Activation Analysis of Heavy-Ion Accelerator Constructing Materials and Validation of Beam-Loss Criteria

Total Page:16

File Type:pdf, Size:1020Kb

Activation Analysis of Heavy-Ion Accelerator Constructing Materials and Validation of Beam-Loss Criteria Activation analysis of heavy-ion accelerator constructing materials and validation of beam-loss criteria Aktivierungsuntersuchungen von Schwerionenbeschleunigermaterialien und Strahlverlustkriterienvalidierung Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Ing. Peter Katrík aus Beluša, Slowakei July 2017 — Darmstadt — D 17 . Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-67924 URL: http://tuprints.ulb.tu-darmstadt.de/6792 DOI: 10.13140/RG.2.2.20430.97605 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung-Nicht kommerziell-Keine Bearbeitungen 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Aktivierungsuntersuchungen von Schwerionenbeschleunigermaterialien und Strahlverlustkriterienvalidierung Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Ing. Peter Katrík aus Beluša, Slowakei. 1. Gutachten: Prof. Dr. Dr. h.c./RUS Dieter H.H. Hoffmann 2. Gutachten: Prof. Dr. Christina Trautmann Tag der Einreichung: 14. 06. 2017 Tag der Prüfung: 17. 07. 2017 Darmstadt 2017 D 17 Peter Katrík | July 2017 Technische Universität Darmstadt “A little inaccuracy sometimes saves tons of explanation” H.H. Munro in Short Stories of Saki Peter Katrík | July 2017 Technische Universität Darmstadt AFFIDAVIT LEGAL DECLARATION I hereby confirm that my thesis entitled “Activation analysis of heavy ion accelerator constructing materials and validation of beam-loss criteria” is the result of my own work. I did not receive any help or support from commercial consultants. All sources and/or materials applied are listed and specified in the thesis. Furthermore, I confirm that this thesis has not yet been submitted as part of examination process neither in identical nor similar form. Darmstadt, 12th July 2017 Peter KATRÍK Peter Katrík | July 2017 Page | i ABSTRACT Activation of high-intensity heavy-ion accelerators due to beam losses is a serious issue for accelerator parts like collimators, magnets, beam-lines, fragment separator components, etc. The quantification of the induced activity and the prediction of the radiation levels in an accelerator and its environment may have a positive impact on the decreasing of radiation hazards during “hands-on” maintenance as well as on the optimisation of the machine operation [1, 2]. Modern Monte Carlo simulation codes are often used at accelerator facilities for different scientific applications, including the preparation of experimental setup or even for a complete substitution of experiments exclusively by numerical calculations. In the presented work the benchmarking of the FLUKA code was based on a comparison of simulated and experimental results gained by gamma-spectroscopic analysis of irradiated aluminium targets. The field of interest was the evaluation of simulation precision in the range of low energies, where new physical models are implemented. The Boltzmann Master Equation (BME) model is presented in the latest version of FLUKA 2011, and its calculation possibilities are expanded by the nucleus-nucleus interactions of heavy ions with energies below 100 MeV/u. The previous version of FLUKA 2008 uses the Relativistic Quantum Molecular Dynamics (RQMD) model which simulates transportation of heavy ions with energies lower than 100 MeV/u without considering their further interactions [3]. Different aluminium targets were irradiated by 124Xe48+, 238U73+ and 238U89+ ion with energies of 300, 200 and 125 MeV/u, respectively. Using the so-called stacked-foils geometry was essential for the determination of induced activity as a function of the depth, known as depth profiles of residual activity. Acquiring gamma-spectra of each foil at different cooling-times guaranteed a reliable nuclide inventory of all accumulated nuclides. The depth profile collection of about 100 nuclides was a valuable source of experimental data for further verification of simulated results. FLUKA 2011 performs very precise estimation of the range of primary particles. It was shown that the discrepancy was only 0.5% for 238U ions with an energy of 200 MeV/u. The imprecision of the simulated results caused by imperfect transition between the RQMD and the BME models is demonstrated on the depth profiles of 7Be and 22Na target-nuclei fragments. Other inaccuracies of FLUKA 2011 calculations were observed in the depth profiles of intermediate Z nuclides (e.g. 46Sc, 48V, 52Mn, 54Mn, 56Co, 58Co, 65Zn), where an artificial increase of the induced activity close to the range of primary particles was predicted, but it was not confirmed by experimental data. Additional FLUKA calculations following the production rates of the problematic nuclides introduced an origin of this impreciseness, where Peter Katrík | July 2017 Page | iii inexplicable production increases appear at certain energies. All documented deficiencies were shared with the team of the FLUKA developers for their application in future code updates. The second part of this dissertation is dedicated to a real-life application of the FLUKA 2011 version and a demonstration of the physical model development. The beam-loss criteria of 1 W/m for proton accelerators, known in a radiation safety community, are based on the empirical experiences; their equivalent for heavy-ion machines was determined by using the FLUKA 2008 [4]. The set of Monte Carlo simulations served to establish the scaling law which allows a comparison of the amount of induced activity by any heavy-ion beam and the proton beam, regardless of their mass number or energy. Tolerable beam losses, defined within this approach, are 5 and 60 W/m for uranium ions with energies of 1 GeV/u and 200 MeV/u, respectively. These energies are also the limits of applicability of FLUKA 2008 in this field. The fact that the criterion was calculated by this code version, which is considered as obsolete nowadays, as well as the fact that it covers only the situation of the first 100 days of a machine operation, was a great opportunity to validate the tolerable activation limits with FLUKA 2011. Additionally, an expansion of a criterion down to an energy of 25 MeV/u and simulation of a long-term operation of 20 years followed by a cooling time of 20 years was performed. As it was expected, the Boltzmann Master Equation model included in FLUKA 2011 influenced the final results of induced activity in constructing materials of accelerators. The beam-loss criteria became stricter for heavy-ion machines already for short-term operation. The limits do not change at an energy of 1 GeV/u, where the beam-loss value of 5 W/m remained for uranium ions, but the tolerable losses of uranium ions at an energy of 200 MeV/u decreased to a level of 40 W/m as compared to values predicted by FLUKA 2008. Long-term simulations revealed that an accumulation of the nuclides with longer half-life leads to an even stricter criterion. The beam losses of 4 W/m at 1 GeV/u are tolerable for uranium ions, but the importance of evaluation of the criterion by FLUKA 2011 is more visible at an energy of 200 MeV/u, where the tolerable beam losses are only 30 W/m, which is exactly half of the limits determined by FLUKA 2008. A complex set of calculations proved that the scaling law of the induced activity is not reliable for the heavy-ion beams with energies below 150 MeV/u and therefore, the use of the tolerable beam-loss criteria is not recommended anymore below this energy. Key words: Activation, Induced radioactivity, Monte Carlo, FLUKA, Benchmarking, Beam-loss criteria. iv | Page Technische Universität Darmstadt ZUSAMMENFASSUNG In hochintensiven Schwerionenbeschleunigern führen Strahlverluste zur Aktivierung von Beschleunigerteilen wie Kollimatoren, Magneten, Strahllinien, Fragmentseparatorkomponenten usw. Die Quantifizierung der induzierten Aktivität sowie die Vorhersage der Strahlungswerte im Beschleuniger und in seiner Umgebung können genutzt werden, von die Strahlungsgefahr zu verringern, da der Maschinenbetrieb und handwerkliche Wartungsarbeiten optimiert werden können [1, 2]. Moderne Monte-Carlo-Simulationen werden für verschiedene wissenschaftliche Anwendungen, die Vorbereitung von Versuchsaufbauten oder sogar für eine vollständige Substitution von Experimenten durch numerische Berechnungen verwendet. Die vorliegende Arbeit basiert auf dem Benchmarking der FLUKA-Code- Simulationen und experimentellen Ergebnissen. Die Präzision von Simulationen in der Niedrigenergieregion wird bestimmt. Dazu wurde die neueste Version von FLUKA 2011 genutzt. In dieser ist das Modell der Boltzmann-Master-Gleichungsmodell (BME) implementiert und erlaubt somit die Simulation von Interaktionen von Atomkernen mit Energien unter 100 MeV/u. Im Gegensatz dazu nutzte die vorherige Version, FLUKA 2008, das Relativistische Quanten-Molekulardynamik-Modell (RQMD), welches einen Transport von schweren Ionen mit einer Energie unter 100 MeV/u ohne ihre Wechselwirkungen simuliert [3]. Im Experiment wurden Aluminium-Targets mit 124Xe bei 300 MeV/u und mit 238U bei 200 MeV/u sowie 125 MeV/u bestrahlt. Die Targets bestanden aus gestapelten Folien (Stapelfoliengeometrie), was die Bestimmung der induzierten Aktivität als Funktion der Tiefe, des sogenannten
Recommended publications
  • Wearable-Based Pedestrian Inertial Navigation with Constraints Based on Biomechanical Models
    Wearable-based pedestrian inertial navigation with constraints based on biomechanical models Dina Bousdar Ahmed∗ and Kai Metzger† ∗ Institute of Communications and Navigation German Aerospace Center (DLR), Munich, Germany Email: [email protected] † Technical University of Munich, Germany Email: kai [email protected] Abstract—Our aim in this paper is to analyze inertial nav- sensor to correct the heading estimation [4]. The combina- igation systems (INSs) from the biomechanical point of view. tion of inertial sensors and WiFi measurements is useful in We wanted to improve the performance of a thigh INS by indoor environments. Chen et al. use the position estimated applying biomechanical constraints. To that end, we propose a biomechanical model of the leg. The latter establishes a through WiFi measurements to correct the position estimates relationship between the orientation of the thigh INS and the of an inertial navigation system [5]. The latter is based on a kinematic motion of the leg. This relationship allows to observe smartphone. the effect that the orientation errors have in the expected motion The detection of known landmarks, e.g. turns, elevators, etc, of the leg. We observe that the errors in the orientation estimation can improve the position estimation. Chen et al. [5] incorporate of an INS translate into incoherent human motion. Based on this analysis, we proposed a modified thigh INS to integrate landmarks to improve the performance of their navigation biomechanical constraints. The results show that the proposed system. Munoz et al. [6] use also landmarks to correct directly system outperforms the thigh INS in 50% regarding distance the heading estimation of a thigh-mounted inertial navigation error and 32% regarding orientation error.
    [Show full text]
  • Preparation and Investigation of Highly Charged Ions in a Penning Trap for the Determination of Atomic Magnetic Moments
    Preparation and Investigation of Highly Charged Ions in a Penning Trap for the Determination of Atomic Magnetic Moments Präparation und Untersuchung von hochgeladenen Ionen in einer Penning-Falle zur Bestimmung atomarer magnetischer Momente Dissertation approved by the Fachbereich Physik of the Technische Universität Darmstadt in fulfillment of the requirements for the degree of Doctor of Natural Sciences (Dr. rer. nat.) by Dipl.-Phys. Marco Wiesel from Neustadt an der Weinstraße June 2017 — Darmstadt — D 17 Preparation and Investigation of Highly Charged Ions in a Penning Trap for the Determination of Atomic Magnetic Moments Dissertation approved by the Fachbereich Physik of the Technische Universität Darmstadt in fulfillment of the requirements for the degree of Doctor of Natural Sciences (Dr. rer. nat.) by Dipl.-Phys. Marco Wiesel from Neustadt an der Weinstraße 1. Referee: Prof. Dr. rer. nat. Gerhard Birkl 2. Referee: Privatdozent Dr. rer. nat. Wolfgang Quint Submission date: 18.04.2017 Examination date: 24.05.2017 Darmstadt 2017 D 17 Title: The logo of ARTEMIS – AsymmetRic Trap for the measurement of Electron Magnetic moments in IonS. Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-62803 URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6280 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract The ARTEMIS experiment aims at measuring magnetic moments of electrons bound in highly charged ions that are stored in a Penning trap.
    [Show full text]
  • Konrad Zuse Und Die Schweiz
    Research Collection Report Konrad Zuse und die Schweiz Relaisrechner Z4 an der ETH Zürich : Rechenlocher M9 für die Schweizer Remington Rand : Eigenbau des Röhrenrechners ERMETH : Zeitzeugenbericht zur Z4 : unbekannte Dokumente zur M9 : ein Beitrag zu den Anfängen der Schweizer Informatikgeschichte Author(s): Bruderer, Herbert Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006517565 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Konrad Zuse und die Schweiz Relaisrechner Z4 an der ETH Zürich Rechenlocher M9 für die Schweizer Remington Rand Eigenbau des Röhrenrechners ERMETH Zeitzeugenbericht zur Z4 Unbekannte Dokumente zur M9 Ein Beitrag zu den Anfängen der Schweizer Informatikgeschichte Herbert Bruderer ETH Zürich Departement Informatik Professur für Informationstechnologie und Ausbildung Zürich, Juli 2011 Adresse des Verfassers: Herbert Bruderer ETH Zürich Informationstechnologie und Ausbildung CAB F 14 Universitätsstrasse 6 CH-8092 Zürich Telefon: +41 44 632 73 83 Telefax: +41 44 632 13 90 [email protected] www.ite.ethz.ch privat: Herbert Bruderer Bruderer Informatik Seehaldenstrasse 26 Postfach 47 CH-9401 Rorschach Telefon: +41 71 855 77 11 Telefax: +41 71 855 72 11 [email protected] Titelbild: Relaisschränke der Z4 (links: Heinz Rutishauser, rechts: Ambros Speiser), ETH Zürich 1950, © ETH-Bibliothek Zürich, Bildarchiv Bild 4. Umschlagseite: Verabschiedungsrede von Konrad Zuse an der Z4 am 6. Juli 1950 in der Zuse KG in Neukirchen (Kreis Hünfeld) © Privatarchiv Horst Zuse, Berlin Eidgenössische Technische Hochschule Zürich Departement Informatik Professur für Informationstechnologie und Ausbildung CH-8092 Zürich www.abz.inf.ethz.ch 1.
    [Show full text]
  • P the Pioneers and Their Computers
    The Videotape Sources: The Pioneers and their Computers • Lectures at The Compp,uter Museum, Marlboro, MA, September 1979-1983 • Goal: Capture data at the source • The first 4: Atanasoff (ABC), Zuse, Hopper (IBM/Harvard), Grosch (IBM), Stibitz (BTL) • Flowers (Colossus) • ENIAC: Eckert, Mauchley, Burks • Wilkes (EDSAC … LEO), Edwards (Manchester), Wilkinson (NPL ACE), Huskey (SWAC), Rajchman (IAS), Forrester (MIT) What did it feel like then? • What were th e comput ers? • Why did their inventors build them? • What materials (technology) did they build from? • What were their speed and memory size specs? • How did they work? • How were they used or programmed? • What were they used for? • What did each contribute to future computing? • What were the by-products? and alumni/ae? The “classic” five boxes of a stored ppgrogram dig ital comp uter Memory M Central Input Output Control I O CC Central Arithmetic CA How was programming done before programming languages and O/Ss? • ENIAC was programmed by routing control pulse cables f ormi ng th e “ program count er” • Clippinger and von Neumann made “function codes” for the tables of ENIAC • Kilburn at Manchester ran the first 17 word program • Wilkes, Wheeler, and Gill wrote the first book on programmiidbBbbIiSiing, reprinted by Babbage Institute Series • Parallel versus Serial • Pre-programming languages and operating systems • Big idea: compatibility for program investment – EDSAC was transferred to Leo – The IAS Computers built at Universities Time Line of First Computers Year 1935 1940 1945 1950 1955 ••••• BTL ---------o o o o Zuse ----------------o Atanasoff ------------------o IBM ASCC,SSEC ------------o-----------o >CPC ENIAC ?--------------o EDVAC s------------------o UNIVAC I IAS --?s------------o Colossus -------?---?----o Manchester ?--------o ?>Ferranti EDSAC ?-----------o ?>Leo ACE ?--------------o ?>DEUCE Whirl wi nd SEAC & SWAC ENIAC Project Time Line & Descendants IBM 701, Philco S2000, ERA..
    [Show full text]
  • Bridge Measurement Analysis
    Bridge Measurement Analysis Svetlana Avramov-Zamurovic1, Bryan Waltrip2 and Andrew Koffman2 1United States Naval Academy, Weapons and Systems Engineering Department Annapolis, MD 21402, Telephone: 410 293 6124 Email: [email protected] 2National Institute of Standards and Technology†, Electricity Division Gaithersburg, MD 21899. Telephone: 301 975 2438, Email: [email protected] Introduction At the United States Academy there are several engineering majors, including Systems Engineering. This program offers excellent systems integration education. In particular the major concentrates on control of electrical, computer and mechanical systems. In addition to several tracks, students have the opportunity to independently research a field of interest. This is a great opportunity for teachers and students to pursue more in-depth analyses. This paper will describe one such experiment in the field of metrology. Very often engineering laboratories at undergraduate schools are well equipped with power supplies, signal generators, oscilloscopes and general-purpose multimeters. This set allows teachers and students to set up test-beds for most of the basic electronics circuits studied in different engineering tracks. Modern instrumentation is in general user-friendly and students like using the equipment. However, students are often not aware that there are two pieces of information necessary to establish a measurement result: the numerical value of the measured quantity and the uncertainty with which that measurement was performed. In order to achieve high measurement accuracy, more complex measurement systems must be developed. This paper will describe the process of analyzing a bridge measurement using MATLAB‡. Measurement Bridge One of the basic circuits that demonstrate the concept of a current/voltage divider is a Wheatstone bridge (given in Figure 1.) A source voltage is applied to a parallel connection of impedances.
    [Show full text]
  • The Z1: Architecture and Algorithms of Konrad Zuse's First Computer
    The Z1: Architecture and Algorithms of Konrad Zuse’s First Computer Raul Rojas Freie Universität Berlin June 2014 Abstract This paper provides the first comprehensive description of the Z1, the mechanical computer built by the German inventor Konrad Zuse in Berlin from 1936 to 1938. The paper describes the main structural elements of the machine, the high-level architecture, and the dataflow between components. The computer could perform the four basic arithmetic operations using floating-point numbers. Instructions were read from punched tape. A program consisted of a sequence of arithmetical operations, intermixed with memory store and load instructions, interrupted possibly by input and output operations. Numbers were stored in a mechanical memory. The machine did not include conditional branching in the instruction set. While the architecture of the Z1 is similar to the relay computer Zuse finished in 1941 (the Z3) there are some significant differences. The Z1 implements operations as sequences of microinstructions, as in the Z3, but does not use rotary switches as micro- steppers. The Z1 uses a digital incrementer and a set of conditions which are translated into microinstructions for the exponent and mantissa units, as well as for the memory blocks. Microinstructions select one out of 12 layers in a machine with a 3D mechanical structure of binary mechanical elements. The exception circuits for mantissa zero, necessary for normalized floating-point, were lacking; they were first implemented in the Z3. The information for this article was extracted from careful study of the blueprints drawn by Zuse for the reconstruction of the Z1 for the German Technology Museum in Berlin, from some letters, and from sketches in notebooks.
    [Show full text]
  • Konrad Zuse Und Die Eth Zürich }
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library HAUPTBEITRAG / KONRAD ZUSE UND DIE ETH ZÜRICH } Konrad Zuse und die ETH Zürich Zum 100. Geburtstag des Informatikpioniers Konrad Zuse (22. Juni 2010) Herbert Bruderer1 Die Geschichte der Informatik beginnt mit dem seit IAS-Rechner, IBM 701, Univac u. a. und in Grossbri- dem Altertum benutzten Zählrahmen Abakus und tannien: z. B. ACE, Colossus, EDSAC, Ferranti Mark, der Entstehung der Zahlensysteme. Die heutigen Leo und SSEM. Zuses Pionierleistungen in der Re- Computer haben zahlreiche Vorläufer. Die ersten chentechnik und in der Informatik wurden sowohl funktionsfähigen programmierbaren Rechengeräte in Europa als auch in den USA lange Zeit verkannt. wurden jedoch erst gegen Mitte des 20. Jahrhun- Das deutsche Patentamt verweigerte ein Patent für derts vorgestellt. Der deutsche Bauingenieur Konrad die Z3. Zuse (22.6.1910–18.12.1995) ist einer der Väter dieser Universalmaschinen. Er baute in Berlin seit 1936 ETH Zürich mietet den legendären Rechenanlagen. Nur ein einziges Gerät, die 1945 fer- Relaisrechner Z4 tiggestellte Z4, überlebte den zweiten Weltkrieg. Der Mathematiker Eduard Stiefel (1909–1978) Zuse versuchte anschliessend erfolglos, in- und gründete Anfang Januar 1948 an der ETH Zürich ausländische Universitäten sowie Hersteller von Bü- das Institut für angewandte Mathematik. Daraus romaschinen für seine Entwicklungen zu gewinnen. entwickelte sich 1968 die Fachgruppe für Computer- Damals konnte sich offenbar niemand vorstellen, wissenschaften, und schliesslich entstand daraus dass ein programmgesteuertes Rechengerät einer das heutige Departement Informatik. Damit be- handelsüblichen Rechenmaschine überlegen war. ginnt die Geschichte der Informatik in der Schweiz.
    [Show full text]
  • The Design Principles of Konrad Zuse's Mechanical Computers
    The Design Principles of Konrad Zuse’s Mechanical Computers Raul Rojas Freie Universität Berlin December 2015 Abstract Konrad Zuse built the Z1, a mechanical programmable computing machine, between 1935/36 and 1937/38. The Z1 was a binary floating-point computing device. The individual logical gates were constructed using metallic plates and interconnection rods. This paper describes the design principles Zuse followed in order to complete a complex calculating machine, as the Z1 was. Zuse called his basic switching elements “mechanical relays” in analogy to the electrical relays used in telephony. 1 Introduction The German inventor Konrad Zuse built his first computing machine in the apartment of his parents (who unfortunately did not have a silicon age style garage) during the years 1935 to 1937 [1]. The machine, called afterwards the Z1 by Zuse himself, has been hailed as the first programmable calculator in the world. The Z1 was well ahead of its time. Although the Harvard Mark I and UPenn’s ENIAC were built several years after the Z1, they were not fully binary computers, as the Z1 was [2]. Moreover, the Z1 used floating-point binary arithmetic for computing the four basic arithmetical operations. The program was punched in a tape using a binary code. Numbers could be stored in memory or could be retrieved from it. Only the conditional jump was missing in the instruction set. Otherwise, the Z1 would have been a universal computing device, although tortuous programming tricks can be used to obtain universality from machines able to process a single loop of arithmetical operations.
    [Show full text]
  • Preparation and Cooling of Magnesium Ion Crystals for Sympathetic Cooling of Highly Charged Ions in a Penning Trap
    Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap Präparation und Kühlung von Magnesium-Ionenkristallen zum sympathetischen Kühlen von hoch geladenen Ionen in einer Penningfalle Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Tobias Murböck Dipl. Phys. aus Recklinghausen Tag der Einreichung: 23.11.2016, Tag der Prüfung: 12.12.2016 Darmstadt 2017 — D 17 1. Gutachten: Prof. Dr. Gerhard Birkl 2. Gutachten: Prof. Dr. Wilfried Nörtershäuser Preparation and cooling of magnesium ion crystals for sympathetic cooling of highly charged ions in a Penning trap Präparation und Kühlung von Magnesium-Ionenkristallen zum sympathetischen Kühlen von hoch geladenen Ionen in einer Penningfalle Genehmigte Dissertation von Tobias Murböck Dipl. Phys. aus Recklinghausen 1. Gutachten: Prof. Dr. Gerhard Birkl 2. Gutachten: Prof. Dr. Wilfried Nörtershäuser Tag der Einreichung: 23.11.2016 Tag der Prüfung: 12.12.2016 Darmstadt 2017 — D 17 Cover picture: Ion Coulomb crystal exhibiting several layers of singly charged magnesium ions. Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-60370 URL: http://tuprints.ulb.tu-darmstadt.de/6037 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0 1 Contents 1 Motivation 3 1.1 Fine structure and hyperfine structure transitions . .6 1.1.1 Magnetic dipole transitions .
    [Show full text]
  • Discovery of Two Historical Computers in Switzerland: Zuse
    Discovery of Two Historical Computers in Switzerland: Zuse Machine M9 and Contraves Cora and Discovery of Unknown Documents on the Early History of Computing at the ETH Archives Herbert Bruderer Swiss Federal Institute of Technology, Zurich [email protected], [email protected] Abstract. Since 2009 we have been trying to find out more about the beginnings of computer science in Switzerland and abroad. Most eyewitnesses have already died or are over 80 years old. In general, early analog and digital computers have been dismantled long ago. Subject to exceptions, the few remaining devices are no longer functioning. Many documents have gone lost. Therefore investigations are difficult and very time-consuming. However, we were able to discover several unknown historical computers and hundreds of exciting documents of the 1950s. In 2012, the results have been published in a first book; a second volume will be forthcoming next year. Keywords: Cora, ERMETH, ETH archives, Hasler AG, Heinz Rutishauser, Konrad Zuse, M9 (=Z9), Mithra AG, Paillard SA, Remington Rand AG, Unesco, Z4. 1 Introduction My investigations into the history of computing started in 2009 in connection with the Zuse centenary (100th birthday of the German computer pioneer in 2010). The goal was to get a more comprehensive and deeper understanding of the events of the pioneering days. Coincidentally and to our surprise we discovered the program- controlled Zuse relay calculator M9 whose existence was unknown even to computer scientists. Shortly afterwards another machine emerged: the Swiss made transistor computer Cora. From 2010 to 2013 several contemporary eyewitness discussions concerning M9 and Cora took place.
    [Show full text]
  • Numerical Analysis in Zurich – 50 Years Ago
    2 Martin H. Gutknecht is a professor and senior scientist at ETH Zurich. He was also Scientific Director of the Swiss Center for Scientific Computing (CSCS/SCSC). Numerical Analysis in Zurich – 50 Years Ago Surely, applied mathematics originated in ancient gathering of this sort ever – as an opportunity to times and slowly matured through the centuries, recall some of the local contributions. We focus on but it started to blossom colorfully only when those in numerical analysis and scientific comput- electronic computers became available in the late ing, but we will also touch computers, computer 1940s and early 1950s. This was the gold miner’s languages, and compilers. time of computer builders and numerical analysts. Responsible for establishing (electronic) The venue was not the far west of the United scientific computing in Switzerland was primarily States, but rather some places in its eastern part, Eduard Stiefel (1909–1978): he took the initiative, such as Boston, Princeton, Philadelphia, and New raised the money, hired the right people, directed York, and also places in Europe, most notably, the projects, and, last but not least, made his own Manchester, Amsterdam, and Zurich. Only long lasting contributions to pure and applied math- after these projects had begun did it become ematics. Stiefel got his Dr. sc. math. from ETH in known that the electronic computer had been 1935 with a dissertation on Richtungsfelder und invented earlier by clever individuals: 1937–1939 Fernparallelismus in n-dimensionalen Mannig- by John V. Atanasoff and his gradute student faltigkeiten written under the famous Heinz Hopf. Clifford Berry at Iowa State College, Ames, Iowa, It culminated in the introduction of the Stiefel and, independently, 1935–1941 by Konrad Zuse in (-Whitney) classes, certain characteristic classes Berlin.
    [Show full text]
  • The COLOSSUS, Z4, and Mark 1 Computers: a Short History and Description
    The COLOSSUS, Z4, and Mark 1 computers: A short history and description by Robert Apple Cmptr Arch & Operating Systems MCT*611*XP40 < instructor name removed > May 12, 2007 Colossus, Z4 and Mark 1 2 COLOSSUS, Z4 and Mark 1 Computers The invention of the electronic computer is a relatively new development, happening within the last 100 years. It has an interesting history. During the World War II years (about 1938 – 1945), independent researchers developed three different computer systems: the Colossus (United Kingdom), Z4 (Germany), and Mark 1 (United States). This paper will briefly describe the forces driving the creation of those systems and some of the technical details of each. To begin this discussion, a basic understanding of vacuum tubes, and relays or switches is necessary. A vacuum tube relies on a principle called the ‘Edison Effect’. When electrons are flowing through a filament inside a glass tube that contains no air, not only will the filament light up producing the ‘light bulb’, it is also possible to mount a metal plate inside of that tube which allows some of the electrons to jump from the filament to that metal plate (Maxfield & Brown [1], n.d.). Building on this fact, the English physicist John Ambrose Fleming developed a two- filament vacuum tube that was called a diode (Maxfield & Brown [1]). The diode can be used as an on/off switch: if electricity is passing through the filament, the electrons passing from the filament to the metal plate inside could be considered an on/off switch depending on how the machine using the tube is configured.
    [Show full text]