soil and among grass clumps (in areas plants will determine if you can even find M. bowditchi. cooler than bare areas) (Fisher 1993, Kemp and Sanchez Distribution of the bigheaded grasshopper, Aulocara 1987). elliotti, appears to be limited by climatic conditions. It feeds mainly on grasses and sedges but is restricted to M. sanguinipes and most other economically important States west of longitude 95° W, where it is particularly grasshopper species on rangeland have an embryonic dia- abundant in the more arid areas (Pfadt 1994). But M. pause. Diapause can be defined as a genetically con- femurrubrum, a general feeder (polyphagous), is distrib- trolled physiological state of suspended animation that uted throughout North America from coast to coast and will revert to normal working physiological processes from northern British Columbia to northern Guatemala and growth only after occurrence of a specific event or a (Pfadt 1994).
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Proc Ent Soc Mb 2019, Volume 75
    Proceedings of the Entomological Society of Manitoba VOLUME 75 2019 T.D. Galloway Editor Winnipeg, Manitoba Entomological Society of Manitoba The Entomological Society of Manitoba was formed in 1945 “to foster the advancement, exchange and dissemination of Entomological knowledge”. This is a professional society that invites any person interested in entomology to become a member by application in writing to the Secretary. The Society produces the Newsletter, the Proceedings, and hosts a variety of meetings, seminars and social activities. Persons interested in joining the Society should consult the website at: http://home. cc.umanitoba.ca/~fieldspg, or contact: Sarah Semmler The Secretary Entomological Society of Manitoba [email protected] Contents Photo – Adult male European earwig, Forficula auricularia, with a newly arrived aphid, Uroleucon rudbeckiae, on tall coneflower, Rudbeckia laciniata, in a Winnipeg garden, 2017-08-05 ..................................................................... 5 Scientific Note Earwigs (Dermaptera) of Manitoba: records and recent discoveries. Jordan A. Bannerman, Denice Geverink, and Robert J. Lamb ...................... 6 Submitted Papers Microscopic examination of Lygus lineolaris (Hemiptera: Miridae) feeding injury to different growth stages of navy beans. Tharshi Nagalingam and Neil J. Holliday ...................................................................... 15 Studies in the biology of North American Acrididae development and habits. Norman Criddle. Preamble to publication
    [Show full text]
  • D:\Grasshopper CD\Pfadts\Pdfs\Vpfiles
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet Slantfaced Pasture Grasshopper Orphulella speciosa (Scudder) Distribution and Habitat Examination of crop contents of grasshoppers collected in the tallgrass prairie of eastern Kansas revealed that the The slantfaced pasture grasshopper ranges widely in North American grasslands from east of the Rocky Mountains common plants ingested were blue grama, sideoats grama, to the Atlantic Coast and from southern Canada to northern Kentucky bluegrass, little bluestem, and big bluestem. Mexico. The species is most abundant in upland areas of short Because this grasshopper prefers to inhabit areas of short grasses in the tallgrass and southern mixedgrass prairies. In the grasses, mowed fields, and heavily grazed pastures, a large shortgrass prairie of Colorado and New Mexico, it inhabits proportion of crops, 16 to 27 percent, contained blue grama mesic swales. Generally preferring mesic habitats, its center of and Kentucky bluegrass. Fragments of other grasses distribution appears to be in the tallgrass prairie where its detected in crops included buffalograss, hairy grama, populations often become numerically dominant. In eastern prairie junegrass, western wheatgrass, tall dropseed, sand states this grasshopper occurs principally in relatively dry dropseed, Leibig panic, Scribner panic, switchgrass panic, upland and hilly pastures with sandy loam soil and often prairie sandreed, reed canarygrass, prairie threeawn, becomes abundant and the dominant species. stinkgrass, and yellow bristlegrass. Fragments of three species of sedges were also found: Penn sedge, needleleaf sedge, and fieldclustered sedge. Unidentified fungi were present in 6 percent of the crops of grasshoppers from Kansas and 8 percent from North Dakota. A few crops contained forbs and arthropod parts.
    [Show full text]