Systematics of the Phasianelloidea In

Total Page:16

File Type:pdf, Size:1020Kb

Systematics of the Phasianelloidea In SYSTEMATICS OF THE PHASIANELLOIDEA IN SOUTHERN AFRICA (MOLLUSCA: GASTROPODA: VETIGASTROPODA) By TSHIFHIWA CONSTANCE NANGAMMBI Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the discipline of Zoology, School of Biological and Conservation Sciences, University of KwaZulu–Natal, Pietermaritzburg October, 2010 As the candidate’s Supervisor I agree/do not agree to the submission of this thesis. Signed:________________ Name:____________________ Date:_______________ The southern African pheasant shell species. i GENERAL ABSTRACT The taxonomy and biogeography of the southern African pheasant shell fauna are poorly known. Thirty–one nominal taxa referable to Phasianelloidea have been described or recorded in this region, but no systematic revision of these has ever been undertaken. Morphological evidence suggests that 16 taxa represent valid species, 13 are synonyms and two represent incorrect identifications. DNA sequence data from mitochondrial COI and 16S markers are used to assess the validity of the described nominal southern African Tricolia species. Phylogenetic analyses recovered seven distinct clades. Tricolia adusta, T. elongata, T. formosa, T. kochii, T. saxatilis and T. neritina were recovered as distinct species. Tricolia africana and T. capensis are genetically indistinguishable. However, morphological characters of the shell are clearly diagnosable. This could be due to incomplete sorting (ancestral polymorphism) reflecting recent speciation with rapid morphological and ecological divergence co–incident with geographical separation. Similarly, there is little genetic differentiation between T. bicarinata, T. insignis and T. kraussi. In this case the similarity is also supported by morphological data as the three species are conchologically close with intergrading shell characters, and might even be one species exhibiting ecogeographic variation in shell form. Monophyly of the southern African Tricolia species is not supported as well as the relationship between these and the European Tricolia pullus. In the last chapter a molecular phylogeny based on sequence data from mtDNA (COI and 16S), nuclear (18S and 28S) and the combined data (COI, 16S, 18S and 28S) is presented for the Phasianelloidea. Bayesian inference analyses performed on the combined data support the monophyly of Tricolia sensu stricto, Eulithidium and Phasianella. Tricolia sensu lato is not monophyletic, as its southern Australian and Indo–West Pacific species do not cluster with its southern African and Eastern Atlantic representatives. The position of Hiloa and Gabrielona within the Phasianelloidea is unresolved. Phylogenetic reconstructions using bayesian inference support monophyly of the Phasianelloidea. ii PREFACE The work described in this thesis was carried out in the School of Biological and Conservation Sciences, University of KwaZulu–Natal, Pietermaritzburg Campus, together with the Natal Museum, Pietermaritzburg, from January 2004 to June 2010, under the supervision of Dr David Herbert (Natal Museum) and co–supervision of Dr Rauri Bowie (Museum of Vertebrate Zoology and University of California, Berkeley), Dr Peter Teske (Rhodes University, Grahamstown), and Professor Denis Brothers (University of KwaZulu– Natal). This thesis, unless specifically indicated to the contrary in the text, represents original work by the author and has not been submitted in any form to another University. Where other work has been used, it has been acknowledged. Signed:_________________ T.C. Nangammbi (candidate) Signed:________________ Dr D.G. Herbert (supervisor) Signed:________________ Prof. D.J. Brothers (co–supervisor ) iii DECLARATION – PLAGIARISM I, TSHIFHIWA CONSTANCE NANGAMMBI, declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re–written but the general information attributed to them has been referenced b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the references sections. Signed____________________ iv DECLARATION – PUBLICATIONS Publication 1 (attached) Nangammbi, T.C. & Herbert, D.G. 2006. Two new species of Tricolia Risso, 1826 from South Africa (Mollusca: Gastropoda: Phasianellidae). African Invertebrates 47: 11-22. Publication 2 (attached) Nangammbi, T.C. & Herbert, D.G. 2008. A new species of pheasant shell from the south– western Indian Ocean (Mollusca: Gastropoda: Vetigastropoda: Phasianellidae: Tricolia). African Invertebrates 49(2): 13-19. The contribution of the authors of the above publications was the same. These papers represent the results of my study with input from Dr Herbert and which included presentation of the manuscripts, editing and guidance through the publication process. Signed:______________________ DISCLAIMER NOTE: This thesis, except for the attached publications, is not intended to form part of the permanent scientific record; it is itself therefore not a valid publication for the purposes of zoological nomenclature. v DEDICATION To my late mother Vho–Tshithudivha Maria Nangammbi vi TABLE OF CONTENTS GENERAL ABSTRACT ......................................................................................................... i PREFACE ............................................................................................................................. ii DECLARATION – PLAGIARISM ......................................................................................... iii DECLARATION – PUBLICATIONS .................................................................................... iv DISCLAIMER....................................................................................................................... iv DEDICATION........................................................................................................................ v TABLE OF CONTENTS ...................................................................................................... vi LIST OF TABLES ................................................................................................................ xi LIST OF FIGURES ............................................................................................................. xii LIST OF APPENDICES ..................................................................................................... xvi ACKNOWLEDGEMENTS ................................................................................................. xvii LIST OF ABBREVIATIONS ................................................................................................ xx GENERAL INTRODUCTION ................................................................................................ 1 CHAPTER 1: LITERATURE REVIEW .................................................................................. 3 1.1. HISTORICAL REVIEW OF PHEASANT SHELL CLASSIFICATION (PHASIANELLIDAE SENSU LATO) .................................................................................... 3 1.2. CHARACTERS IDENTIFIED BY VARIOUS AUTHORS IN THEIR PLACEMENT OF PHEASANT SHELL GENERA ............................................................................................. 9 1.2.1. Shell surface or sculpture .................................................................................... 11 1.2.2. Shell pigments .................................................................................................... 12 1.2.3. Shell microstructure ............................................................................................ 12 1.2.4. The number of shell muscles .............................................................................. 12 1.2.5. Protoconch .......................................................................................................... 13 1.2.6. Operculum .......................................................................................................... 13 vii 1.2.7. Radula ................................................................................................................ 14 1.2.8. Soft tissue ........................................................................................................... 18 1.2.9. Jaw ..................................................................................................................... 19 1.2.10. Sperm morphology .......................................................................................... 20 1.3. PHEASANT SHELL SYSTEMATICS ..................................................................... 20 1.3.1. Morphological data analyses............................................................................ 20 1.3.2. DNA sequence analyses .................................................................................. 23 1.4. CURRENT CLASSIFICATION OF THE PHEASANT SHELL SUBFAMILIES ....... 25 1.4.1. The
Recommended publications
  • The Cone Collector N°23
    THE CONE COLLECTOR #23 October 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The Cone scene is moving fast, with new papers being pub- António Monteiro lished on a regular basis, many of them containing descrip- tions of new species or studies of complex groups of species that Layout have baffled us for many years. A couple of books are also in André Poremski the making and they should prove of great interest to anyone Contributors interested in Cones. David P. Berschauer Pierre Escoubas Our bulletin aims at keeping everybody informed of the latest William J. Fenzan developments in the area, keeping a record of newly published R. Michael Filmer taxa and presenting our readers a wide range of articles with Michel Jolivet much and often exciting information. As always, I thank our Bernardino Monteiro many friends who contribute with texts, photos, information, Leo G. Ros comments, etc., helping us to make each new number so inter- Benito José Muñoz Sánchez David Touitou esting and valuable. Allan Vargas Jordy Wendriks The 3rd International Cone Meeting is also on the move. Do Alessandro Zanzi remember to mark it in your diaries for September 2014 (defi- nite date still to be announced) and to plan your trip to Ma- drid. This new event will undoubtedly be a huge success, just like the two former meetings in Stuttgart and La Rochelle. You will enjoy it and of course your presence is indispensable! For now, enjoy the new issue of TCC and be sure to let us have your opinions, views, comments, criticism… and even praise, if you feel so inclined.
    [Show full text]
  • An Analysis of the Community Composition of the Xiphophora Gladiata Dominated Subzone of the Tasmanian Sublittoral Fringe
    Papers and Proceedings ol the Royal Society of Tasmania, Volume 123, 1989 191 AN ANALYSIS OF THE COMMUNITY COMPOSITION OF THE XIPHOPHORA GLADIATA DOMINATED SUBZONE OF THE TASMANIAN SUBLITTORAL FRINGE by E. L. Rice (with five tables and nine text-figures) RICE, E.L., 1989 (31:x): An analysis of the community composition of the Xiphophora iladiata dominated subzone of the Tasmanian sublittoral fringe. Pap. Proc. R. Soc. Tasm. 123: I 91-209. https://doi.org/10.26749/rstpp.123.191 ISSN 0080-4703. Biological Sciences Branch, Department of Fisheries and Oceans, Halifax Research Laboratory, PO Box 550, Halifax, Nova Scotia B3J 2S7, Canada; formerly Department of Botany, University of Tasmania The rocky shore sublittoral fringe of the oceanic coasts of Tasmania contains a subzone dominated by the large brown alga Xiphophora iladiata. The community composition of this subzone is here examined at fourteen sites. The phytal and fauna! assemblages are analysed by principal co-ordinate, classification and nodal analyses. This subzone is found to have a high species richness. including species which had been thought to occupy only higher or lower tidal levels. It is suggested that both plant and animal assemblages are strongly influenced by wave exposure, freshwater run-off and geography. Key Words: marine community composition, sublittoral fringe, Xiphophora, multivariate analyses. INTRODUCTION (Bennett & Pope 1960). Thus, on the oceanic coasts of Tasmania it is possible to define a Xiphophora The rocky shores of southeastern Australia are subzone, dominated by X. g/adiata, which marks known to be occupied primarily by barnacles and the highest limit of the sublittoral fringe on very molluscs in the upper intertidal (Underwood 1981), exposed shores and represents the upper sublittoral while algae dominate at midshore level and below.
    [Show full text]
  • Peloritana (Cantraine, 1835) from the Mediterranean Sea
    BASTERIA, 56: S3-90, 1992 On Cantrainea peloritana (Cantraine, 1835) from the Mediterranean Sea (Gastropoda, Prosobranchia: Colloniidae) Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy Paolo Mariottini Dipartimento di Biologia, II Universita di Roma, 1-00173 Rome, Italy & Flavia Gravina Dipartimento di Biologia Animale e dell'Uomo, I Universita di Roma, 1-00185 Rome, Italy from the Mediterranean Sea is here the Cantrainea peloritana (Cantraine, 1835) reported upon; authors give additional data about its morphology, distribution and ecology. Key words: Gastropoda, Prosobranchia, Colloniidae, Cantrainea, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Cantrainea Jeffreys, 1883, is represented only by Cantraineapeloritana (Cantraine, 1835), which was definitely confirmed to be a living species about a decade ago by Babbi (1982). The author in his interesting report com- ments on the taxonomic position of C. peloritana, giving data on some of its synonyms and reasonably guessing that this species could belong to the deep-sea coral bio- coenosis (Peres & Picard, 1964) present in the MediterraneanSea. According to Babbi (1982), C. peloritana, based on conchological characters only, shows two distinct morphs which in turn represent the two nominal species Turbo peloritanus (typical form) and Turbo carinatus (carinate form) originally created by Cantraine (1835) for fossil specimens. These two shell forms are both present in the Atlantic Ocean; on the con- trary, only the carinate form occurs in the Mediterranean Sea. Living specimens of C. peloritana from the Mediterranean Sea have been reported rarely, the first time by Jeffreys (1882), who published a small note about some molluscs dredged between Sar- dinia and Naples at a depth of 307 m, during the scientific expedition carried out by the V.
    [Show full text]
  • Triassic Gastropods of the Southern Qinling Mountains, China
    SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 92 Triassic Gastropods of the Southern Qinling Mountains, China Jinnan Tong and Douglas H. Erwin Smithsonian Institution Press Washington, D.C. 2001 ABSTRACT Tong, Jinnan, and Douglas H. Erwin. Triassic Gastropods of the Southern Qinling Mountains, China. Smithsonian Contributions to Paleobiology, number 92,47 pages, 11 figures, 6 plates, 5 tables, 2001. Forty-eight species in 27 genera of gastropods, including 14 new species and one new genus, are described from early- to middle-Triassic (Scythian- to Ladinian-aged) rocks from the southern Qinling Mountains of Gansu and Sichuan provinces, China. This report expands the knowledge of the biogeographic distribution of gastropods during the recovery from the end-Permian mass extinction. The new taxa include Tongweispira sichuanensis, new genus and new species, and the following new species: Ananias guojiashanensis, Worthenia extendia, Gosseletinal dangchangensis, Zygites laevigatus, Trochotoma {Discotoma) gansuensis, Cheilotomona acutocarinata, Naticopsis (Dicosmos) compressus, Naticopsis (Dicosmos) sichuanensis, Naticopsis? ribletella, Neritopsis planoplicatus, Platychilina sinen­ sis, Platychilina obliqua, and Omphaloptycha gansuensis. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Annals of the Smithsonian Institution. SERIES COVER DESIGN: The trilobite Phacops rana Green. Library of Congress Cataloging-in-Publication Data Tong, Jinnan. Triassic gastropods
    [Show full text]
  • Tricolia Pullus (Linnaeus, 1758)
    Tricolia pullus (Linnaeus, 1758) AphiaID: 141700 PHEASANT SHELL Trochida (Ordem) > Trochoidea (Superfamilia) Rainer Borcherding - Schutzstation Wattenmeer, via beachexplorer.org Mouna Antit Sinónimos Eudora pullus (Linnaeus, 1758) Eudora pullus var. mediocris Monterosato, 1917 Eudora pullus var. sanguinolaria Monterosato, 1917 Phasianella crassa Brusina, 1865 Phasianella fascicularis Dautzenberg, 1911 Phasianella pontica Milaschewitsch, 1909 Phasianella pulla [sic] Phasianella pulla var. albina Monterosato, 1880 Phasianella pulla var. tricolor Monterosato, 1880 Phasianella pulla var. zigzag Monterosato, 1880 Phasianella pullulus Anton, 1838 Phasianella pullus (Linnaeus, 1758) Phasianella pullus var. bipunctata Pallary, 1938 Phasianella pullus var. flammulata Bucquoy, Dautzenberg & Dollfus, 1884 Phasianella pullus var. lineata Bucquoy, Dautzenberg & Dollfus, 1884 Phasianella pullus var. rosea Bucquoy, Dautzenberg & Dollfus, 1884 Phasianella pullus var. unifasciata Monterosato, 1880 Tricolia hoberti brindisfax Nordsieck, 1973 Tricolia milaschevichi Anistratenko & Starobogatov, 1991 1 Tricolia pullus farolita Nordsieck, 1973 Tricolia pullus pullus (Linnaeus, 1758) Tricolia punctata Risso, 1826 Tricolia tricolor (Monterosato in Bucquoy, Dautzenberg & Dollfus, 1884) Tricoliella punctata (Risso, 1826) Turbo flammeus Salis Marschlins, 1793 Turbo pullus Linnaeus, 1758 Turbo pullus pullus Linnaeus, 1758 Turbo pullus pullus Linnaeus, 1758 Referências additional source Backeljau, T. (1986). Lijst van de recente mariene mollusken van België [List of the recent marine molluscs of Belgium]. Koninklijk Belgisch Instituut voor Natuurwetenschappen: Brussels, Belgium. 106 pp. [details] original description Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp., available online athttps://doi.org/10.5962/bhl.title.542 [details] basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J.
    [Show full text]
  • The Hawaiian Species of Conus (Mollusca: Gastropoda)1
    The Hawaiian Species of Conus (Mollusca: Gastropoda) 1 ALAN J. KOHN2 IN THECOURSE OF a comparative ecological currents are factors which could plausibly study of gastropod mollus ks of the genus effect the isolation necessary for geographic Conus in Hawaii (Ko hn, 1959), some 2,400 speciation . specimens of 25 species were examined. Un­ Of the 33 species of Conus considered in certainty ofthe correct names to be applied to this paper to be valid constituents of the some of these species prompted the taxo­ Hawaiian fauna, about 20 occur in shallow nomic study reported here. Many workers water on marine benches and coral reefs and have contributed to the systematics of the in bays. Of these, only one species, C. ab­ genus Conus; nevertheless, both nomencla­ breviatusReeve, is considered to be endemic to torial and biological questions have persisted the Hawaiian archipelago . Less is known of concerning the correct names of a number of the species more characteristic of deeper water species that occur in the Hawaiian archi­ habitats. Some, known at present only from pelago, here considered to extend from Kure dredging? about the Hawaiian Islands, may (Ocean) Island (28.25° N. , 178.26° W.) to the in the future prove to occur elsewhere as island of Hawaii (20.00° N. , 155.30° W.). well, when adequate sampling methods are extended to other parts of the Indo-West FAUNAL AFFINITY Pacific region. As is characteristic of the marine fauna of ECOLOGY the Hawaiian Islands, the affinities of Conus are with the Indo-Pacific center of distribu­ Since the ecology of Conus has been dis­ tion .
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • De Smit E. and Baba K., 2001. Data to The
    MALAKOLÓGIAI TÁJÉKOZTATÓ MALACOLOGICAL NEWSLETTER 2001 19: 95–101 Data to the malacofauna of Katavothres (Kefalinia, Greece) E. De Smit–K. Bába Abstract: The authors evaluated the samples collected by Marninus De Smit in 1999 at the collection site of Katavothres, on the isle of Kefalinia, Greece. Key-words: Katavothers, Greece, Marin mollusc fauna Material and methods Sample collections were carried out in a southern bay of the isle of Kefalinia, on the coast of Katavothres (09.06.1999.) For the determination of the order of families we used Poppe, G. T.–Gotto, Y. (1991–1993) Vol. I-II. For the identification of species we gave preference to the following publications: Nordsieik, F. (1968, 1969, 1972) Poppe, G. T.–Gotto, Y. (1991, 1993), D’ Angeló–Gargiullo, S. (1978) and also Ghisotti, F.–Melone, G. (1971, 1972, 1975) Results The collections yielded species from Scaphopoda, Lamellibranchiata and Gastropoda class- es. Altogether 7697 individuals belonging to 188 species were collected. (Scaphopoda: 1 family 1 species, Lamellibranchiata: 30 families 90 species 3811 specimen, Gastropoda: 42 families 188 species 7697 specimen). From the Bivalvia the Musculus laevigatus is a cir- cumpolar, the Hiatellidae: Hiatella arctica is a boreal circumpolar species. From the Gastropoda the Trochidae: Clanculus striatus, Phasianellidae: Tricolia miniata are known as belonging to the Southern Mediterranean. Most probably they spread due shipping. From most of the species encountered 1-40 individuals were found. More than 100 indi- viduals were collected from the species below: Jujubinus striatus, Gibbula philberti, Truncatella subcylindrica, Alvania consociella, Bittium latreilli, Bittium reticulatum, Cerithium alucaster, Gibberula miliaria, Granulina clandestina. Summary From the alluvial deposits on an island near Greece 11 508 individuals from 279 species of 72 families from 3 orders were encountered.
    [Show full text]
  • Introduced Aquatic Species in California Open Coastal Waters -2007
    INTRODUCED AQUATIC SPECIES IN CALIFORNIA OPEN COASTAL WATERS -2007 Final Report September 2008 California Department of Fish and Game Office of Spill Prevention and Response Moss Landing Marine Laboratories Marine Pollution Studies Laboratory 1 AUTHORS Erin R. Maloney, Russell Fairey, Ashleigh Lyman, Zea Walton, Marco Sigala Moss Landing Marine Laboratories/Marine Pollution Studies Laboratory This report should be cited as: Maloney, E., Fairey, R., Lyman, A., Walton, Z., Sigala, M. 2007. Introduced Aquatic Species in California’s Open Coastal Waters - 2007. Final Report. California Department of Fish and Game, Sacramento, CA., 84 pp. 2 ACKNOWLEDGEMENTS This study was completed thanks to the efforts of the following individuals: California Department of Fish and Game: Project Management and Reporting Steve Foss, Michael Sowby, Peter Ode San Jose State University Foundation- Moss Landing Marine Laboratories Marine Pollution Studies Laboratory: Project oversight, field sampling, literature review and data analysis: Russell Fairey, Erin Maloney, Ashleigh Lyman, Mark Pranger, Marco Sigala, Cassandra Lamerdin, Zea Walton, Paul Tompkins, Kim Quaranta, Aurora Alifano, Selena McMillan, Jon Walsh, Jason Felton, Lewis Barnett, Vince Christian. Marine Benthic Ecology Laboratory: Project oversight, training, sample transfer, sorting and gross taxonomy, data entry: Aurora Alifano, Stepheni Ceperley, Cori Gibble, Kamille Hammerstrom, Andy Hansen, Scott Hansen, Brian Hoover, Erin Jensen, Jim Oakden, John Oliver, Sierra Perry, Jasmine Ruvalcaba, Jared
    [Show full text]
  • Portadas 25 (1)
    © Sociedad Española de Malacología Iberus, 26 (1): 53-63, 2008 Notes on the genus Anadema H. and A. Adams, 1854 (Gastropoda: Colloniidae) Notas sobre el género Anadema H. y A. Adams, 1854 (Gastropoda: Colloniidae) James H. MCLEAN* and Serge GOFAS** Recibido el 15-I-2008. Aceptado el 23-IV-2008 ABSTRACT Shell morphology and characters of the living animal of the poorly known, Atlantic Moroc- can species Anadema macandrewii (Mörch, 1864) are described and illustrated, based on beach collected specimens and a single live-collected specimen. The genus is mono- typic and is assigned to the Colloniidae rather than Turbinidae because of the dome- shaped profile of the shell, open umbilicus, symmetrical tooth rows of the radula, lack of cephalic lappets, and the non-bicarinate juvenile shell. Within the Colloniidae, it unusual for its relatively large mature shell, juvenile shell with a keeled profile, and the lack of the secondary flap above the rachidian tooth. The species is regarded as sexually dimorphic, with the female shell having a raised periumbilical rim comparable to that of other tro- choideans modified for brooding by means of an enlarged umbilical cavity. RESUMEN Se describe e ilustra la morfología de la concha y del animal vivo de Anadema macan- drewii (Mörch, 1864), una especie poco conocida de la costa atlántica de Marruecos. El género es monotípico y se asigna a la familia Colloniidae, en lugar de a los Turbinidae por la forma abombada de la concha, el ombligo abierto, las filas de dientes radulares simétricas, la ausencia de lóbulos cefálicos y por su concha juvenil no bicarenada.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]