The Hawaiian Species of Conus (Mollusca: Gastropoda)1

Total Page:16

File Type:pdf, Size:1020Kb

The Hawaiian Species of Conus (Mollusca: Gastropoda)1 The Hawaiian Species of Conus (Mollusca: Gastropoda) 1 ALAN J. KOHN2 IN THECOURSE OF a comparative ecological currents are factors which could plausibly study of gastropod mollus ks of the genus effect the isolation necessary for geographic Conus in Hawaii (Ko hn, 1959), some 2,400 speciation . specimens of 25 species were examined. Un­ Of the 33 species of Conus considered in certainty ofthe correct names to be applied to this paper to be valid constituents of the some of these species prompted the taxo­ Hawaiian fauna, about 20 occur in shallow nomic study reported here. Many workers water on marine benches and coral reefs and have contributed to the systematics of the in bays. Of these, only one species, C. ab­ genus Conus; nevertheless, both nomencla­ breviatusReeve, is considered to be endemic to torial and biological questions have persisted the Hawaiian archipelago . Less is known of concerning the correct names of a number of the species more characteristic of deeper water species that occur in the Hawaiian archi­ habitats. Some, known at present only from pelago, here considered to extend from Kure dredging? about the Hawaiian Islands, may (Ocean) Island (28.25° N. , 178.26° W.) to the in the future prove to occur elsewhere as island of Hawaii (20.00° N. , 155.30° W.). well, when adequate sampling methods are extended to other parts of the Indo-West FAUNAL AFFINITY Pacific region. As is characteristic of the marine fauna of ECOLOGY the Hawaiian Islands, the affinities of Conus are with the Indo-Pacific center of distribu­ Since the ecology of Conus has been dis­ tion . The Hawaiian Islands mark the north­ cussed in detail elsewhere (Kohn, 1959), eastern limit ofmost of the species that occur ecological data are restricted to notes in this there. Eastern Pacific species of Conus are en­ report. tirely absent from the Hawaiian fauna. It is a pleasure to acknowledge the con­ Most of the species present in Hawaii range stant stimulation and willing assistance of widely throughout the central and western Karl W. Greene, director, Children 's Museum Pacific Ocean , Indian Ocean , and Red Sea. of Honolulu, and Edwin H . Bryan, Jr. , cu­ The chief mode of distribution is the pelagic rator of collections, Bernice P. Bishop Mu­ veliger larval stage. Drifting while attached seum, Honolulu. The collections and libraries to floating material may be a secondary of the following institutions were also visited, mechanism. Despite the extensive distribu­ and gratitude is expressed to the persons in tion of most of the species occurring in charge: U. S. National Museum (H . A. Hawaii, the geographic position of the archi­ Rehder, J. P. E.Morrison), Academy of Nat­ pelago and the prevailing westerly surface ural Sciences of Philadelphia (R. T. Abbott), Museum of Compa rative Zoology, Harvard 1 Contribution No. 1I 7, H awaii Marine l aborator y. M anuscript received July 30, 1957. University (W. J. Clench, R. D . Turner), and 2 Osborn Zoological l aboratory,Yale University, Bernice P. Bishop Museum (Y. Kondo). In and Hawaii Marine Laboratory, Un iversity of Hawaii. Present address: De partm ent of Biological Sciences, addition, specimens were loaned to the writer Florida Stare University, Tallahassee, Florida. for study by C. A. Allen, Mrs . Jean Bromley, 368 Hawaiian Conus-KOHN 369 Mrs . A. M . Harrison, W. C. Ross, and C. S. writers (Blainville, 1818; Reeve, 1843-1844; Weaver. Valuable assistance rendered by Adams and Adams, 1858; Weinkauff, 1874; Charles E. Cutress in preparation of the color Smith, 1879; Tryon, 1884; Fischer, 1887; von photographs is gratefully acknowledged. Martens and Thiele, 1903; Tinker, 1952; and Most of the work was carried out at the Os­ Morris, 1952) have cited the names as they born Zoological Laboratory , Yale University, appear in Bruguiere (1792). A third group of during tenure of a fellowship from the Na­ writers (Dautzenberg, 1937; Clench, 1942; tional Science Foundation. Mermod, 1947; and Dodge, 1953) has cited such names as, e.g., " Conus catus Hwass in BIBLIOGRAPHICAL NOTES Bruguiere.', An excellent bibliographical account and Application of the Regles of the Interna­ collation of the major works in which species tional Commission on Zoological Nomen­ of Conus were described 'is given by Hanna clature (ICZN), and later provisions and and Strong (1949) . Except where otherwise clarifications of the Regles, does not lead to noted, the collations cited therein are fol­ an unequivocal solution to this problem. In lowed in the present paper. the decisions of the ICZN meeting in Paris Catalogue of the Portland Museum. 1786. in 1948, it was recommended (Bull. Zool. This catalogue was published anonymously, Nomencl. 4: 565-566, 1950) that "where in a but its authorship is usually attributed to book or paper written by one author (say George Humphrey (Dall, 1921). The names author 'A') it is clearly stated that the descrip­ of new species are attributed to Daniel tion ofone or more specified taxonomic units Solander in the volume, and the same usage there named has been prepared exclusively by is followed in the present paper. A valuable some other author (say author 'C), the name discussion of this catalogue is given by Wil­ or names in question are to be attributed to kins (1955), who also presents cogent reasons author 'C, not to author 'A'. The name of for attributing the names to Humphrey. the taxonomic unit so described and named J.G. Bruguiere, Encyclopedie Mhhodique. His­ is to be cited by later authors as having been toire Naturelle des Verso 1792. Many previously published by 'C in A'." undescribed species of Conus were named and It is apparent from the remarks ofBruguiere carefully described in this work . However, (1792: 598; see also Clench, 1942: 3) that the the authorship to be attributed to these descriptions of the species were not prepared names has been a matter of dispute almost exclusively by Hwass, although the names since the volume appeared. In the volume, and brief Latin diagnoses were. It is, how­ Bruguiere attributes the names and Latin diag­ ever, the present author's opinion that Hwass's noses of species to C. H. Hwass (p. 598). contribution is sufficient to justify attributing Bruguiere states that he himself wrote the authorship of the names to him. This view is descriptions and the "additional" synonymy strengthened by the more recent further clari­ (see Clench, 1942: 3). New specific names fication ofArticle 21 (Copenhagen Decisions, are published in the volume as, e.g. "Conus 1953: 58-59), which states that "the rule set catus Hwass." out on pages 565-566 of vol. 4 of the However, many subsequent writers (La­ BULLETIN should be qualified in such a marck, 1810; Dillwyn, 1817; Kiener, 1845­ way as to make it clear that it applies only 1850; Wood, 1856; Sowerby, 1857-1858; where the book or paper concerned contains Schaufuss, 1869; Iredale, 1929; Tomlin, 1937; a clear indication that not only the name in Cotton, 1945; Hanna and Strong, 1949; Hi­ question was proposed by some author other rase, 1954; and Kira, 1955) have cited such than that by whom the book or paper was species as, e.g. "Conus catus Bruguiere." Other written but also that the indication, defini- 370 PACIFIC SCIENCE, Vol. XIII, October, 1959 tion, or description on which, under Article 218) which gives 1846 as the year of publica­ 25, the availability of that name depends was tion of the plates. This date, however, is written not by the author of the book or erroneous, being presumably a typographical paper concerned but by the author to whom error. The correct date is 1845 as given in the the name is there attributed. " body of the paper (Sherborn and Woodward, For these reasons, the species of Conus re­ 1901: 217). Therefore, the names in Kiener's ferred to as, e.g. " Conus catus Hwass" in work should date from 1845 rather than from Bruguiere (1792) are herein cited as, e.g. the dates on which they appeared in the text." " Conus catus Hwass in Bruguiere." Toml in (1937) has given the most com­ Museum Calonnianum. 1797. The names in­ plete catalogue of the genus Conus. Some troduced in this publication were rejected in 2,700 names are listed, including both extant Opinion 51 of the ICZN (Smithsonian Pub!. and fossil species. Earlier catalogues of Re­ 2060, 1912: 116), but this decision has not cent species are given by Reeve (1843-1849), been universally accepted. Ofthe names listed Kiener (1845- 1850), Sowerby (1857- 1858), in the Museum Calonnianum, only three, all and Tryon (1884) . of which are synonyms, are pertinent to this Earlier published lists of the species of paper. For the sake of completeness, they are Conus in Hawaii are those of Garrett (1878), listed in brackets in the synonymies. Author­ Edmondson (1933, 1946), Tinker (1952, ship of the Museum Calonnianum is attrib­ 1958), and Greene (1953).Extensive unpub­ uted to George Humphrey, follow ing general lished lists compiled by W. A. Bryan in 1919, acceptance. The problem is discussed in de­ and by E. H . Bryan, J r. in 1956, have been tail by Iredale (1937). made available to the writer by E. H . Bryan,Jr. Museum Boltenianum. 1798. The names in this volume were accepted as nomenclatori­ SYNONYMY ally available in Opinion 96 of the ICZN The synonymies consist of the first known (Smithsonian Misc. Coli., 73(4): 16-18, 1926), publication of all known different names, au­ and their authorship was attributed to P. F. thors, and combinations which have been R6ding in Direction 48 of the ICZN (O pin­ appl ied to the species, listed chronologicall y. ions and Declarations Rendered by the ICZN, Subsequent references to the same name are 1: 255-264, 1956).
Recommended publications
  • The Cone Collector N°23
    THE CONE COLLECTOR #23 October 2013 THE Note from CONE the Editor COLLECTOR Dear friends, Editor The Cone scene is moving fast, with new papers being pub- António Monteiro lished on a regular basis, many of them containing descrip- tions of new species or studies of complex groups of species that Layout have baffled us for many years. A couple of books are also in André Poremski the making and they should prove of great interest to anyone Contributors interested in Cones. David P. Berschauer Pierre Escoubas Our bulletin aims at keeping everybody informed of the latest William J. Fenzan developments in the area, keeping a record of newly published R. Michael Filmer taxa and presenting our readers a wide range of articles with Michel Jolivet much and often exciting information. As always, I thank our Bernardino Monteiro many friends who contribute with texts, photos, information, Leo G. Ros comments, etc., helping us to make each new number so inter- Benito José Muñoz Sánchez David Touitou esting and valuable. Allan Vargas Jordy Wendriks The 3rd International Cone Meeting is also on the move. Do Alessandro Zanzi remember to mark it in your diaries for September 2014 (defi- nite date still to be announced) and to plan your trip to Ma- drid. This new event will undoubtedly be a huge success, just like the two former meetings in Stuttgart and La Rochelle. You will enjoy it and of course your presence is indispensable! For now, enjoy the new issue of TCC and be sure to let us have your opinions, views, comments, criticism… and even praise, if you feel so inclined.
    [Show full text]
  • Cone Snail Case
    Cone Snail case Cone snail molecular phylogeny Cone snail video Snail Venom Yields Potent Painkiller, But Delivering The Drug Is Tricky Updated August 4, 201510:52 AM ETPublished August 3, 20153:30 PM ET http://www.npr.org/sections/health-shots/2015/08/03/428990755/snail-venom- yields-potent-painkiller-but-delivering-the-drug-is-tricky Magician’s cone (Conus magus) The magician’s cone, Conus magus, is a fish-hunting, or piscivorous cone snail found in the Western Pacific. It is so common in some of small Pacific islands, especially in the Philippines, that it is routinely sold in the market as food. The magician’s cone attacks its fish prey by sticking out its light yellowish proboscis, from which venom is pushed through a harpoon-like tooth. It hunts by the hook-and-line method and so will engulf its prey after it has been paralyzed. To learn more about hook-and-line hunters, click here. Scientists have analyzed the venom of the magician’s cone and one of its venom components was discovered to have a unique pharmacological activity by blocking a specific calcium channel (N-type). After this venom component was isolated and characterized in a laboratory, researchers realized that it had potential medical application. By blocking N-type calcium channels, the venom blocks channels that when open convey pain from nerve cells. If this is blocked, the brain cannot perceive these pain signals. It was developed as a pain management drug, and is now chemically synthesized and sold under the trade name Prialt. This drug is given to patients who have very severe pain that is not alliviated by morphine.
    [Show full text]
  • BAST1986050004005.Pdf
    BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material.
    [Show full text]
  • Taxonomic Revision of West African Cone Snails (Gastropoda: Conidae) Based Upon Mitogenomic Studies: Implications for Conservation
    European Journal of Taxonomy 663: 1–89 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.663 www.europeanjournaloftaxonomy.eu 2020 · Tenorio M.J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:78E7049C-F592-4D01-9D15-C7715119B584 Taxonomic revision of West African cone snails (Gastropoda: Conidae) based upon mitogenomic studies: implications for conservation Manuel J. TENORIO 1,*, Samuel ABALDE 2, José R. PARDOS-BLAS 3 & Rafael ZARDOYA 4 1 Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Torre Norte, 1ª Planta, Universidad de Cadiz, 11510 Puerto Real, Cadiz, Spain. 2,3,4 Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:24B3DC9A-3E34-4165-A450-A8E86B0D1231 2 urn:lsid:zoobank.org:author:C72D4F45-19A1-4554-9504-42D1705C85A3 3 urn:lsid:zoobank.org:author:1CAB2718-4C97-47EE-8239-0582C472C40E 4 urn:lsid:zoobank.org:author:C55129E8-7FF7-41B2-A77C-4097E61DDD2E Abstract. In the last few years, a sharp increase in the number of descriptions of new species of West African cone snails, particularly from the Cabo Verde Archipelago, has taken place. In previous studies, we used mitogenome sequences for reconstructing robust phylogenies, which comprised in total 120 individuals representing the majority of species (69.7%) described from this biogeographical region (except Angolan endemics) and grouped into seven genera within the family Conidae.
    [Show full text]
  • Xoimi AMERICAN COXCIIOLOGY
    S31ITnS0NIAN MISCEllANEOUS COLLECTIOXS. BIBLIOGIIAPHY XOimi AMERICAN COXCIIOLOGY TREVIOUS TO THE YEAR 18G0. PREPARED FOR THE SMITHSONIAN INSTITUTION BY . W. G. BINNEY. PART II. FOKEIGN AUTHORS. WASHINGTON: SMITHSONIAN INSTITUTION. JUNE, 1864. : ADYERTISEMENT, The first part of the Bibliography of American Conchology, prepared for the Smithsonian Institution by Mr. Binuey, was published in March, 1863, and embraced the references to de- scriptions of shells by American authors. The second part of the same work is herewith presented to the public, and relates to species of North American shells referred to by European authors. In foreign works binomial authors alone have been quoted, and no species mentioned which is not referred to North America or some specified locality of it. The third part (in an advanced stage of preparation) will in- clude the General Index of Authors, the Index of Generic and Specific names, and a History of American Conchology, together with any additional references belonging to Part I and II, that may be met with. JOSEPH HENRY, Secretary S. I. Washington, June, 1864. (" ) PHILADELPHIA COLLINS, PRINTER. CO]^TENTS. Advertisement ii 4 PART II.—FOREIGN AUTHORS. Titles of Works and Articles published by Foreign Authors . 1 Appendix II to Part I, Section A 271 Appendix III to Part I, Section C 281 287 Appendix IV .......... • Index of Authors in Part II 295 Errata ' 306 (iii ) PART II. FOEEIGN AUTHORS. ( V ) BIBLIOGRxVPHY NOETH AMERICAN CONCHOLOGY. PART II. Pllipps.—A Voyage towards the North Pole, &c. : by CON- STANTiNE John Phipps. Loudou, ITTJc. Pa. BIBLIOGRAPHY OF [part II. FaliricillS.—Fauna Grcenlandica—systematice sistens ani- malia GrcEulandite occidentalis liactenus iudagata, &c., secun dum proprias observatioues Othonis Fabricii.
    [Show full text]
  • Download Preprint
    1 Mobilising molluscan models and genomes in biology 2 Angus Davison1 and Maurine Neiman2 3 1. School of Life Sciences, University Park, University of Nottingham, NG7 2RD, UK 4 2. Department of Biology, University of Iowa, Iowa City, IA, USA and Department of Gender, 5 Women's, and Sexuality Studies, University of Iowa, Iowa, City, IA, USA 6 Abstract 7 Molluscs are amongst the most ancient, diverse, and important of all animal taxa. Even so, 8 no individual mollusc species has emerged as a broadly applied model system in biology. 9 We here make the case that both perceptual and methodological barriers have played a role 10 in the relative neglect of molluscs as research organisms. We then summarize the current 11 application and potential of molluscs and their genomes to address important questions in 12 animal biology, and the state of the field when it comes to the availability of resources such 13 as genome assemblies, cell lines, and other key elements necessary to mobilising the 14 development of molluscan model systems. We conclude by contending that a cohesive 15 research community that works together to elevate multiple molluscan systems to ‘model’ 16 status will create new opportunities in addressing basic and applied biological problems, 17 including general features of animal evolution. 18 Introduction 19 Molluscs are globally important as sources of food, calcium and pearls, and as vectors of 20 human disease. From an evolutionary perspective, molluscs are notable for their remarkable 21 diversity: originating over 500 million years ago, there are over 70,000 extant mollusc 22 species [1], with molluscs present in virtually every ecosystem.
    [Show full text]
  • Biogeography of Coral Reef Shore Gastropods in the Philippines
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274311543 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis · April 2004 CITATIONS READS 0 100 1 author: Benjamin Vallejo University of the Philippines Diliman 28 PUBLICATIONS 88 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: History of Philippine Science in the colonial period View project Available from: Benjamin Vallejo Retrieved on: 10 November 2016 Biogeography of Coral Reef Shore Gastropods in the Philippines Thesis submitted by Benjamin VALLEJO, JR, B.Sc (UPV, Philippines), M.Sc. (UPD, Philippines) in September 2003 for the degree of Doctor of Philosophy in Marine Biology within the School of Marine Biology and Aquaculture James Cook University ABSTRACT The aim of this thesis is to describe the distribution of coral reef and shore gastropods in the Philippines, using the species rich taxa, Nerita, Clypeomorus, Muricidae, Littorinidae, Conus and Oliva. These taxa represent the major gastropod groups in the intertidal and shallow water ecosystems of the Philippines. This distribution is described with reference to the McManus (1985) basin isolation hypothesis of species diversity in Southeast Asia. I examine species-area relationships, range sizes and shapes, major ecological factors that may affect these relationships and ranges, and a phylogeny of one taxon. Range shape and orientation is largely determined by geography. Large ranges are typical of mid-intertidal herbivorous species. Triangualar shaped or narrow ranges are typical of carnivorous taxa. Narrow, overlapping distributions are more common in the central Philippines. The frequency of range sizesin the Philippines has the right skew typical of tropical high diversity systems.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • CONE SHELLS - CONIDAE MNHN Koumac 2018
    Living Seashells of the Tropical Indo-Pacific Photographic guide with 1500+ species covered Andrey Ryanskiy INTRODUCTION, COPYRIGHT, ACKNOWLEDGMENTS INTRODUCTION Seashell or sea shells are the hard exoskeleton of mollusks such as snails, clams, chitons. For most people, acquaintance with mollusks began with empty shells. These shells often delight the eye with a variety of shapes and colors. Conchology studies the mollusk shells and this science dates back to the 17th century. However, modern science - malacology is the study of mollusks as whole organisms. Today more and more people are interacting with ocean - divers, snorkelers, beach goers - all of them often find in the seas not empty shells, but live mollusks - living shells, whose appearance is significantly different from museum specimens. This book serves as a tool for identifying such animals. The book covers the region from the Red Sea to Hawaii, Marshall Islands and Guam. Inside the book: • Photographs of 1500+ species, including one hundred cowries (Cypraeidae) and more than one hundred twenty allied cowries (Ovulidae) of the region; • Live photo of hundreds of species have never before appeared in field guides or popular books; • Convenient pictorial guide at the beginning and index at the end of the book ACKNOWLEDGMENTS The significant part of photographs in this book were made by Jeanette Johnson and Scott Johnson during the decades of diving and exploring the beautiful reefs of Indo-Pacific from Indonesia and Philippines to Hawaii and Solomons. They provided to readers not only the great photos but also in-depth knowledge of the fascinating world of living seashells. Sincere thanks to Philippe Bouchet, National Museum of Natural History (Paris), for inviting the author to participate in the La Planete Revisitee expedition program and permission to use some of the NMNH photos.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Notes on Afonsoconus Tucker & Tenorio, 2013
    Notes on Afonsoconus Tucker & Tenorio, 2013 (Gastropoda, Conidae), with description of a new species from the Southwestern Indian Ocean Manuel Tenorio, Eric Monnier, Nicolas Puillandre To cite this version: Manuel Tenorio, Eric Monnier, Nicolas Puillandre. Notes on Afonsoconus Tucker & Tenorio, 2013 (Gastropoda, Conidae), with description of a new species from the Southwestern Indian Ocean. Eu- ropean Journal of Taxonomy, Consortium of European Natural History Museums, 2018, 472, pp.1-20. 10.5852/ejt.2018.472. hal-01919489 HAL Id: hal-01919489 https://hal.sorbonne-universite.fr/hal-01919489 Submitted on 12 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License European Journal of Taxonomy 472: 1–20 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.472 www.europeanjournaloftaxonomy.eu 2018 · Tenorio M.J. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:C3C58B17-9AAB-4AD2-88DD-498AFBF27016 Notes on Afonsoconus Tucker & Tenorio, 2013 (Gastropoda, Conidae), with description of a new species from the Southwestern Indian Ocean Manuel J. TENORIO 1,*, Eric MONNIER 2 & Nicolas PUILLANDRE 3 1 Dept.
    [Show full text]
  • Radular Morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India
    Molluscan Research 27(3): 111–122 ISSN 1323-5818 http://www.mapress.com/mr/ Magnolia Press Radular morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India J. BENJAMIN FRANKLIN, 1, 3 S. ANTONY FERNANDO, 1 B. A. CHALKE, 2 K. S. KRISHNAN. 2, 3* 1.Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai-608 502, Cuddalore, Tamilnadu, India. 2.Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005, India. 3.National Centre for Biological Sciences, TIFR, Old Bellary Road, Bangalore-560 065, India.* Corresponding author E-mail: (K. S. Krishnan): [email protected]. Abstract Radular morphologies of 22 species of the genus Conus from Indian coastal waters were analyzed by optical and scanning elec- tron microscopy. Although the majority of species in the present study are vermivorous, all three feeding modes known to occur in the genus are represented. Specific radular-tooth structures consistently define feeding modes. Species showing simi- lar feeding modes also show fine differences in radular structures. We propose that these structures will be of value in species identification in cases of ambiguity in other characteristics. Examination of eight discrete radular-tooth components has allowed us to classify the studied species of Conus into three groups. We see much greater inter-specific differences amongst vermivorous than amongst molluscivorous and piscivorous species. We have used these differences to provide a formula for species identification. The radular teeth of Conus araneosus, C. augur, C. bayani, C. biliosus, C. hyaena, C. lentiginosus, C. loroisii, and C. malacanus are illustrated for the first time. In a few cases our study has also enabled the correction of some erroneous descriptions in the literature.
    [Show full text]